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Naturally occurring variability within a study region harbors valuable information on

relationships between biological variables. Yet, spatial patterns within these study areas,

e.g., in field trials, violate the assumption of independence of observations, setting

particular challenges in terms of hypothesis testing, parameter estimation, feature

selection, and model evaluation. We evaluate a number of spatial regression methods in

a simulation study, including more realistic spatial effects than employed so far. Based on

our results, we recommend generalized least squares (GLS) estimation for experimental

as well as for observational setups and demonstrate how it can be incorporated into

popular regression models for high-dimensional data such as regularized least squares.

This new method is available in the BioConductor R-package pengls. Inclusion of a

spatial error structure improves parameter estimation and predictive model performance

in low-dimensional settings and also improves feature selection in high-dimensional

settings by reducing “red-shift”: the preferential selection of features with spatial structure.

In addition, we argue that the absence of spatial autocorrelation (SAC) in the model

residuals should not be taken as a sign of a good fit, since it may result from overfitting

the spatial trend. Finally, we confirm our findings in a case study on the prediction of

winter wheat yield based on multispectral measurements.

Keywords: prediction, spatial autocorrelation, field trial, generalized least squares, cross-validation, feature

selection, simulation

1. INTRODUCTION

Measurements on a cohesive study area, such as performed in field trials (Singh et al., 2003),
ecological surveys (Liebhold, 2002), or remote sensing (Wójtowicz et al., 2016), provide a wealth
of knowledge on variability occurring between living organisms. On the one hand, the common
origin of the data and the use of the same cultivar, soil, weather, and cultivating conditions reduce
the variability tomanageable levels. On the other hand, there often remains sufficient variability that
can be linked to other data types gathered on the same area, such as genomic or optic measurements
of the vegetation or environmental features. In observational studies, naturally occurring variability
in the outcome variable is linked to naturally occurring variability in the explanatory variables
(Bernal-Vasquez et al., 2014; Barmeier and Schmidhalter, 2016; Wójtowicz et al., 2016; Yue et al.,
2017; Rocha et al., 2018, 2019; Cruz et al., 2020; Fu et al., 2020; Harkel et al., 2020; Ploton et al.,
2020; Tang et al., 2021; Yoosefzadeh-Najafabadi et al., 2021; Zhou et al., 2021). Alternatively, in
experimental (interventional) studies, researchers may actively apply a treatment to part of the
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study area and investigate the link between this treatment and
the variability in the field (Lado et al., 2013; Elias et al., 2018;
Mao et al., 2020). For both cases (observational or experimental
studies), links between the variables under study can then be
tested through formal hypothesis tests and exploited to build,
e.g., prediction models for phenotypic traits based on easily
measurable variables.

Observations of a given variable across the study area are
often not independent but instead exhibit spatial patterns.
These patterns may take the shape of small clusters of similar
observations, but also of linear gradients or edge effects (despite
the use of buffer rows at the border) (Austin and Blackwell, 1980;
Langton, 1990; Romani et al., 1993; Haase, 1995; Barmeier and
Schmidhalter, 2016; Cruz et al., 2020; Zhou et al., 2021). All of
these spatial patterns introduce a dependence between nearby
observations, known as spatial autocorrelation (SAC), which
violates the assumption of independence among observations of
a single variable underlying many statistical methods (Cressie,
1993; Diggle et al., 1998). Confined to a spatial domain, variables
that are independent may exhibit an apparent association when
they are both spatially autocorrelated, which is known as “spatial
confounding” (Hodges and Reich, 2010; Paciorek, 2010; Nobre
et al., 2020). As a result, SAC can inflate the type I error rate
(Dormann et al., 2007; Kissling and Carl, 2008; Beale et al., 2010),
can increase the bias and variability of parameter estimators, and
decrease predictive model performance (Dormann et al., 2007;
Beale et al., 2010; Rocha et al., 2018, 2019), and can unduly favor
the selection of features with spatial structure in feature selection
procedures or hypothesis tests (known as “red-shift”) (Lennon,
2000; Bini et al., 2009; Meyer et al., 2019; Harisena et al., 2021).
Another consequence of SAC concerns data splitting procedures
such as cross-validation (CV), whereby the available dataset is
repeatedly split into a training and a test set to get an estimate of
model performance on new data. The SAC between observations
may cause overoptimistic assessment of model performance, as
training and test sets are not truly independent (Brenning, 2005;
Pohjankukka et al., 2017; Roberts et al., 2017; Meyer et al., 2019;
Schratz et al., 2019; Ploton et al., 2020).

A large body of theory is dedicated to spatial interpolation,
i.e., leveraging from SAC to improve prediction on new data
points lying in between past observations (e.g., kriging) (Cressie,
1993; Diggle et al., 1998). Yet in many contexts (e.g., field trials,
ecology), models are trained for application on new datasets
gathered in another setup. Spatial coordinates cannot be included
in the prediction model in this case, and SAC is a mere
nuisance: one wants to learn the relationship between outcome
and regressors regardless of spatial effects. Spatial regression
models developed for this purpose account for spatial structure in
either the mean or error term, but ignore this term when making
predictions on new data. A selection of these methods is included
and discussed here, but many more exist (see Beale et al., 2010
for a more exhaustive enumeration). Generalized least squares
(GLS) is a generalization of ordinary least squares (OLS) to the
case of dependent errors, which can be applied for instance to
spatial data. Since it requires the estimation of a large number
of covariances between observations, additional assumptions
are needed to render the estimation feasible. For the case of

spatial data, some functional relationship with a low number of
parameters is assumed, which describes the decay of covariance
with distance. The corresponding parameters are then estimated
from the data (Pinheiro and Bates, 2000). The integrated
nested Laplace approximation (INLA) method is based on a
similar error model, but performs parameter estimation in a
Bayesian context (Selle et al., 2019). Alternatively, neighboring
observations can be included as nuisance terms in either the
mean or the error model in simultaneous autoregressive models.
These models require the definition of a neighborhood based on
distance or a certain number of closest neighbors (Kissling and
Carl, 2008; Selle et al., 2019). Spatial filtering takes a different
approach by performing eigendecomposition on the proximity
matrix of the observations and including eigenvectors associated
with the outcome variable in the mean model (Tiefelsdorf
and Griffith, 2007; Murakami and Griffith, 2015). The spatial
structure of the outcome variable can also be modeled more
explicitly by including a smooth term in the mean model that is a
function of location, e.g., a spline in a generalized additive model
(GAM) (Wood, 2003; Rodríguez-Álvarez et al., 2018).

Several simulation studies have investigated how well these
methods deal with spatial data. One study to compare a wide
range of them was Beale et al. (2010), who found a poor
performance for OLS and spatial filtering with forward selection
in presence of SAC, and better performance for GAM, GLS, and
simultaneous autoregressive models. Kissling and Carl (2008)
found simultaneous autoregressive models with spatial terms
in the errors to outperform OLS, and Ludwig et al. (2020)
found GAM to perform better than OLS in the presence of
spatial confounding. Murakami and Griffith (2015) found a
better performance of spatial filtering with random effects than
with forward selection. The data generation models used in
these simulation studies were invariably based on the general
assumption of SAC decreasing with the distance between points
(Wang and Zhu, 2009; Beale et al., 2010; Alesso et al., 2019; Rocha
et al., 2019, 2021; Ludwig et al., 2020; Mao et al., 2020; Harisena
et al., 2021). Even when this assumption is acceptable for analysis
purposes, this way of drawing observations is not ideally suited to
simulate structured spatial patterns observed in some real studies,
such as linear gradients or edge effects (Austin and Blackwell,
1980; Romani et al., 1993; Barmeier and Schmidhalter, 2016; Cruz
et al., 2020; Zhou et al., 2021).

In field trials, experiments are often designed in anticipation
of spatial factors confounding the outcome, e.g., by choosing
block designs perpendicular to an expected gradient (Verdooren,
2020). In addition, at the analysis stage, the inclusion of
spatial effects in regression models has been shown to improve
predictive model performance on real data (Lado et al., 2013;
Elias et al., 2018; Mao et al., 2020) and in simulations (Alesso
et al., 2019; Rocha et al., 2019; Mao et al., 2020; Harisena
et al., 2021), although no improvement was found in another
study (Bernal-Vasquez et al., 2014). However, corrections are
often done only according to discrete factors of the design,
e.g., by adding a correction factor for the rows and columns
of checkerboard designs. Yet, the outcome variable may exhibit
SAC that is unpredictable at the design stage, within and across
subplots. In ecological surveys or when monitoring real cultured
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fields, there may even be no fixed design factors at all. Spatial
dependence between individual plants or parts of fields then
needs to be accounted for in the data analysis rather than in the
experimental design. An example is remote sensing of cultured
fields through unmanned aerial vehicles (UAVs, colloquially
known as drones). The idea is to predict a phenotype such as
a yield or biomass based on reflectance measurements. Often
vegetation indices are extracted from the raw images as ratios
of spectral band intensities to serve as predictors. Although
imaging and phenotyping data on a single field are often spatially
autocorrelated, this spatial structure is often not taken into
account in the data analysis (Yue et al., 2017; Zhang et al., 2019;
Fu et al., 2020; Harkel et al., 2020; Lee et al., 2020; Tang et al.,
2021; Yoosefzadeh-Najafabadi et al., 2021).

Contemporary genomic or hyperspectral measurements can
easily yield many more variables than the number of different
plants or plots that were phenotyped. In this high-dimensional
context, penalized (or regularized) linear models such as the
least absolute shrinkage and selection operator (LASSO) are
often employed for feature selection and building predictive
models. The question then arises how spatial structure can be
incorporated into these models as well. Recently, Cai et al.
(2019) combined the LASSO with a moment estimator for
autocorrelation in the context of spatial data. Yoon et al. (2013)
combined penalized regression with autoregressive modeling.
The combination of the GLS framework with the penalized
regression methods has also been proposed before, but mostly in
other contexts than spatial modeling (Shijun and Benzao, 2006;
Yang and Yuan, 2019; Mylona and Goos, 2021). Seya et al. (2015)
applied the LASSO to eigenvector selection in eigenvector spatial
filtering, and Fan et al. (2017) combined ridge regression with
spatial filtering to find that inclusion of spatial effects improves
parameter estimation. Yet, Wang and Zhu (2009) found a trade-
off between predictive model performance and accuracy of the
feature selection, with methods giving better predictions having
worse feature selection performance. Software implementations
are available for some of thesemethods (Fan et al., 2017; Yang and
Yuan, 2019), but the solutions proposed are usually restricted to
a small class of problems.

In view of the multitude of experimental designs, analysis
goals, potential spatial patterns, and methods to account for
them, deciding on an analysis strategy is not a trivial task.
Therefore, we present here a simulation study to assess how
various established methods to account for SAC effects in
regression models perform (in terms of controlling red-shift,
estimating model parameters, selecting relevant features and
quantitatively predicting the outcome variable) when confronted
with different forms of SAC observed in field or greenhouse
trials. We consider experimental studies as well as observational
studies and include more realistic spatial structures than in
other simulation studies (Dormann et al., 2007; Beale et al.,
2010; Murakami and Griffith, 2015; Harisena et al., 2021), such
as linear gradients and edge effects. We also combined GLS,
which accounts for spatial structure, with penalized regression
for high-dimensional data, and investigate how this affects
model performance and feature selection. This new method
is available as the R-package pengls from BioConductor at

https://bioconductor.org/packages/pengls/. Model performance
was estimated using random and blocked CV paradigms and
compared with performance on independently simulated data.
Furthermore, we investigated the role of residual SAC in assessing
model fit. To illustrate our findings, we apply spatial and
non-spatial methods to a real dataset from remote sensing of
wheat fields.

2. MATERIALS AND METHODS

2.1. Simulation Study
2.1.1. Data Generation
Observations are simulated at locations sampled without
replacement and with equal probability from an equispaced 15
x 15 grid with interpoint distance 1, indexed by an integer
coordinate pair (x, y). Outcome variable A and regressors Bj with
j= 1,..,p are generated for samples i=1,. . . ,n at locations (xi, yi) as

Bj ∼ MVN
(

fbj(x, y),6bj(x, y)
)

A ∼ MVN
(

fa(x, y)+ Bβ ,6a(x, y)
) (1)

MVN indicates the multivariate normal distribution, fa and fb
are continuous smooth functions that describe the evolution of
the expected values with the location. The 6 matrices describe
the covariance structure between the observations as a function
of space, whereby the strength of the correlation decreases
with the distance between the observations. Hence, specifying a
spatial smooth function or a spatial covariance structure are two
different ways of engendering spatial structure in the data. All
regressors Bj are drawn independently. Data are drawn for the
following scenarios:

1. “None”: no spatial structure.

• f (x, y) = 0
• 6 = σ 2In with In the identity matrix of size n and σ 2 = 1

the residual variance.

2. “Linear”: a linear change in baseline.

• f (x, y) = (x, y)tγ with γ a two-dimensional gradient
with components drawn uniformly on [−0.5, 0.5] and
independently.

• 6 = σ 2In

3. “Edge”: observations along the edge have a different mean.

• f (x, y) =
βedge

dedge[(x,y)]
, with dedge

[

(x, y)
]

the distance to the

closest edge of the field (assumed to be one unit distance
away from the border rows) and βedge drawn for each
realization from a normal distribution with mean 0 and
variance 50.

• 6 = σ 2In

4. “gaussCor”: correlation between observations decays as a
bell curve.

• f (x, y) = 0
• 6 = σ 2

(

τ In + (1− τ )6gauss
)

with 6
gauss

ik
=

exp(−(d
[

(xi, yi), (xk, yk)
]

/r)2) and d the Euclidean
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FIGURE 1 | Four instances (rows) of variables with different spatial structures (columns). x- and y-axes represent spatial coordinates. Colors reflect the value of the

outcome variable, scaled to the 0-1 range for legibility.

distance between two points. r = 7.5 is called the range
parameter and τ = 0.25 is the nugget parameter.

The parameter values were chosen to qualitatively emulate the
spatial patterns observed in real data (Austin and Blackwell,
1980; Langton, 1990; Romani et al., 1993; Haase, 1995; Barmeier
and Schmidhalter, 2016; Cruz et al., 2020; Zhou et al., 2021).
Some examples of variables generated in these ways are
shown in Figure 1. All combinations of spatial structures of
outcome and regressors were made, whereby all regressors
with spatial structure follow the same type of spatial structure
per scenario but are otherwise independent. Note that the
edge and linear spatial effects increase the variance of a
variable, whereas gaussCor decreases its variance (refer to
Supplementary Figure S1). The number of features was varied

between p = 1 (univariate scenario), p = 50 (low-dimensional
scenario), and p = 100, 200, or 300 (high-dimensional scenario).
In the univariate scenario, the design is either observational,
with a continuous regressor following a spatial pattern, or
experimental, whereby a binary regressor (e.g., treatment vs.
control) has a checkerboard pattern across the field. In this
latter scenario, an equispaced 18x18 grid was used to allow for
partitioning into square subplots with sizes 9, 6, and 3 (refer
to Supplementary Figures S2–S4), and the 4 different spatial
structures are introduced in outcome A only (in the same way
as for the 15 x 15 grid). For the training datasets, the sample size
was n = 100 for the univariate and low-dimensional scenarios
and 50 for the high-dimensional scenario. Test datasets were
also generated (see below), with the sample size equal to 10 in
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all cases (the same size as the left-out folds, refer to Section
2.1.3 below). In the multivariate scenarios, 50% of the regressors
were generated with spatial structure, the others without. In both
groups of regressors, 20% of the components of β were drawn
from a zero-mean normal distribution with standard deviations
varying between 0.5, 1, and 2 in the low-dimensional scenario
and between 0.25 and 0.5 for the high-dimensional scenario, the
other components were zero. This setting leads to comparable
true R2 values between low- and high-dimensional scenarios
(refer to Supplementary Figure S5). For the univariate scenarios,
a null setting with β = 0 was included, as well as an alternative
setting whereby β was drawn from a normal distribution with
mean 0 and variance 0.25. In the univariate and low-dimensional
scenarios, 1,000 Monte Carlo instances were generated, in the
high-dimensional scenarios 200. For the INLA models, the
number of Monte Carlo instances was limited to 100 in the low-
and high-dimensional scenarios for computational reasons.

In a small side simulation of the low-dimensional case, we
investigate the role of the number of features p. While fixing
the standard deviation of the components of β at 1, we let the
number of features vary between 10, 20, and 50, with a sample
size of n = 100.

Even when βj = 0, some combinations of the spatial
configuration of regressor and outcome lead to non-zero true
correlations between their means, for instance, in the case when
both experience an edge effect in the observational scenario
(refer to Supplementary Figure S6), or between edge effect in
the outcome and the checkerboard design in the experimental
scenario (refer to Supplementary Figure S7). This phenomenon
is known as spatial confounding. Strictly statistically speaking,
this is then not a null scenario, and excess small p-values cannot
be seen as a shortcoming of the regression method. Yet, when
confined to the two-dimensional space of a field, two variables
that are independent can easily exhibit spatial patterns that
render them correlated, e.g., two linear gradients in a field are
most likely not orthogonal. Therefore, ideally, we would prefer
a method that is robust to these kinds of confounded spatial
patterns, and we will consider every discovery that results only
from this spatial confounding as a false one.

2.1.2. Regression Models
All analyses were performed using the R programming language,
version 4.0.3 (R Core Team, 2020). Details on the package
versions can be found in Supplementary Section 5.

2.1.2.1. Low-Dimensional Scenario
Ordinary least squares was fitted using the lm function in the
stats package. GLS with Gaussian covariance decay assumed was
fitted using the gls and corGaus functions in the nlme R-package
(Pinheiro et al., 2021). This function iterates between estimating
the spatial covariance structure of the residuals (6̂) and fitting
an OLS model on A and B matrices premultiplied by the inverse
square root factor of this covariance structure to estimate β ,
according to the following model:

6̂
−1/2

A = 6̂
−1/2

Bβ + ǫ (2)

with ǫ ∼ N(0, σ 2) i.i.d. GAM with 2D thin plate spline with 5
degrees of freedomwere fitted using the gam function in themgcv
package (Wood, 2003). Spatial filtering with the forward selection
of spatial eigenvectors or with random effects on the spatial
eigenvectors is done with the esf and resf functions from the
spmoran package, respectively (Murakami, 2021). Simultaneous
autoregressive models were fitted using the errorsarlm function
in the spatialreg package (Bivand and Piras, 2015), using the
following two definitions of adjacency. Neighborhoods were
defined as either the 8 nearest neighbors (“nearest neighbors”),
or all other observations lying within one-fifth of the maximum
distance between any two observations (“distance”). In the
univariate scenario, we used both versions, for the other analyses,
we used only the nearest neighbor version as this one performed
best in the univariate models. INLA was applied using the AR(1)
model as well as the Matérn model as described by Selle et al.
(2019). We used INLA’s posterior mean of the β parameter
as a point estimate for making predictions and for evaluating
parameter estimation and considered the null hypothesis β = 0
to be rejected when 0 was outside the 95% credible interval. In the
univariate scenario, we used both INLA versions, for the other
analyses, we used only the Matérn version as this one performed
best in the univariate models. When using these methods for
making predictions on new datasets, spatial components are
omitted from the models, e.g., the thin plate spline for GAM,
the spatial eigenvectors for spatial filtering, the neighboring
observations for a simultaneous autoregressive model, or the
spatial error term for the GLS and INLA Matérn model. These
components are only included to obtain a better estimate of
β but are not included for extrapolation. No feature selection
was performed in the low-dimensional scenario; all regressors
are included in the models. In the univariate scenario with a
checkerboard design, the data are analyzed with and without
accounting for row and column effects. Accounting for these
effects is done by adding dummy variables for rows and columns
(excluding a reference row and column) to the regressor matrix
B. Note also that in the low-dimensional scenario, no parameter
tuning is required, so the parameter estimates are not affected by
the CV (refer to Section 2.1.3).

2.1.2.2. High-Dimensional Scenario
For the high-dimensional datasets, a number of variants of the
elastic net (EN) implemented by the glmnet function in the
glmnet package are used (Friedman et al., 2010). The mixing
parameter α is fixed at 0.5. EN performs feature selection by
shrinking some of the coefficients in β to zero. We fit the
following models:

• The regular EN, without spatial correction.
• A GLS version of EN, which iterates until convergence

between

1. Fitting the EN on the data matrix pre-multiplied by the

square root inverse covariance matrix 6̂
−1/2

as in (2),
which estimates β .

2. Estimating spatial structure of the residuals 6 of this
model through restricted maximum likelihood using the
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gls function in the nlme package, assuming Gaussian
covariance decay.

As starting value, the identity matrix is used for 6.
This iterative procedure minimizes the following criterion
(Friedman et al., 2010)

(A− β0 −Bβ̂)t6̂
−1

(A− β0 −Bβ̂)+ 0.5λ||β̂||1 + 0.25λ||β̂||22,
(3)

where λ is a tuning parameter, β0 is the intercept, and β is the
parameter vector of interest, 6 is a nuisance parameter, and
||β̂||1 =

∑p
j=1 |βj| and ||β̂||22 =

∑p
j=1 β2

j the L1 and squared
L2 norms of the β parameter vector. Convergence is assumed
when themean squared change in the predictions between two
iterations drops below 0.00025.

• An EN model with spatial eigenvectors as regressors in
addition to the regular B regressors. The spatial eigenvectors
are found using the meigen function in the spmoran package
(Murakami, 2021).

• A GAM-LASSO model is available in the plsmselect package
(Ghosal and Kormaksson, 2019). We adapted it to allow the
value of the mixing parameter α to be set by the user, which
allows for EN to be fitted.

In addition, an INLAMatérn model as in the low-dimensional
scenario is fitted. Unlike the previous models, this model is not
based on elastic net and does not perform feature selection.

Cross-validation (either blocked or random, see below) is used to
tune the penalty parameter λ in the elastic net models, choosing
the λ one standard error above the λ with the highest CV R2,
as is the default in the glmnet package. Note that since λ is
tuned based on different CV paradigms, the test performance on
independent test sets may now depend on the paradigm, unlike
in the low-dimensional scenario.

2.1.3. Diagnostics
In the univariate scenario, the type I error rate was calculated for
the null scenario, and the power to call the association between A
and B significant and the mean squared error (MSE) of β̂ for the
alternative scenario. The significance level was set at 5%. For the
low and high-dimensional scenarios, methods are evaluated for
predictive performance by R2, which measures the proportion of
variance in A explained by the regressors B:

R2 =
Var(A)− Var(A|B)

Var(A)
. (4)

Generally, the regressors B are expected to explain only part of
the variance in A, yielding R2 values between 0 and 1. The R2

is estimated as R̂2 = 1 −
∑n

i=1(ai−âi)2
∑n

i=1(ai−ā)2
, with âi the predicted

outcome for observation i and ā the average outcome. When
the prediction model is poor, the estimates âi may be such that
they increase the variance, leading to negative values of the R̂2

measure. For simplicity, R̂2 is designated by R2 in the remainder
of the document. R2 was estimated using independent test sets
(see below), but also using CV.

It is known that SAC can cause an upward bias in model
evaluation by CV and that this effect can be mitigated by

choosing the folds as clusters of nearby observations rather
than randomly over the field (refer to Supplementary Figure S8

for an illustration). This is called blocked or spatial CV and
reduces the SAC between the folds (Brenning, 2005; Pohjankukka
et al., 2017; Roberts et al., 2017; Meyer et al., 2019; Schratz
et al., 2019; Ploton et al., 2020). When CV is used to tune
hyperparameters, this blocked CV might also lead to better
models by discouraging overfitting, although this could not be
demonstrated so far (Schratz et al., 2019). We applied random
CV, whereby observations are assigned to folds randomly, and
blocked CV, whereby folds are formed by clustering nearby points
using the kmeans function from the stats package. The number
of folds was 10 for the low-dimensional and 5 for the high-
dimensional scenario, in each case leading to fold sizes of 10.
Predictions are mean-centered before evaluating R2 on the test
datasets and in the CV, since we are mainly interested in relative
differences within fields rather than in accurate prediction of the
baseline per field. Three differentR2 measures were calculated per
simulated dataset:

• Cross-validation R2 (cvR2), the average of the R2 values
calculated on the left-out folds.

• R2 on a test dataset of size n=10 (testR2spatial), generated with
the same relation β between A and B, and the same spatial
structure as the training dataset in regressors and outcome.
This means that if, for instance, the spatial structure was linear
in the original training dataset, it will also be such in the test
dataset, but a new gradient vector γ is drawn. Its R2 then
reflects prediction performance on all points of a single, similar
plot. A 5 x 5 grid was used to obtain similar spacing between
the observations as in the training set.

• R2 on a test dataset of size n = 10 (testR2none), generated
with the same relation β between A and B, but without any
spatial structure in outcome or regressor. This R2 reflects
the performance of the model over all possible plants from
different fields, so without SAC between them.

For evaluation on the test dataset, a model is trained on the
training dataset after omitting one of the folds, using the
hyperparameter λ optimized in the CV on the entire dataset, such
that the size of the training dataset is the same for evaluation
on an external test dataset and for CV. Only one test dataset
is generated per training set, as the outer Monte Carlo loop of
1,000 instances will average out the test performance over as
many test datasets. When the model fitting procedure failed,
all R2 values were set to 0. As a second diagnostic, the MSE
of the estimator of β is calculated. For the high-dimensional
scenario, we also consider the feature selection efficiency. We
define TP as the number of truly predictive features selected,
FP as the number of non-predictive features selected and FN
as the number of truly predictive features not selected, we
calculate the sensitivity as TP

TP+FN and true discovery proportion

(TDP) as TP
TP+FP . We also calculate the proportion of features

with spatial patterns among the discoveries, which should be
50% on average if the method does not preferentially select
spatial features.

Spatial autocorrelation can be quantified through the Moran’s
I statistic (Moran, 1950). It can be calculated on the raw outcome
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A (marginal Moran’s I or Im) or on the residuals from regressing
A on B (Moran’s I conditional on B or Ic). These measures are
defined as:

Im =
n

sw

∑n
i=1

∑n
j=1 wij(ai − ā)(aj − ā)
∑n

i=1(ai − ā)2

Ic =
n

sw

∑n
i=1

∑n
j=1 wij(ai − âi)(aj − âj)
∑n

i=1(ai − âi)2
,

(5)

with sw =
∑n

i=1

∑n
j=1 wij, ā denotes the average outcome and

âi denotes the outcome predicted by the regression model. The
matrix W with entries wij is a weight matrix with zeroes on
the diagonal and off-diagonal entries usually decreasing with
the distance between observations i and j. Note that the Ic in
our case will also capture spatial autocovariance that is included
in model components other than the regressors since âi is
calculated after omitting all spatial terms, i.e., only β̂ is used for
making predictions. The value of the Moran’s I statistic strongly
depends on the choice of the weight matrix. Here, we set its
off-diagonal elements equal to the reciprocal of the euclidean
distance between the points, although this choice is not ideal for
detecting edge effects (refer to Supplementary Figure S9).

The Moran’s I statistic relates the total covariance
of each observation with itself 1/n

∑n
i=1(ai − ā)2, i.e.,

the variance (Cov(A, A)=Var(A)), to the short-range
weighted spatial autocovariance with nearby observations
∑n

i=1
∑n

j=1 wij(ai−âi)(aj−âj)
∑n

i=1
∑n

j=1 wij
. Since the weighted spatial

autocovariance is always smaller than or equal to the variance,
Moran’s I statistics are product-moment correlations that lie
between –1 and 1 (Day et al., 2004).

The difference between Im and Ic indicates how the model
affects unexplained autocovariance, and could thus be used as a
measure of model performance. Yet, because of its definition as
a ratio, the Moran’s I statistic can be difficult to interpret, as a
single, directional change in Moran’s I may result from several
possible changes in variance and/or short range autocorrelation.
As for R2, Ic was estimated on the test and training residuals,
and on the residuals of the left-out folds in the CV. Yet, their
comparison is complicated by the fact that the expected value of
the Moran’s I statistic under the null hypothesis depends on the
sample size n: it equals E(I) = −1

n−1 . It will thus automatically
differ when calculated on entire training datasets or smaller left-
out folds. As a solution, we subtract its expected value from every
Moran’s I statistic.

2.2. Case Study
As a case study, we include an investigation on prediction of
wheat grain yield and protein content based on Unmanned
Areal Vehicle (UAV) spectral reflectancemeasurements from real
farming fields (Zhou et al., 2021). Four fields were measured in
two different years (Fields 1 and 2 in 2018 and Fields 3 and 4 in
2019, with 90 and 101, and 68 and 68 samples, respectively) for
the same crop (winter wheat) and cultivating conditions. For the
first two fields, plant samples were collected along 3 lateral and
one longitudinal transects in the field. For the other two fields,
plant samples were collected from 10m× 15m grid points across

each field (refer to Supplementary Figure S10) andmeasured for
yield and protein content (Supplementary Figure S11). All fields
were also surveyed with a camera mounted on a UAV. As usual,
to eliminate confounding factors such as atmospheric effects and
sun angle, features in the form of vegetation indices and spectral
ratios were extracted from the resulting images prior to model
fitting. Because of high multicollinearity between these indices
(refer to Supplementary Figures S12–S16), for each field, only
the set of most important principal components that together
explain at least 99% of the variance are included as regressors
(3 components for fields 1–3 and 4 components for field 4),
refer to Supplementary Figure S17. Low-dimensional prediction
models as introduced in Section 2.1.2.1 are trained on all fields
separately, and predictive performance is estimated using 5-fold
CV. The CV was repeated 20 times and resulting cvR2s were
averaged. Next, the trained models were validated by predicting
yield and protein content for other fields, mean-centering these
predictions, and comparing them to mean centered observed
values of other fields. For validating the models on other fields,
we used the entire training dataset to fit the model, rather than
leaving out 1 fold as in the simulation study.

3. RESULTS

The performance of different spatial regression methods was
investigated in simulations for two univariate scenarios and
for multivariate low- and high-dimensional scenarios. Next, the
results were compared to the performance of the methods on a
field trial dataset on winter wheat (Zhou et al., 2021).

3.1. Univariate Scenario
The type I error, power, and MSE of β̂ for the observational
study scenario are shown in Figure 2. OLS, spatial filtering,
INLA Matérn, and the autoregressive models (simultaneous and
INLA) generally struggle the most to control the type I error in
presence of spatial effects. On the other hand, GLS and GAM
are most robust to spatial confounding, as they generally control
the type I error rate at around 5–10%. However, when both
outcome and regressor experience an edge effect, no method
manages to detect the spatial confounding and all methods
call the association significant. Also, combinations of linear
and/or Gaussian SAC patterns in the regressor and outcome
generally produce high type I error rates, except when using GLS
or GAM.

For the checkerboard design, the inflation of the type I error
is worst for the case of Gaussian correlation in the outcome, but
this inflation is in all cases greatly reduced by using small subplots
(Figure 3). Spatial filtering with forward selection generally has
a large type I error, presumably because it executes multiple
statistical tests in the selection of eigenvalues but only reports the
final p-value, without accounting for the previous tests. Also OLS,
GLS, spatial filtering with random effects, and the autoregressive
models have inflated type I error in some scenarios. Note that
inflation of the type I error due to edge effect is worst for the
intermediate subplot size of 6, especially for INLA AR(1), GLS,
and OLS without correction for row/column effects. The reason
is that for this design (refer to Supplementary Figure S3), the
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FIGURE 2 | Type I error (top), power (middle), and MSE of β̂ (bottom) for the univariate observational study scenario for different regression methods (colors) and

different spatial structures of the outcome (columns) and regressor (x-axis). The dashed horizontal line indicates the 5% significance level.

edge is spatially confounded with the treatment effect because
the number of subplots is uneven in this case and either the
treatment or the control plots tend to be located toward the
edge (refer to Supplementary Figure S7). This result suggests
that checkerboard designs are best made with even numbers of
subplots to avoid spatial confounding with edge effects. It also
explains why there is no inflation of the type I error for the edge
effects with other subplot sizes and all linear effects: they are
orthogonal to the checkerboard design pattern and hence do not
cause spatial confounding. Results on the power and MSE of all
methods can be found in Supplementary Figures S18, S19.

3.2. Low-Dimensional Scenario
An overview of the results for the low-dimensional
scenario is shown in Figure 4, more results can be found

in Supplementary Figures S20–S23. When the outcome
exhibits an edge effect, the testR2spatial is generally lower
than the testR2none, probably because the extra variability
of the edge effect cannot be explained by the regressors.
When the regressors have a linear or Gaussian spatial
structure, random CV overestimates R2 on unseen test
datasets, whereas blocked CV is more accurate. OLS and
simultaneous autoregressive models have poor performance
on test datasets when there is a linear or edge structure
in the outcome, but a different spatial structure in the
regressors. For linear structure in the outcome, spatial filtering
and INLA Matérn exhibit intermediate performance and
GAM and GLS perform best. Spatial filtering and INLA
Matérn as well as GAM and GLS perform when there is a
Gaussian autocorrelation or edge structure in the outcome;
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FIGURE 3 | Type I error for the univariate scenario with checkerboard design for different regression methods (colors) for different spatial structures of the outcome

(columns) and size of the subplots (x-axis) as a function of whether or not row and column correction was applied (rows). The dashed horizontal line indicates the 5%

significance level.

GAM performs poorly in absence of spatial structure in
the outcome.

We also ran simulations investigating the role of the
number of features. Supplementary Figures S24–S26 show that
the difference between the regression methods is generally
smaller when built on fewer features. The performance of the
simultaneous autoregressive models deteriorates as the number
of features increases, even in absence of any spatial pattern.
These graphs also reveal that a higher number of features does
not always lead to better predictions, as the estimation of the
corresponding parameters becomes harder.

Interestingly, despite their poor performance, OLS and
simultaneous autoregressive models have the lowest SAC in the
residuals of the training data, as measured by the Moran’s I
statistic (Figure 5). Although the spatial structure cannot be
entirely explained by the regressors, i.e., when there is an
independent spatial pattern in the outcome, the values of the
Moran’s I statistic are often close to their expected value under
the null hypothesis of no SAC (and hence on the plot close
to zero after subtracting the expected value). Yet, when the
corresponding models are applied to a new test dataset with

spatial structure, there is little difference between the methods
in terms of residual spatial autocorrelation. These results suggest
that methods ignoring spatial structure, like OLS, try to capture
realizations of the spatial effects using the available covariates,
yielding low residual SAC in the training data. This gives the false
impression of explaining all spatial structures in the outcome
through the spatial patterns in the regressors, but this is a case
of overfitting the spatial pattern. Just like Moran’s I on the
test datasets, blocked CV Moran’s I was in many cases similar
among the methods, indicating that blocked Moran’s I CV is a
better predictor for differences between the methods in residual
spatial autocorrelation than training or random CV Moran’s
I. For instance, in presence of linear effects in the regressor,
GAMs often have large residual SAC in the training dataset and
in random CV, but not in the blocked CV or test data with
spatial structure.

In summary, GLS generally works best across different
SAC scenarios, even when its assumptions on spatial error
structure are not entirely fulfilled. An exploration of how
GLS accommodates linear and edge effects is given in
Supplementary Section 3.
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FIGURE 4 | Average R2 (y-axis) for the low-dimensional scenario estimated by different cross-validation (CV) paradigms (shapes) and test datasets (x-axis) as a

function of regression method (color) and of different correlation structures of the regressors (columns) and outcome (rows). In this low-dimensional scenario, the

model fit and hence also test R2 values do not depend on the CV paradigm, so results are only shown for random CV for the test R2. 1,000 Monte Carlo runs were

executed, the standard deviation of the non-zero components of β were 1. Supplementary Figures S20, S21 show similar figures for standard deviations 0.5 and 2.

3.3. High-Dimensional Scenario
An overview of the results for the high-dimensional
scenario is shown in Figure 6, more results can be found
in Supplementary Figures S27–S38. The performance of the
prediction models for high-dimensional data is seen to decrease
with the number of features (as shown in Figure 6), just like in
the low-dimensional scenario (Supplementary Figure S25). An
exception is INLA Matérn, which performs worse than the other
methods at low numbers of regressors (p= 100), but better when
the number of regressors is high (p = 300). However, its model

fitting procedure failed for around 20% of the Monte Carlo
instances in all settings.

The feature selection differs much more between the different
methods than predictive performance: GLS EN has higher
sensitivity in selecting correct predictors in all scenarios,
whereas GAM EN has lower sensitivity than the other methods
(Supplementary Figure S31). On the other hand, GLS EN has
a slightly lower TDP in some scenarios, whereas GAM EN
generally has a higher one (Supplementary Figure S32). Overall,
the TDP and especially the sensitivity decrease with the number
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FIGURE 5 | Average Moran’s I statistic for spatial autocorrelation (SAC) of the residuals (y-axis) for the low-dimensional scenario estimated in different ways (x-axis) as

a function of regression method (color) and of different correlation structures of the regressors (columns) and outcome (rows) in both test and training data. All

statistics had their expected value subtracted from them, such that they all have mean 0 under the null hypothesis of no SAC. Shapes reflect the two different CV

paradigms. Since in the low-dimensional scenario, the model fit and hence also the training and test Moran’s I do not depend on the CV paradigm, results for these

quantities are only shown for random CV. 1,000 Monte Carlo runs were executed, the standard deviation of the non-zero components of β were 1.

of features, indicating that the task of feature selection becomes
more difficult as the dimensionality of the dataset grows. This
also explains the decrease in model performance with the
number of features, despite the fact that there are more truly
predictive features and thus theoretically a higher R2 (refer to
Supplementary Figure S5).

Interestingly, in the presence of spatial patterns
in the regressors, regular EN selects more than the
expected 50% of features with a spatial structure (refer to
Supplementary Figure S33), the so-called “red-shift” (Lennon,
2000). EN with spatial filtering only suffers from this red-shift

when there are linear gradients or edge effects in the data.
GLS EN appears less sensitive to red-shift, selecting around
50% of spatial features in case of linear patterns or Gaussian
correlation in the regressors. Yet, in the case of edge effects
in the regressors, GLS EN also selects excess spatial features.
GAM EN on the other hand, often selects less than 50%
spatial features.

Generalized additive model EN generally has a higher SAC in
the residuals than competing methods when modeling training
data or left-out CV folds, in particular when there are linear
trends in the regressors. INLA Matérn on the other hand has

Frontiers in Plant Science | www.frontiersin.org 11 March 2022 | Volume 13 | Article 858711

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Hawinkel et al. Spatial Regression for Field Trials

FIGURE 6 | Average R2 on an independent test dataset without spatial structure (testR2none, y-axis) for the high-dimensional scenario when using different CV

paradigms (shapes and linetypes) as a function of the number of regressors (x-axis), EN version (colors), the correlation structure of the regressors (columns) and of

the outcome (rows). In the high-dimensional case, CV is used to tune the penalty parameter, so the model fit may depend on the CV paradigm. For this reason, test

R2 is shown for both CV paradigms in this case. The standard deviation of the non-zero components of the β parameter was 0.5. The horizontal dashed line indicates

an R2 of 0.

a lower residual SAC when modeling training data or test
data with linear trends in the outcome or regressors (refer to
Supplementary Figures S34–S37).

3.4. Case Study: Predicting Winter Wheat
Yield Based on Multispectral
Measurements
3.4.1. Data Description
The scatterplots and Pearson correlations in
Supplementary Figures S12–S15 indicate strong

multicollinearity between the multispectral variables, but
less correlation between yield and especially protein content
on the one hand and the multispectral variables on the other.
PCA biplots in Supplementary Figure S16 suggest a similar
covariance pattern between all variables over the 4 different
fields, although nir and evi2 are less correlated with the other
variables in fields 3 and 4 than in fields 1 and 2. Average yields
differ between the fields, as shown in Supplementary Figure S11,
hence a correction for a different baseline is needed. Field 2 has
the strongest autocorrelation in almost all variables, followed by
field 1 (refer to Supplementary Figure S39).
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FIGURE 7 | R2 (y-axis) estimated in different ways (shapes) for the two traits (x-axis) as a function of different training and test fields (rows and columns, respectively)

and regression methods (color) for the case study on winter wheat.
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3.4.2. Prediction Model Performance
Predicted vs. observed yield and protein content are shown
in Supplementary Figures S40, S41. The CV, training, and test
R2 are shown in Figure 7, estimated β parameters of the
principal components with standard errors can be found in
Supplementary Figure S42. We see that the standard errors of
the parameter estimates increase with the order of the principal
component, but do not really depend on the method. An
exception is the INLA Matérn model trained on field 4, which
has small estimates and large standard errors. The sums of the
products of the parameters with principal component loadings
βu1, with u the matrix of principal components included in
the model and 1 a column vector of ones, are plotted in
Supplementary Figure S43. Overall, we find lower values of R2

than reported by the authors (Zhou et al., 2021). This is likely
because we 1) split the data into separate fields, rather than
scrambling data from all fields together, 2) use smaller training
datasets and 3) do not ensure equal variances in training and
test set. Yet, our objective was to estimate generalisability of the
models between fields, which is different from the objective of the
original paper.

For yield, we observe that when training on field 2, the field
with the strongest SAC, the blocked CV R2 estimate is lower
than the random one (as shown in Figure 7). When trained on
this field, OLS performs poorly on test sets, as its predictions
are often too extreme (refer to Supplementary Figure S40), and
also its parameter estimates are more extreme than for the other
methods (refer to Supplementary Figure S42). Also for field 2,
OLS has a smaller SAC of the residuals of the training data than
the other methods (refer to Supplementary Figure S44). These
results are in accordance with the results of our simulation study:
SAC deteriorates the performance of OLS and causes blocked
and random CV R2 estimates to diverge, but residuals of the
training data of OLS are not spatially autocorrelated. The GAM
models for yield trained on fields 3 and 4 perform worse on
other fields than the other methods, their predictions being too
extreme for the model trained on field 3 and too average for the
model trained on field 4 (refer to Supplementary Figure S40).
The corresponding parameter estimates of GAM follow the
same pattern (refer to Supplementary Figure S42). This had
been predicted by CV (for field 4 only by random CV) and
is reminiscent of the poor performance of GAM on data with
Gaussian correlation found in the simulation study. The INLA
Matérn model trained on field 2 generalizes best to fields 3 and 4,
but on the other hand, the INLAMatérn model trained on field 4
has low training and test R2.

For models predicting protein content, the model
performances are often worse, in concordance with the
authors who noticed this phenotype was harder to model
using linear models (Zhou et al., 2021). Prediction is also
complicated by large outlying values in fields 3 and 4 (refer
to Supplementary Figure S41). Yet, also here, OLS performs
slightly worse than other models on test fields when trained on
field 2, as predicted by blocked CV R2 only. Blocked CV on
field 3 also predicted a lower R2 for OLS, but this is not seen
in the test R2. For fields 1 and 2, the blocked CV R2 is higher
than random CV R2 for all model types, but this is only accurate

according to the test R2 values for the protein content models
trained on field 2. The simultaneous autoregressive model,
INLA Matérn, and spatial filtering methods perform overall
similarly to GLS. Yet our simulation results suggest that the
simultaneous autoregressive model performs well in this case
thanks to the low number of features, but that its performance
would deteriorate as the number of features increases (refer
to Supplementary Figure S24). The good performance of the
spatial filtering method suggests that the setting of this case
study is more akin to the Gaussian correlation or edge effect
scenario than to linear effects, as could be expected from
Supplementary Figure S10.

Looking at generalisability of the yield models, the yield is best
predicted for fields 1 and 2, regardless of which field the models
were trained on. On the other hand, the yield on fields 3 and 4 is
harder to predict. The training R2 on fields 3 and 4 is even lower
than the test R2 when the corresponding models are applied to
fields 1 and 2, which indicates that simplymore variability in yield
in fields 1 and 2 can be explained by the multispectral variables
measured. This is a different situation from the simulation study,
where the residual variance σ 2 was kept constant, allowing us to
use CV R2 as an estimator for test R2. Nevertheless, CV was able
to predict relative differences in performances in the case study
and can be a great help in this respect. Despite higher noise levels
in fields 3 and 4, the models trained on them are not less accurate
than the models trained on field 1. The least accurate models
are the ones trained on field 2, illustrating how SAC deteriorates
model estimation, even when suitable spatial regression models
are used.

4. DISCUSSION

In this study, we compare a number of regression methods
for data with spatially autocorrelated variables. Simultaneous
autoregressive models were only found to work well when the
number of regressors is low. Spatial filtering methods performed
well in the case of unstructured SAC, but struggled to deal
with structured forms of SAC such as linear gradients and
edge effects. Generalized additive models (GAMs) account for
SAC by explicitly modeling the dependence of the outcome
on the location, which yields good insights into the spatial
structure of the outcome variable. On the downside, GAMs
have a high efficiency cost when there is no long-range spatial
dependence in the data. Moreover, GAMs tend to absorb too
much of the spatial structure of the outcome in their smooth
spatial term, thereby underrating the ability of the available
regressors to explain this spatial structure. This overcorrection
can lead to a veritable “blue-shift,” whereby regressors with
spatial signals are less likely to be recognized as associated with
the outcome. The INLA model based on a Gaussian random
field with Matérn covariance structure performed reasonably
well in both low- and high-dimensional scenarios. When the
dimensionality of the data is much higher than the sample
size, the INLA Matérn model even outperforms the elastic net
models in terms of prediction accuracy. On the downside, its
Bayesian model-fitting algorithm may fail to converge, and no
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TABLE 1 | Best methods for different scenarios (first row) and criteria (second and third rows).

Univariate Low-dimensional High-dimensional

Hypothesis testing Prediction Prediction Feature selection

Sensitivity TDP Robustness to red-shift

GLS, GAM GLS EN for moderately high dimensions, INLA for

very high dimensions

GLS EN GAM EN GLS EN

TDP, true discovery proportion; GLS, generalized least squares; GAM, generalized additive model; EN, elastic net. See text for details.

feature selection in the high-dimensional scenario is provided.
The GLS method was found most robust in accounting for
different forms of SAC, in both low and high-dimensional
settings. In the low-dimensional scenario, GLS comes with
a slight efficiency loss compared to OLS when there is no
spatial structure, but outperforms OLS by a large margin in
most settings with spatial correlation. For the high-dimensional
setting, we newly combined GLS estimation of the covariance
structure of the residuals with a penalized least squares method
(elastic net). Although we found no improvement in terms of
predictive performance, and in some scenarios even a slight
decrease, we have shown how it improves upon regular elastic
net with respect to feature selection. In the presence of spatial
effects, GLS elastic net has higher sensitivity in detecting
good predictors and is less sensitive to red-shift (selecting
excess features with spatial patterns) than competing methods.
This confirms the trade-off between predictive performance
and feature selection as described by Wang and Zhu (2009):
there are no single best methods for all scientific aims. As a
recommendation to the reader, the methods that performed
best in the various simulation scenarios are summarized
in Table 1.

In summary, for most purposes, we recommend the use of
GLS to account for SAC effects in regression models. GLS has
the flexibility to accommodate many forms of autocorrelation
in its error structure (refer to Supplementary Figure S45), e.g.,
anisotropic effects whereby the SAC does not decay equally fast
with distance in all directions, or temporal autocorrelation. GLS
can be combined with many statistical and machine learning
methods through a simple iterative loop, even when this increases
computation time (refer to Supplementary Section 4). Note that
the iterative procedure we propose is different from simple
preconditioning on the marginal spatial covariance structure of
the outcome, which has been condemned before for rendering
the design matrix ill-conditioned (Jia and Rohe, 2015). In our
proposal, as in most regression models, the distribution of the
outcome (including its covariance structure) conditional on
the regressors is of interest. GLS could also be extended to
generalized linear models (GLMs) through their formulation
as iteratively reweighted least squares. Yet despite GLS’s good
performance, the estimation problem of its spatial covariance
matrix is so ill-posed that its components (range, nugget, and
residual variance) are strongly correlated and hence very variable
(refer to Supplementary Section 3).

Since GLS and some other spatial methods account for
spatial structure in the errors, the residuals of these models

may remain spatially autocorrelated, which is not problematic.
The main purpose of a regression method is to estimate a
relationship between regressors and outcome, which helps to
explain some of the total variance of the outcome. The degree
to which this succeeds can be measured by R2. Yet, a low R2

does not necessarily imply that the model is wrong, or that
its parameter estimates are inaccurate, as a low R2 may also
result from missing important covariates or strong background
noise in the training data. A predictive model trained on a
noisy dataset with low training R2 may perform much better
on a test dataset with low noise levels, as was demonstrated in
the case study on winter wheat. Analogously, as a side effect
of model fitting, regression methods may explain part of the
marginal spatial autocovariance (as for instance measured by
the Moran’s I statistic Moran, 1950) in the outcome variable
through the spatial patterns found in the regressors, leading to a
reduced spatial autocovariance in the residuals. Yet, this is not the
primary purpose of the regression method, and a large residual
spatial autocovariance does not imply inaccurate estimation of
the relationship between outcome and regressors. The residual
spatial autocovariance may, just like residual variance, result
from missing covariates or spatially autocorrelated noise. If
almost all spatial autocovariance can be explained by the
regressors (corresponding to the simulation scenarios without
additional spatial patterns applied to the outcome), methods
ignoring spatial structure work fine and are slightly more efficient
than spatially aware methods, at least in the low-dimensional
scenario. However, when not all spatial autocovariance can
be explained by the regressors (the simulation scenarios with
additional spatial patterns applied to the outcome), a method
like OLS that ignores spatial structure will nevertheless attempt
to fulfill its assumption of i.i.d. errors. This can lead to small
residual spatial autocovariance in the training dataset, but also to
variable or biased parameter estimates and preferential selection
of regressors with spatial patterns (the “red-shift” Lennon, 2000).
Hence, the absence of spatial autocovariance in the training
residuals is not a guarantee that the spatial structure of the data
has been well-modeled (Beale et al., 2010; Roberts et al., 2017),
and the model may still fail to explain spatial autocovariance
in a new dataset (refer to Figure 5). Since it is hard to predict
whether all spatial autocovariance is explicable by the regressors,
and the efficiency cost of accounting for spatial structure is
low, we recommend always using spatially aware methods
when analyzing datasets with potential for spatial structure,
such as field trials. Finally, note that the opposite occurrence
is indeed problematic: when spatially naive methods like OLS
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nevertheless have residual SAC, this points at problems with the
model fit.

Past comparative simulation studies generated data in an
unstructured way (Wang and Zhu, 2009; Beale et al., 2010; Alesso
et al., 2019; Rocha et al., 2019, 2021; Mao et al., 2020; Harisena
et al., 2021), ignoring the fact that spatial patterns in real fields
often take on discernible shapes such as edge effects or linear
gradients (Austin and Blackwell, 1980; Langton, 1990; Romani
et al., 1993; Haase, 1995; Sarker and Singh, 2015; Barmeier and
Schmidhalter, 2016; Cruz et al., 2020; Zhou et al., 2021), and
despite linear trends and row- and column effects often being
included in the analysis model of real data as well (Singh et al.,
2003; Sarker and Singh, 2015). In this study, we have included
the linear trend and edge effects scenarios as well and found
that they can have a profound effect on model performance.
Edge effects are difficult to account for, inflating type I error in
hypothesis tests and deteriorating model performance on test
fields. Hence, they should preferably be avoided by adequate field
trial design. Linear gradients in outcome and regressors are also
challenging, as they can easily become spatially confounded in
the two-dimensional space of a field. Yet, these linear effects
can be captured rather well by spatial regression methods such
as GAM and GLS. In theory, one could also account for linear
or edge effects in the mean model of an OLS regression when
their presence is known beforehand, or obvious from the data.
Yet in practice, these effects may not be easily detectable, and
combinations of different kinds of spatial patterns may be present
in the data, such that robust spatial regression methods seem to
be a safer choice.

In the setup of our simulation study, we let linear and
edge effects increase the variance of a variable. Whether this
assumption is correct is difficult to verify. A higher variance in
the outcome variable complicates its prediction, whereas a higher
variance in a regressor variable renders the model estimation
more precise. More commonly used autocovariance simulation
schemes make nearby observations more similar, which reduces
the information content of the dataset and increases the variance
of parameter estimators. The effect on feature selection is similar
though: both short range positive SAC and long range linear
gradients and edge effects cause excess selection of spatial features
in hypothesis testing and penalized regression.

Correction for spatial effects in field trials is common, but
often only occurs between discrete plots of checkerboard designs
(Lado et al., 2013; Elias et al., 2018; Alesso et al., 2019; Rocha
et al., 2019; Mao et al., 2020; Harisena et al., 2021). Yet in our
own simulations, we see that such corrections have only limited
effect, and SAC within and across discrete plots can still inflate
type I errors and estimator variability. It has been demonstrated
that the use of more, smaller subplots can combat this (Alesso
et al., 2019), but may involve more work and is only possible at
the design stage. On top of using small subplots, we, therefore,
recommend spatially aware regression methods such as GLS and
GAM for the analysis of checkerboard designs, as they yield good
power while controlling type I error rate.

It is known that CV can misestimate model performance
on an independent test dataset (Rocha et al., 2018). On the
one hand, the model may overfit the training set, and on the

other hand, noise levels may differ between training and test set,
rendering measures such as mean squared error (MSE) of the
predictions and R2 hard to compare. Yet, this problem may be
exacerbated by spatial patterns in the training data. SAC causes
information leaks between the training set and left-out fold,
violating the independence assumption and causing estimates
of model performance to be overoptimistic. It has been shown
that this problem can be mitigated, but often not eliminated,
by blocked CV, i.e., choosing the folds as blocks of neighboring
observations (Brenning, 2005; Pohjankukka et al., 2017; Roberts
et al., 2017; Meyer et al., 2019; Schratz et al., 2019; Ploton et al.,
2020). We confirm that blocked CV is better able to discriminate
between competing methods in the presence of SAC, and is
similar to random CV in absence of such autocorrelation. Hence,
we recommend blocked CV as a simple and widely applicable
solution in all scenarios where SAC may be present. Other
corrections for CV on dependent data have been proposed
(Rabinowicz and Rosset, 2020), but these are restricted to a
smaller class of methods and were not tested here. Furthermore,
it has been hypothesized before that a change in CV paradigm
could affect hyperparameter tuning (Schratz et al., 2019), but this
was not found in our study. Another problem with SAC arises
when the test dataset also exhibits spatial patterns that are not
completely explicable by the regressors. This causes additional
deviations, with a spatial pattern, of the observed values from the
expected ones (Rocha et al., 2018).

In summary, we believe that field trials, either observational
or experimental, are a great way to learn relationships between
variables if the following points are taken into consideration. In
simulation studies for spatial data, we recommend the inclusion
of more realistic spatial structures such as edge effects and
linear gradients. In checkerboard designs, the use of many,
small subplots mitigates spatial confounding. For the analysis of
data with spatial signatures, we support the use of blocked CV.
Moreover, we suggest the inclusion of spatial covariance matrices
in regression models, including high-dimensional ones, through
GLS, and warn against model evaluation through residual SAC of
the training dataset only.
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