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The indiscriminate use of chemical fertilizers adversely affects ecological health and soil
microbiota provoking loss of soil fertility and greater pathogen and pest presence in soil-
plant systems, which further reduce the quality of food and human health. Therefore,
the sustainability, circular economy, environmental safety of agricultural production, and
health concerns made possible the practical realization of eco-friendly biotechnological
approaches like organic matter amendments, biofertilizers, biopesticides, and reuse
of agro-industrial wastes by applying novel and traditional methods and processes.
However, the advancement in the field of Biotechnology/Agriculture is related to the
safety of these microorganism-bearing products. While the existing regulations in this
field are well-known and are applied in the preparation and application of waste
organic matter and microbial inoculants, more attention should be paid to gene transfer,
antibiotic resistance, contamination of the workers and environment in farms and
biotech-plants, and microbiome changes. These risks should be carefully assessed,
and new analytical tools and regulations should be applied to ensure safe and high-
quality food and a healthy environment for people working in the field of bio-based
soil amendments.

Keywords: microbial inoculants, pathogens, risks of contamination, safety measures and regulations, organic
matter

INTRODUCTION

There is a generalized expert opinion that the major challenge facing agriculture is to increase crop
productivity with a simultaneous reduction of environmentally damaging chemical fertilization.
Intensive agricultural practices based on chemical fertilizers caused an adverse impact on
autochthonous microbial communities (including plant beneficial microorganisms established
in the rhizosphere) and microbial biodiversity with a simultaneous significant reduction of soil
organic matter and mineral content (Mäder et al., 2002; Huang et al., 2019). With the aim of
solving the problems arising from modern conventional agriculture and following the principles of
sustainable agriculture and circular economy, the scientific efforts are focused on the development
of less harmful strategies for stimulating plant growth and health by restoring soil fertility and
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microbial diversity. These strategies include attempts to close
the nutrient cycle at farm level by maximizing reutilization of
by-products and wastes, and restore beneficial plant-biological
interactions and processes by using compost, biofertilizers
(BFs), and biocontrol agents (BAs). The use of plant beneficial
microorganisms seems to be a very attractive strategy as they are
known for their prebiotic, probiotic, and postbiotic functions
and as an important part of plant development (Alegria Terrazas
et al., 2016; Vassileva et al., 2020a). Recently, the microbial
communities associated with the plant have been classified
as plant microbiome, which also include viruses, archae, and
nematodes (Orozco-Mosqueda et al., 2018). Microorganisms
colonize plants creating specific interrelations, including
pathogen protection and enhanced nutrient mobilization and
acquisition (Lugtenberg and Kamilova, 2009; Gupta et al., 2022).
Undoubtedly, these interrelations have been historically affected
by the conventional agricultural activities aimed at increasing
the yields of crops (Perez-Jaramillo et al., 2015). Introducing
microorganisms and organic fertilizers into soil-plant systems is
considered an important tool in overcoming problems associated
with the excessive use of chemical fertilizers and pesticides
(Bashan et al., 2014; Malusà et al., 2021; Shaji et al., 2021). By
this reason, there is a strong tendency to stimulate application
of microorganism-bearing products to re-establish and enhance
soil fertility and crop production and quality particularly in a
stressed environment (Shilev et al., 2019).

It should be distinguished between traditional
microorganism-bearing fertilizers, such as compost or animal
manure and formulated biofertilizers. While in the traditional
microorganism-bearing fertilizers, there is a wide range of well-
studied and categorized, including pathogenic, microorganisms,
which in some cases are difficult to control, BF/biocontrol
products normally containing one or more microbial cultures,
with guaranteed quality and cell quantity and, in some products,
controlled release after introduction into the soil-plant system
(Venglovsky et al., 2006; Young et al., 2012; Malusà et al., 2021).
It should be noted, however, that there is a discussion in the
scientific literature on the potential risk for humans and animals
when commercial plant beneficial microbial formulations are
introduced into soil-plant systems (Deising et al., 2018). The
main concern is that it is difficult to distinguish between plant
beneficial and opportunistic pathogenic microorganisms as they
have similar properties and characteristics (Berg et al., 2005,
2013; Lu et al., 2021).

Similarly, after application of organic fertilizers, such as
compost or animal manure, particularly fresh fruit and vegetables
have been repeatedly reported as vehicles of pathogenic
microorganisms, such as Listeria monocytogenes, Staphylococcus
aureus (Johannessen et al., 2002), Enterococcus faecium, E.
faecalis, L. monocytogenes (Johnston et al., 2006), Salmonella
enterica (Branquinho Bordini et al., 2007), Escherihia coli
O157:H7 (Beretti and Stuart, 2008), and E. coli O104:H4
(Mellmann et al., 2011). In the latter case, the pathogen was found
in seeds and caused the hospitalization of over 800 individuals
and 53 deaths in Germany, followed by 4 other countries,
which indicated the low level of attention to this problem of
all players involved in the production chain (including scientific

organizations). It is also important to note the negative results
from microbiological tests of the suspected seeds (European Food
Safety Authority, 2011) and, in general, the difficulty to determine
pathogenicity through screening for virulence genes.

The aim of this mini-review was to reveal how safe are
the above products, before and after their application following
the 3-P approach (prebiotics, probiotics, and postbiotics).
During the past years, the analysis of risk factors for both
types of microorganism-bearing products is limited to single
strains or single product (e.g., commercial organic waste or
formulated product) without presenting a global view of all
products containing pathogenic or beneficial microorganisms.
Special, but limited, attention will be given to some regulatory
issues concerning Spain but also those aimed at European
harmonization of safety parameters of bio-based products, which
are now not homogenous at national and regional levels. In fact,
safety issues and measures in the field of microbially bearing
fertilizers should be oriented in several main directions: a) before
field application while treating organic fertilizers or producing
BFs; b) during application of the microbial products; and c)
during harvesting operations and postharvesting services. Here,
the first two key points are discussed. We consciously do not
discuss here the effect of microorganism-bearing products on
plant microbiome as interactions between various biotic and
abiotic factors in soil-plant systems, host preferences, selection
of highly competitive smart microbial consortia, and their
suitable formulations for preserving cell viability after storage and
delivery need more studies (Orozco-Mosqueda et al., 2018).

RISKS OF TRADITIONAL
MICROORGANISM-BEARING
FERTILIZERS

Prebiotic materials, such as biosolids, animal manure, and
compost, alone or combined, are the most applied organic-
waste-based fertilizers, as they increase the input of carbon and
nutrients to the soil (EIP-AGRI, 2015). However, due to the
presence of microorganisms in their composition and despite
the official statements in many countries that these products are
microbiologically safe before application to soil, the scientific
community continuously publishes data or opinions of concerns
(refer to Figure 1). The main reason is the difference between
the recommended treatment procedures by the authorities and
their practical use. For example, in a recent analysis, Ramos
et al. (2021) reported that farmers frequently consider the manure
aging (storage time needed to reduce the manure pathogenicity)
as composting thus introducing live microorganisms existing
in the “treated” material into the soil. Moreover, particularly
in Spain, illegal or sub-standard landfilling is still widespread
practice with all risks of water, air, and soil contamination and
potential health problems for animals and humans (EC Country
Report Spain, 2019). Since food safety problems provoked by
pathogen-contaminated roots or leaves increase (particularly in
fresh produce and minimally processed crops), the European
Commission investigates such cases strictly and takes measures
through well-established procedures.
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FIGURE 1 | Risks of contamination of microorganism-bearing fertilizer
preparations during different stages of their production (L-low risk; M-medium
risk; H-high risk).

Biosolids
Biosolids are “nutrient-rich organic materials resulting from
the treatment of domestic sewage in a treatment facility that
can be recycled and applied as fertilizer to improve and
maintain productive soils and stimulate plant growth” (EPA,
1994). The introduction of sewage sludge (i.e., biosolids)
in agricultural soil-plant systems is a subject of criticism,
particularly as a source of heavy metals and human pathogens.
However, it is also well established that after the treatment
of sewage in waste-water treatment plants, the number of
pathogenic microorganisms in the effluent is greatly reduced.
After analyzing the microbial community structure of several
sewage sludges, two clusters of dominant genera were found:
one included Propionibacterium, Comamonas, Brevundimonas,
Methylobacterium, Stenotrophomonas, and Cloacibacterium,
while the other cluster included Clostridium, Treponema,
Desulfobulbus, and Syntrophus (Nascimento et al., 2018). Sludges
revealed high bacterial diversity, but their sources and redox
operating conditions, as well as liming, did not consistently
affect bacterial community structures. Particularly efficient for
the reduction of bacteria, fungi, helminth eggs, and viruses are
composting, settling ponds, dewatering drying, and pH elevation
(>9) (Adegoke et al., 2016). Nevertheless, biosolid-derived
pathogens can easily enter the soil-plant-food chain, which
might provoke safety decrease (Makádi et al., 2007; Bastida et al.,
2008). In addition, a substantial amount of antibiotic-resistant
bacteria (ARB), antibiotics, heavy metals, and antibiotic-resistant

genes (ARG) remain after treatment and further invade soil-
plant systems and microbial community (Karkman et al., 2018;
Nunes et al., 2021). Heavy metals in biosolids and other wastes
exist, including after treatment in the form of a molecule or
ion, thus ensuring horizontal gene transfer between different
bacteria (Ezugworie et al., 2021). Recently, thermally dried
anaerobically digested sewage sludge has been proved as a source
of ARGs and mobile genetic elements (MGEs), thus increasing
the risk of antibiotic resistance dissemination in agricultural soils
(Jauregi et al., 2021).

Manure
Manure is one of the most important organic sources of nutrients,
containing microorganisms, and deserves special attention.
Livestock manure, according to the last EC Directive, means
“waste products excreted by livestock, or a mixture of litter
and waste products excreted by livestock, even in processed
form” (EU Commission, 1991). Manures are different and,
depending on their origin, can be solid, semisolid, and liquid,
containing mixtures of feces, urine, bedding materials, including
various chemical or physical wastes (Shober and Maguire, 2018).
The total production of manure in Europe is 140 million
tons on a dry matter basis (Scope Newsletter, 2014), which
European farmers, following the European Environmental and
Fertilizer policy measures, should process before application in
soil (EU Commission, 2013). Manure contains a wide variety of
microorganisms (about 108–1010 CFU/g), including pathogens,
which present health risks for animals or humans. Among
viruses, fungi, and bacteria in manures, typical pathogens,
including Salmonella sp., E. coli O157 H7, Campylobacter
jejuni, Yersinia enterocolitica, and C. perfringens. Salmonella,
are Enterobacteriaceae, which are widely distributed and include
more than 2,000 serotypes (Venglovsky et al., 2006) (for detailed
microbial characteristics of manure see Black et al., 2021). The
initial number and profile of pathogens in manures and their
characteristics change as a function of the manure type, storage
conditions, and after treatment (Hutchison et al., 2005). The
EC legislation permits the use of all types of manure except
“factory farming” manures (EC Regulation 889, 2008), and in
many countries, the application of liquid manure is not allowed.
Therefore, it is important to develop and select strategies to
manage not only the nutrient content in manure without affecting
soil, water, and air but also reduce pathogenic microorganisms
by microbiological, chemical, or physical methods (Heinonen-
Tanski et al., 2006). In general, most enteric microorganisms
do not multiply and survive out of the host due to the
enormous stress conditions and after a long period of storage,
but early studies reported that low temperatures and high
solid concentrations increase the probability of survival of
many pathogens (Feachem et al., 1983; Kudva et al., 1998).
For these reasons, and particularly in case of factory farming,
it is recommended to clean manure, normally by biological
or thermal treatment (Venglovsky et al., 2006). In any case,
management of manure during storage and further treatment
(e.g., by composting) and its proximity to plants from one
side, and the always existing possibility of runoff, formation of
contaminated dust, and animal movements from the manure
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storage to crop fields, on the other side, should be an important
consideration when analyzing all safety risks on farm sites
(Ramos et al., 2021).

Composting
Composting is the biological process of choice for manure and
sludge treatment as it is cost-effective and decreases pathogenic
bacteria, fungi, and helminthic eggs, thus producing high-quality
products enriched with humic acids. Slurry and sludge treatment
may include aerobic stabilization when the temperature rises
to 70◦C thus becoming free of pathogens (Soares et al., 1995).
It was reported that in composting reactors or aerated static-
piles at a temperature of up to 60◦C/3 days and following
the existing regulations, pathogen destruction reached the most
probable number of 1,000 coliforms/g dried solids and ≤ 3
salmonellae/4 g dried solids, but these processes should be well
controlled as materials that are treated many times do not meet
these standards, thus allowing pathogen regrowth.

It seems impossible to achieve organic fertilizers and ambient
surrounding the storage/treatment facilities totally free of
pathogenic or potentially pathogenic microorganisms. Enteric
viruses and Salmonella spp. were found in liquid manure after the
anaerobic bio-digestion process (Fongaro et al., 2014). It has been
also reported that viable bacteria and viruses immobilized on air-
dust particles have a greater ability to survive and affect human
and animal health (Takai et al., 1998). Bio-aerosol, containing
mainly Firmicutes and Actinobacteria, is continuously released
starting with the pretreatment of raw materials and during
the open-air process of composting without any form of
control (Wery, 2014). Around the composting facilities, the
bacterial diversity reaches 1.5–15.3% bacterial cells, but other
microorganisms, including Aspergillus and Penicillium, can also
be found in the air (Walser et al., 2015). The selection of specific
raw materials and effective process management produced
different levels of bacterial and fungal diversity (Hernández-Lara
et al., 2022). Therefore, the risk of biological contamination of
farmworkers is high, and safety measures should be continuously
improved (OECD, 2012). Approaches related to determining the
number of cells/spores in environments surrounding production
facilities thus monitoring, for example, airborne particles could
be included in disease management systems when working with
organic residues (Mahafee, 2014).

Another point of attention, which was mentioned in the
manure part of the mini review, concerns antibiotic resistance in
soil (Wang and Tiedje, 2020). Particularly intensive are studies
on manure as a vehicle of ARGs, which, once transmitted,
potentially are a great risk to public health. Moreover, MGEs
boost the horizontal gene transfer of ARGs in the environmental
microorganism. It was found that the wide application of animal
manures in organic agriculture inevitably enriches the already
existing ARGs pool in soils but also additionally introduces
exogenous ARGs, which can be found in soil for a period ranging
from few weeks to several months depending on the manure
and soil characteristics. There are a wide number of studies
on the mechanisms and interactions in manure- or compost-
enriched soil, which try to explain the regulation or control of
the persistence of ARGs in soil for different periods of time, but

the fate of ARGs where manure from different sources has been
repeatedly implemented is not fully understood although some
ARGs could be found in deep soil carried by their host bacteria
(Li et al., 2022).

BIOFERTILIZER AND BIOCONTROL
PRODUCTS, PATHOGEN-FREE OR
PATHOGEN STIMULATING?

A biofertilizer can be defined as the formulated product
containing one or more microorganisms that enhance the
nutrient status (and the growth and yield) of the plants by
either replacing soil nutrients and/or by making nutrients more
available to plants and/or by increasing plant access to nutrients
(Malusa and Vassilev, 2014). BAs can be defined as living
organisms or natural products derived from living organisms,
including microorganisms, that are used to suppress plant
pathogen pest populations (Panpatte et al., 2016). All these
products are based on the activity of one or more microorganisms
and can be commercialized in liquid or granular form (Bashan
et al., 2014). Contamination of the BF/BA could be observed
in the production/formulation stage as well as during the
storage. In fact, contamination is one of the main reasons for
unsuccessful field application of plant beneficial microorganisms;
an early study by Herrmann et al. (2013) demonstrated that
37% of the tested formulated products could be considered as
“pure”; 63% were contaminated with bacteria and 40% contained
only contaminants.

The schemes of selection, production, and formulation of
microbial plant beneficial products are well developed (Vassilev
et al., 2001a, 2015, 2017a; Malusá et al., 2012; Bashan et al.,
2014; Vassilev and Mendes, 2018; Vassileva et al., 2020a).
Usually, at least one, two, or three different microbiome
members can be included in the final product (Vassilev et al.,
2001b,c,d, 2020; Sahu and Brahmaprakash, 2016). All operations
starting from the inoculum preparation, fermentation process,
and downstream stage, including the product formulation as
well as packaging, are carried out in sterile conditions, and,
therefore, these biotechnological products should be free of
contaminants. The production of spores, biomass, or metabolites
is normally carried out in closed liquid submerged (e.g.,
batch and fed-batch) or solid-state fermentation systems with
well-controlled parameters and improved quality of the final
product (Vassileva et al., 2021). However, there is a risk of
biological contamination in each one of the production process
stages deriving from water, air, equipment, nutrient media, and
laboratory/plant technical staff. The starter inoculum should
be carefully managed to avoid contamination, mutation, and
phenotypic changes during the fermentation process that may
result in the production of ineffective BF or postbiotic (i.e.,
metabolic) biostimulants with different characteristics (Nims
and Price, 2017). Contamination is also possible during the
formulation stage or after introduction into the soil. For example,
two endophytic fungi (i.e., Muscodor albus and M. roseus)
producing volatile myco-fumigants were formulated in a mixture
of water-absorbent starch, corn oil, sucrose, and fumed silica
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(Stinson et al., 2003). The produced formulations reduced the
disease incidence of soilborne pathogens, but plant growth
reduction was observed due to the growth of deleterious
rhizobacteria on some components of the complex carrier.

Is There Any Risk of Pathogen
Contamination in the Chain “Plant
Beneficial Microbial Products-
Soil/Plant/Food/Humans/Animals”?
During the past years, serious doubts appeared in the security and
safety of plant beneficial microorganisms. As mentioned above,
Deising et al. (2018) suggested possible changes in microbial
community profile and appearance of secondary metabolites,
such as aflatoxin, ochratoxin, patulin, and mycotoxins, after
the introduction of plant beneficial microorganisms in soil-
plant systems. It is interesting to note, in this sense, that
risk assessment of plant beneficial microorganisms is not
included in the corresponding legislations although many plant
growth- and health-stimulating microorganisms are suggested
as opportunistic human pathogens (Berg et al., 2005). The
dual behavior of soil microorganisms was frequently described,
thus increasing the need for serious preliminary testing. For
example, Aspergillus terreus, known as both the plant growth
stimulator and BA, produced terrain, one of the numerous
genome-analyzed secondary metabolites released by A. terreus
(Gressler et al., 2015). Terrain inhibits seed germination and
plant growth, provokes plant surfaces’ damage, and inhibits the
growth of competitors, thus facilitating the fungal invasion in the
respective environmental niche (Vassileva et al., 2020b). When
introduced into the human body, like other members of the
genus Aspergillus, A. terreus can cause aspergillosis infection with
a high level of mortality particularly in immunocompromised
persons (Bartash et al., 2017). Similarly, Stenotrophomonas are
present in manure samples and particularly S. rhizophila, after
physiological and molecular studies, are found safe and have a
high plant beneficial potential without human pathogenic traits.
Recent studies propose S. rhizophila as a promising PGP and
biocontrol product. However, some Stenotrophomonas species
demonstrated dual characteristics, promoting plant growth
and health with a simultaneous multidrug resistance affecting
immunosuppressed patients, which was further confirmed by
a genome analysis (Denton et al., 1998). It should be noted
the bioaerosol concentration during the biostabilization of
sewage sludge ranged from 160 to 1,440 cell/m3, and species,
such as S. rhizophila and Fusarium graminerum, with high
bioaerosolization indexes that could be threats to human health
were recently identified (Lu et al., 2021). Other microbial strains
belonging to the most studied and commercially available genera
Pseudomonas, Enterobacter, Serratia, and Burkholderia, among
others, are also known to colonize both plants and humans and
should be tested at least before starting serious biotechnological
experimental work on their mass production, formulation, and
application (Zachow et al., 2009). A well-studied case is that
of the Burkholderia cepacia complex, a group of phenotypically
associated bacterial species that have known PGP traits, including
N2 fixation, but can also be opportunistic human pathogens

(Eberl and Vandamme, 2016). Another intensively debated
bacterial genus is Pseudomonas, which encompasses several PGP
species (e.g., P. fluorescens, P. putida, P. putrefaciens, P. stutzeri,
and P. pseudoalcaligenes) but also the pathogenic species
P. aeruginosa, an opportunistic pathogen causing respiratory
tract infections in humans (Mendes et al., 2013).

Therefore, there are two well-defined tendencies related with
the potential pathogenicity of plant beneficial microorganisms.
The first one proposes more control and a risk assessment test
of all microorganisms before their commercialization, while the
second does not see any reason for concerns about their safety
and changes in the actual registration rules (Koch et al., 2018).
Which point should the authorities rely on when defining the
safety measures for workers dealing with the production and
application of manure, compost, and BFs? In the latter case,
the new EC Regulation, which is foreseen to start in 2022,
states that a microbial plant biostimulant should be reduced
to mycorrhizal fungi, Azotobacter spp., Azospirillum spp., and
Rhizobium spp., thus limiting the possibility of introducing
opportunistic pathogens into the food chain. In contrast, from
farm-workers-safety point of view, the formulation form (e.g.,
liquid or solid) of all products containing plant beneficial
microorganisms is important. In case of gel-based formulations,
immobilized cells are embedded in a polysaccharide matrix
(Vassilev and Vassileva, 2005), thus reducing the risk of direct
contact between cells and workers handling the product although
in this scheme, a potential plant-soil contamination is possible.
For example, additives included into the carrier matrix (Vassilev
et al., 2020) could attract other microorganisms, including
pathogenic strains, during storage or transportation. However,
to avoid contamination, carriers, such as k-carrageenan, can be
used, which after drying reduce their volume and water content.
For these reasons, it is recommendable to do a thorough risk
assessment of all these amendments for environment-animals-
humans before the process of registration regardless of their risk
group and plant beneficial effects.

MICROBIALLY BASED FERTILIZERS’
ASSESSMENT AND SAFETY MEASURES

When analyzing the above information, two modes of
contamination by plant beneficial microorganism-bearing
products can be distinguished, namely, (1) direct contamination
of people working on their production and application and
(2) contamination of mainly fresh production grown in
environment contaminated by these products with further
effects on consumers.

As recently summarized by the COST Action SACURIMA
(Leppälä et al., 2021), the European Community described
high rates of injury, occupational disease, and exposures in
Agriculture. Each year, there are about 6 reported accidents
per 100 workers and 12 reported fatal accidents per 100,000
workers in Agriculture (Eurostat, 2019). Over 40% of agricultural
workers feel unsafe at work. Over 15% report exposure to skin
and respiratory diseases. About 4% suffer from work-induced
respiratory illnesses. In addition, foreign workers (mainly
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FIGURE 2 | Analytical tools and measures for characterization and monitoring of microorganisms before and after their release in the environment.

migrants) have a higher risk for occupational injuries than native
workers (Casey et al., 2015). Bearing the above in mind, we
should first assess how the fertilizers containing microorganisms
affects the manpower.

Management of safety measures in both preparation and
application of microorganism-bearing organic fertilizers and
biotechnologically produced BFs/biocontrol formulates is based
on the understanding of how microorganisms from microbially-
derived products or their derivatives could reach and enter
the human body (Figure 2). As a rule, it is not possible to
know if a given microorganism is completely “safe.” Therefore,
the general measure is to avoid contact with microorganisms
and their metabolites. One of the most important actions
to follow includes assessing and avoiding all possibilities of
inhalation of contaminant’s aerosols and airborne particles
(as mentioned earlier) and contamination of hands, eye-hand
contact, or absorption through intact skin (Liberman, 1984;
Peng et al., 2018). In contrast, some producers of BFs apply
techniques, which are far from the biotechnological normal
and safe procedures, using open-air fermenter-like vessels, or
inoculate microorganisms directly to open-air storage reservoirs
of waste substrates (corresponding author information), thus
allowing growth and regrowth of both beneficial and pathogenic
microorganisms (including spore-forming). Similar regrowth can
be observed in composting processes when Salmonella spp.,
E. coli, and Listeria sp. are present in not-matured composts. All
these and similar practices should be controlled and forbidden.

In general, the concept of biosafety is applied first to
ensure the safe work with pathogenic microorganisms in the
laboratory. Starting from the production of BFs and BAs,
it should be mentioned that in biotechnological laboratories
and plants, there are many operations, such as centrifugation,
homogenization, mixing, blending, aeration of liquids, release
of liquids under pressure, and handling of solids, which can
form highly contaminated aerosols (Lelieveld et al., 1995).
Similar is the contact with biological substances, which occurs
during the handling of manure and other organic materials

before and after composting due to exposure to liquid/solid
particles containing microorganisms or microbial metabolic
products. The most frequent diseases in the agricultural sector
by biological agents are provoked by bacteria, fungi, and viruses
that enter the body through the respiratory, dermal, or digestive
routes: Allergies or sensitization processes, such as the farmer
workers’ lung; Aspergillosis; toxic organic dust syndrome due
to worker exposure mainly by inhalation of microbially derived
proteins and toxins; and carcinogenic, mutagenic, immuno-toxic,
neuro-toxic, hemato-toxic, and hormonal disorders caused by
filamentous fungi, such as Aspergillus, Fusarium, and Penicillium
producing mycotoxins.

One of the main reasons is the difficulty of controlling the
spread of various pathogenic microorganisms, which are resistant
to high temperatures, such as fungi and/or sporulating bacteria,
before and after treatment in plants and during storage (EU-
OSHA, 2009). As a special case/option, it could be mentioned
that a microbially treated organic matter enriched with plant
beneficial A. niger and solubilized P could be partially incinerated
at 350–500◦C to reduce its volume and, consequently, increase
P concentration but also to avoid the presence of microbial
biomass/spores (Mendes et al., 2015).

In the production, storage, and application of formulated
BF and biocontrol products, workers and biotechnologists
should follow the Good Microbiological Practice (GMP) rules,
which are normally in use when working with low-risk
microorganisms belonging to class I (i.e., non-pathogenic
microorganisms). This set of rules is developed to prevent
laboratory workers from exposure to the microorganisms and,
simultaneously, prevent microorganisms from environmental
factors, including contamination by other biological material;
it is known that 80% of lab operators carry mycoplasma,
which is highly infectious and changes cell metabolism and
growth (Falkow, 2008). One of the most important points
of the safeguarding strategies should be the information of
lab/bio-plant workers and farmers: information, in sense of
education and communication, as suggested by the Final
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Report of the EIP-AGRI (European Innovation Partnership
Agricultural Productivity and Sustainability) focus group on
soil organic matter in Mediterranean regions (EIP-AGRI,
2015). They should be well informed about the production
details, product quality, product composition, microbial content,
potential microbial pathogens and their effects on human health,
protection measures, mode of product action in soil-plant
systems, and advantages of product application. Authorities and
producers should inform farmers on the maximum permitted
and real number of pathogens. For example, the Spanish
Directive on Fertilizers (Real Decreto 506/2013) fixes the
maximum amount (CFU) of the most abundant pathogens in
traditional microorganism-bearing organic fertilizers, Salmonella
and Escherichia coli, what is in accordance with the Proposal for
a European Commission, 2009. However, information on other
potentially pathogenic microorganisms in organic fertilizers is
missing. In the recent EC Regulation (Regulation EU 2019/1009
of the European Parliament and of the Council, 2019), organic
and organo-mineral fertilizers should be free of Salmonella and
Escherichia coli. Additionally, plant biostimulants should be free
of L. monocytogenes, Vibrio spp., Shigella spp., and S. aureus,
while for Enterococcaceae, anaerobic microorganisms, yeasts, and
molds, the CFU can be 10, 105, and 1,000 per g or ml. To fulfill
these requirements, and particularly in case of organic fertilizers,
all crude materials should be treated in special installations (e.g.,
plants). Therefore, farmers and workers should be informed
about the whole production process starting with the initial
operations of recollection and ending with the application of the
commercial products and in contrast, correspondingly equipped.

A recently published review questioned the whole process
of production and application of microbially based fertilizers
and the basic understanding on what pathogenicity is (Hardoim
et al., 2015). In contrast, the wide ecological and metabolic
diversity in microbes, their relatively short generation time,
and their ability to rapidly adapt to and colonize highly
specific niches, including specific compartments of animals,
humans, and plants, allow some microorganisms to cause
disease. For this reason, in the new EU Regulation, the label
of potentially dangerous microbial fertilizers (i.e., biostimulants)
shall contain the following phrase: “Microorganisms may have
the potential to provoke sensitizing reactions” (Regulation
EU 2019/1009 of the European Parliament and of the
Council, 2019). Special attention and measures need the
presence of antibiotics in the microorganism-bearing natural
organic amendments and their antibacterial activity, which
could affect the structure and function of natural microbial
communities thus promoting the accumulation in soil of
antibiotic-resistant bacteria ARB and ARGs. The recently
adopted EU Commission, 2019/6 on veterinary medicinal
products requires that any risk associated with the development
of antimicrobial resistance (AMR) must be considered (EU
Commission, 2019). However, there is no generally accepted
approach for assessing the risk of development or dissemination
of AMR in the environment. This problem could be easily solved
if antibiotics use is controlled every day individually based on
the administration history and the farm environment is strictly
managed (Suzuki et al., 2022).

Field workers dealing with potentially dangerous plant
beneficial products containing microorganisms could be divided
into groups according to the tasks: general tasks, including work
with soil, seeds, planting, watering, treating plants with chemical
and organic fertilizers, and other groups working directly with
animals and derived wastes or working with microorganisms
(in case of Spain: Instituto Nacional de Seguridad e Higiene en
el Trabajo, 2014). Each group has its specific norms, National
but also local Directives prepared by each Spanish province
with instructions on how to work with materials contaminated
by or bearing microorganisms and how to react in case
of emergencies. Therefore, this part of the safety measures
is administratively/normatively well-organized for the local
workers. However, with the recent migrants’ entrance in many
EC countries, including Spain, some of them are introduced
into diverse agricultural activities thus changing the traditional
workforce profile. These newcomers will need special attention
as inadequate and unskilled, inexperienced human resources may
be easily subjected to microbial contamination when working
with microbially bearing products (Itelima et al., 2018). In any
case, authorities, biotech producers, and farm workers should be
prepared to rapidly analyze scientific elaborated risk assessments
of microbially bearing fertilizers concerning human, animal or
plant health, safety, or the environment (for more detailed
information regarding regulations in the field of BFs, refer to
Malusa and Vassilev, 2014).

There is another very important issue when assessing
all potential risks of applying microorganism-bearing
materials as soil amendments thus potentially entering
determined strains in the plant/human/animal microbiome.
A recent study analyzed the intime role of microorganisms
in mechanisms of development and progression of cancer
(Parhi et al., 2020). Microbial species, including Streptococcus
gallolyticus, Enterococcus faecalis, enterotoxigenic B. fragilis,
enteropathogenic Escherichia coli, and Fusobacterium spp., were
registered in these studies. A typical example is the bacterium
Helicobacter pylori, which increases the risk of cancer in the
stomach. Enterococci are part of the intestinal microbiota in
a great variety of hosts. They are particularly abundant in
feces of warm-blooded animals and demonstrated a long-term
survival in the environment (Wasteson et al., 2020). The
question that appears is: Is there any risk of contamination with
microorganisms resistant to treatments found in human and
animal cancers through sewage sludge/manure/composts applied
in the soil-plant-food chain?

CONCLUSION

The main conclusion that could be formulated at the end of this
short mini-review is the need of well-regulated and controlled
circulation of microorganisms in agricultural ecosystems with
further health-beneficial effects on consumers. This approach
could ensure highly efficient and safe microbially based and
chemicals-free sustainable agriculture. Better structured safety
assessment and risk management measures should be developed
based on existing knowledge of the microorganisms. From
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safety point of view, the first reason of concern is the nature,
characteristics, and mode of treatment or production of fertilizer
with microorganisms in its composition. Manure and sewage
sludge are the main natural sources of potential risks, but
serious safety measures are foreseen at the European and
National levels. Incentive actions are offered to reduce their
potential field application while enhancing alternative uses
in composting plants or energy generation and further use
of the resulting products (digestates, biochar, etc.). Plant
microbiome consists not only of beneficial but also pathogenic
microorganisms. Therefore, another important point is the
fate of the introduced microorganism-bearing fertilizers,
particularly biostimulants, in soil and their effect on the
microbial community structure, including autochthonous soil
pathogens. In general, we should know the ecological behavior
of introduced microorganisms, and the possibility of interactions
must be considered in risk assessment actions (Malusà et al.,
2021). As suggested by van Elsas et al. (2012), soil microbial
diversity and the level of its metabolic activity is the key
regulating the fate of a given microorganism introduced in
soil. Soil biodiversity dynamics is a multidirectional process
where soil management, applied microbial biostimulants, and
organic matter interact with the autochthonous microflora
within a functioning ecosystem (Vassilev et al., 2021). In
short term, the introduction of nutrients derived from
the organic fertilizer (compost, treated manure, etc.) or
metabolites released from introduced microbial biostimulants
might stimulate the growth of whichever microorganism
from the plant microbiome, including plant-associated
pathogens (Berg, 2009). Therefore, microbial toxicological
data, metabolite profile in field conditions, and long-term
experiments on assessing the risk for the environment should
be performed. Particularly important are risk studies and
determination of potentially invasive fungi and bacteria
able to survive in stress conditions (Vassilev et al., 2012;
Alavi et al., 2014).

Another important conclusion of this short analysis of
the development of measures for safe production and use of
microbial-based fertilizers is that this field of research and
biotechnological/agronomical activity needs a strict but flexible
legal framework based on the available database to further
support the transition toward more sustainable agriculture.

In this sense, a better methodological approach is needed to
determine the potential pathogenic power of the plant beneficial
microorganisms before their direct industrial production and
formulation. In a recent article, Vílchez et al. (2016) proposed a
simple, cheap, and efficient strategy to evaluate the potential risk
of plant growth-promoting microorganisms for human, animal,
and plant health, avoiding the use of vertebrate animals. Another
important approach could be the limited use of potentially
pathogenic organic materials and their substitution by carefully
risk-tested beneficial microorganisms combined with organic
matter used in their production process. Manure could be applied
after more strict treatments, while compost could be enriched
with safe beneficial microorganisms. Although many basics of
microbiome biology remain unresolved, could we manipulate
the animal microbiome through animal breeding and dietary
control thus preventing the presence of pathogens in the manure
(Huws et al., 2018)? In contrast, following the principle of
One Health approach, microorganisms derived from human gut
microbiota can be considered in the near future as a PGP-
biocontrol option. By applying this scheme, we could produce
safe fresh products rich in probiotics. Thus, the natural circle of
soil-plants-humans-soil could be reactivated. In some cases, plant
beneficial metabolites (postbiotics) could be applied instead of
their producers (Mendes et al., 2017; Vassilev et al., 2017b), thus
avoiding the direct application of microbial cells but assessing the
effect of all microbial metabolites.
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