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The growth of strawberry plants is affected by a variety of strawberry leaf diseases. Yet,

due to the complexity of these diseases’ spots in terms of color and texture, their manual

identification requires much time and energy. Developing a more efficient identification

method could be imperative for improving the yield and quality of strawberry crops.

To that end, here we proposed a detection framework for strawberry leaf diseases

based on a dual-channel residual network with a multi-directional attention mechanism

(MDAM-DRNet). (1) In order to fully extract the color features from images of diseased

strawberry leaves, this paper constructed a color feature path at the front end of the

network. The color feature information in the image was then extracted mainly through

a color correlogram. (2) Likewise, to fully extract the texture features from images, a

texture feature path at the front end of the network was built; it mainly extracts texture

feature information by using an area compensation rotation invariant local binary pattern

(ACRI-LBP). (3) To enhance the model’s ability to extract detailed features, for the

main frame, this paper proposed a multidirectional attention mechanism (MDAM). This

MDAM can allocate weights in the horizontal, vertical, and diagonal directions, thereby

reducing the loss of feature information. Finally, in order to solve the problems of gradient

disappearance in the network, the ELU activation function was used in the main frame.

Experiments were then carried out using a database we compiled. According to the

results, the highest recognition accuracy by the network used in this paper for six types

of strawberry leaf diseases and normal leaves is 95.79%, with an F1 score of 95.77%.

This proves the introduced method is effective at detecting strawberry leaf diseases.

Keywords: detection of strawberry leaf diseases, color feature path, texture feature path, multidirectional attention

mechanism, multidirectional attention mechanism dual channel residual network, ELU
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INTRODUCTION

Strawberry is a sweet and sour delicious fruit prized by
consumers that have high nutritional content and commercial
value (Skrovankova et al., 2015). Strawberry has since become
an important cash fruit crop in China (Lei et al., 2021).
With the popularization of greenhouse cultivation technology,
strawberries can be harvested year-round, and their cultivation
area in China is expanding. However, high temperature
and humidity in greenhouses offer favorable conditions for
diseases and their outbreaks, leading to infections of strawberry
plants that can seriously affect their yield of strawberry
fruit (Wang et al., 2015). Because the symptomatic leaf
spots of diseased strawberries show complex characteristics
in both color and texture, their manual recognition method
is time-consuming and laborious (Xiao et al., 2021) and it
is thus more likely to miss the best time to intervene with
control measures. Therefore, the development of a quick
and reliable strawberry disease identification method could
help fruit farmers implement timely control measures to
reduce losses caused by disease, whose application value could
be wide-ranging.

Color and texture are the two main visual attributes used
to describe the disease spots that appear on infected plants. In
traditional strawberry disease recognition, the types of disease
spots are mainly determined manually, according to these
two visual attributes. However, manual detection has several
drawbacks, namely its slow speed, low accuracy, and large
subjective error. In this respect, the field of plant science
has advanced vigorously in recent years. Many researchers
have proposed disease detection methods that rely instead
on machine vision. For example, Kusumandari et al. (2019)
proposed a strawberry leaf spot detection method based on color
segmentation, for which the results showed a good detection
effect. Yet, although this method can distinguish the diseased
leaves from the background, this detection becomes impaired
when the diseased spots are enlarged or the image quality is not
sufficiently high. Robust strawberry disease image recognition
inevitably requires fine-grained image classification, with more
colors and irregular textures distinguishable. Therefore, during
image processing, much color and texture information is apt
to get lost, making accurate recognition more difficult. In
addition, conventional image processing methods struggle to
extract deeper feature information and often are not readily
applicable to real environment settings. Recently, Huang et al.
(2020) proposed PCNN-IPELM to detect peach diseases, and
its detection effect is considered good. However, convolution
only uses local information to calculate the target pixel, possibly
leading to a loss of information given the lack of global features.
Therefore, the key current problems in strawberry leaf disease
identification are as follows: (1) the color and texture features
of strawberry leaf disease spots are complex, and it is difficult
to completely retain their crucial information. (2) It is hard
to obtain deeper-level feature information using typical image
processing methods, and their practical extension is weak. (3) In
the process of image recognition, information loss can arise in the
absence of global features.

To solve the problem (1), Kavitha and Suruliandi (2016)
used GLCM and a color histogram to respectively extract the
texture and color features of the image and then classified
the image accordingly. Their experimental results demonstrated
the classification effect is stronger when the texture feature
is combined with RGB color space. However, GLCM entails
abundant calculations, requiring much time. Fekriershad and
Tajeripour (2017) had proposed using hybrid color local binary
patterns (HCLBP), based on local binary patterns (LBP), to
extract color and texture features, reducing the sensitivity of LBP
to noise. They introduced an effective point selection algorithm
to select the key points of the image and thus reduce the
computational complexity; however, some color and texture
features were abandoned when selecting such keys.

To solve the problem (2), and thereby extend the model’s
applicability to automated agricultural systems, Li and Chao
(2021) proposed a semi-supervised small sample learning
method to identify plant leaf diseases, which outperformed other
related methods when less marker training data is available.
While adding unlabeled data could improve the accuracy of that
model in some cases, it may also render the model worse in
other aspects. In the case of plant disease identification, marker
data can also be used. Lv et al. (2020) designed DMS-Robust
Alexnet, based on the backbone AlexNet structure. Combining
extended convolution andmulti-scale convolution, improved the
feature extraction ability and showed strong robustness when
applied to corn disease images collected in a natural setting.
Although the extended convolution does increase the receptive
field, not all inputs are involved in the calculation because of a
gap in the convolution kernel. Zhang et al. (2020) proposed the
FCM-NPGA algorithm to segment the image, to retain important
texture information while removing noise points and edge points,
finding it has high accuracy for detecting defects in apple fruit.
But due to the partial loss of color and texture, that model is still
limited for extracting key feature information.

To solve the problem (3), Wang et al. (2018) proposed a
non-local module, to help the algorithm learn the relationship
between different pixel positions, with promising results in
the fields of action recognition, image classification, and
target detection. This method, however, does not consider the
relationship between different regional locations. Chen X. et al.
(2020) introduced the channel attention mechanism into the
dual-channel residual network and proposed B-ARNet, which
can effectively improve the fine-grained classification effect.
A drawback to this method is that multi-directional feature
sequences are not well accounted for.

Accordingly, to tackle and simultaneously address all three
primary problems, this paper proposes a new detectionmodel for
strawberry leaf diseases. Based on the ResNeXt network structure,
this paper constructs a parallel color feature path and texture
feature path at the front end of the network, which can retain
the color and texture information in the original image more
completely than traditional image processing methods. The two
channels converge into a main frame road, to further extract
the deep features. In this main road path, MDAM is introduced
to improve the network’s ability to extract critical features. The
model can effectively detect strawberry leaf diseases and has high
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application value in agricultural automation systems. The main
contributions and innovations of this paper are summarized
as follows:

(1) The color feature path was constructed by combining
the color diagram and ResNeXt structure, enabling the
effective extraction and description of the color feature map
of a strawberry leaf disease image. It can obtain pivotal
preliminary color feature information that then improves the
disease detection ability of the network.

(2) The texture feature path was constructed by combining
ACRI-LBP and ResNeXt structure, to effectively extract
and describe the texture feature map of a strawberry
leaf disease image. Effective preliminary texture feature
information is obtained, improving the ability of subsequent
network detection.

(3) This paper proposed a new attention mechanism—MDAM,
used to obtain the weights of the feature layer in the road
path of the main frame. The feature layer fused by color
feature and texture feature path is inputted into MDAM,
and the weights of different feature; information are obtained
through a multi-directional comprehensive analysis. This
method is helpful for extracting pertinent features, reducing
the loss of main features from the strawberry leaf disease
image, and improving the adaptability of the model to a
complex environment. At the same time, the ELU activation
function was used in MDAM-DRNet, adequately inhibiting
the disappearance of the gradient.

(4) The recognition rate of seven kinds of strawberry leaf images
was 95.79%, and the F1 value was 95.77%. This indicates
our model can accurately distinguish among strawberry
leaf images displaying similar characteristics. Because of
its robust classification performance in a complex natural
environment, fruit farmers can use this method to judge
whether strawberry leaves are infected with diseases, and to
prevent and control strawberry diseases in advance, thereby
ensuring the growth of strawberries and mitigating the
economic losses caused by strawberry diseases.

RELATED WORK

In recent years, with the rapid development of machine vision
technology, image processing techniques, and machine learning
algorithms have been widely incorporated for the detection
and classification of leaf diseases (Dhaka et al., 2021). Image
processing techniques such as denoising and enhancement are
the main methods applied to improve image quality. The
use of appropriate image processing methods is conducive to
improving recognition accuracy. Many researchers have made
outstanding contributions in the field of image processing.
Liu et al. (2021) proposed a self-attentional negative feedback
network (SRAFBN) capable of achieving a real-time image
super-resolution. This model can reconstruct the image texture
more in line with human visual perception and has a better
image enhancement effect. Chakraborty et al. (2021) proposed
an apple leaf disease prediction method based on a multi-class
support vector machine. To do this, first, the Otsu threshold

algorithm and histogram equalization are used to segment
the apple’s infected disease area, and then a support vector
machine identifies the disease type. Notably, the recognition
accuracy achieved was high. To enable the accurate detection
of plant diseases, researchers began to use the deep learning
method to extract deep-seated features from images of diseased
leaves. In this respect, Kundu et al. (2021) proposed a pearl
millet disease prediction framework, based on the “internet
of things” and interpretable machine learning, which can be
used for accurate prediction of pearl millet outbreak and rust
disease. Kim et al. (2021) proposed an improved vision-based
strawberry disease detection method. Its PlantNet used in this
method has a good ability to capture plant domain information.
Xie et al. (2020b) proposed a real-time detector of grape leaf
disease based on an improved deep-convolution neural network.
The detection model Faster DR-IACNN achieved high accuracy
when tested against a grape leaf disease data set. Finally, Yang
et al. (2022) proposed a strawberry disease classification system
that is based on deep learning; it provides a non-destructive,
fast, and convenient classification scheme for diseases likely to
occur in the process of strawberry planting. However, regarding
the above plant disease detection methods, few studies have
made full use of the color and texture features of disease
spots that appear on leaves. In addition, the existing networks
still face hurdles in fine-grained image recognition and their
applied use in complex agricultural environments. Therefore, this
paper proposes a new detection framework for strawberry leaf
diseases that is based on a dual-channel residual network with
a multi-directional attention mechanism (MDAM-DRNet). Our
experimental results show that this method performs well in
the fine-grained classification of strawberry leaf diseases, whose
process is depicted in Figure 1.

MATERIALS AND METHODS

Data Acquisition
To compile the data set used in experiments, online sources
and orchard fields were used. The websites included Kaggle and
social media, among others, yielding 2,753 photographs. Field
images were collected from several strawberry picking gardens:
Qingqing Strawberry Garden in Wangcheng District, Changsha
City, Hunan Province; Zihui Farm Strawberry Picking Garden in
Changsha Economic and Technological Development Zone; and
the Shifang strawberry base at Hunan Agricultural University.
The camera used was a Canon EOS R6, with an image pixel
size of 2,400 × 1,600, and 3,841 strawberry disease images were
taken. Because some websites lacked strict disease classification,
some classification errors are inevitable. By consulting materials
and asking experienced fruit farmers, we eliminated those images
with poor quality and unclear objectives and reclassified the
pictures having classification errors. Then, the above two data
parts were integrated, for a total of 4,362 images, of which
1,106 were of early stages of strawberry leaf diseases. Because
a large amount of data is needed for model training, the
data was augmented by rotation, flip, random clipping, and
brightness transformation tools. In this way, 17,440 images
were finally obtained in a database. Table 1 lists the disease
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FIGURE 1 | Schematic diagram of strawberry leaves disease identification.

TABLE 1 | Quantitative distribution of seven strawberry leaf images.

Disease category Example Number Proportion (%)

healthy leaves 2,591 14.86

powdery mildew 2,503 14.35

leaf spot 2,455 14.08

Botrytis cinerea 2,416 13.85

anthracnose 2,562 14.69

verticillium wilt 2,434 13.96

leaf scorch 2,479 14.21

categories and corresponding data distribution of strawberry
leaves used in this paper, including that for healthy strawberry,
strawberry powdery mildew, strawberry leaf spot, strawberry
Botrytis cinerea, strawberry anthracnose, strawberry verticillium
wilt, and strawberry leaf scorch.

Combined with the six different disease images in Table 1,
the leaf image characteristics of six strawberry diseases were
analyzed. The above six diseases can differ starkly in the color and
texture of their leaf spot symptoms. Their color characteristics
are as follows: (1) Powdery mildew spots are white. (2) Leaf
spot is purplish-red in the initial stage, gray in the center,
turning purplish brown at the edge after expansion. (3) Botrytis
cinerea spots appear yellowish-brown. (4) Anthracnose spots are
reddish-brown or black in the early stage, brown in the center,
and reddish-brown at the edge after expansion. (5) At the initial
stage of verticillium wilt disease, its leaf spots are black-brown,
but after expansion, they turn yellow-brown between leaf edges
and leaf veins, with the new tender leaves appearing grayish-
green or light brown. (6) The leaf scorch spot is purple to brown.
The texture features of the leaf spots caused by different disease
categories are as follows: (1) Powdery mildew is nearly round in
the initial stage, whose edge is indistinct after radial expansion.
(2) Leaf spot is a small round spot in the initial stage, taking
the shape of a snake eye after expansion, and its wheel lines are
fine and dense. In severe cases, the disease spots fuse together
and the leaf dies. (3) Botrytis cinerea spots are large and “V”-
shaped, and infected leaves die in severe cases. (4) Anthracnose
spots are spindle-shaped with an uneven texture. (5) The initial
stage of the verticillium wilt spot manifests a long strip shape
in leaves; these wither in severe cases. (6) Leaf scorch leaves
shrink, turn brown and inward, and wither with the severity. By
comparing their respective color and texture, we can distinguish
these six strawberry leaf diseases from healthy strawberry leaves.
Therefore, this paper first extracts the texture and color features
of strawberry leaves to obtain the shape feature information of a
given disease. Next, in the subsequent identification of different
strawberry leaf diseases by the neural network, the accuracy of
strawberry leaf image classification can be significantly improved.

Strawberry Leaf Disease Identification
Based on the MDAM-DRNet Network
As seen in Table 1, the diseases of strawberries are characterized
by inconspicuous leaf spots small in area, hindering the manual
diagnosis of the disease present and inevitably complicating
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FIGURE 2 | Structural diagram of MDAM-DRNet network.

disease identification, making it more likely to overshoot the best
period to enact control measures. Therefore, the earlymonitoring
of strawberry leaf diseases has more practical significance; more
detailed features of this development stage ought to be extracted
by a deep neural network. To solve the above problems, this paper
proposes the MDAM-DRNet network, whose overall structure is
illustrated in Figure 2. Firstly, the input data set passes through
the color feature path and texture feature path in parallel. The
color feature path includes the color correlogram and stage1
and stage2 of ResNeXt, through which the color feature layer
can be extracted. The texture feature path includes ACRI-LBP
and stage1 and stage2 of ResNeXt, through which the texture
feature layer can be extracted. Then, the two-color feature and
texture feature layers are merged into the main frame road path
via concatenation, after which the MDAM attention mechanism
is added to improve the recognition accuracy of a strawberry
leaf disease image. The output of MDAM enters stage3 and
stage4 of ResNeXt and continues to extract deep-seated feature
information. Finally, after extracting the feature information
from the network, the types of strawberry leaf disease mapped
are categorized using the “softmax” classifier, whose classification
results are outputted. The implementation process for the color
feature path, texture feature path, and main frame road path is
detailed below.

Color Feature Path
The color feature path is composed of the color correlogram
and stage1 and stage2 of ResNeXt. Among them, the color
correlogram is mainly used to extract and describe the color
features in images of strawberry leaf diseases. Therefore, the
following mainly introduces the implementation process of color
feature extraction as well as describes the color correlogram.

The color correlogram is an expression of image color
distribution. This feature not only describes the proportion of
pixels of a certain color within the whole image but also reflects
the spatial correlation between different color pairings (Jing

TABLE 2 | Pseudo code of color correlation diagram.

Algorithm 1 color correlogram

Input: Color image img, Space distance d, Image length L, Image width W,

Number of image channels N

Output: Color correlogram cgram

1 Begin

2 for x← 0 to L-1 do

3 for y← 0 to W-1 do

4 for t← 0 to N−1 do

5 /*Step 1: Take a point as the central pixel and obtain its pixel value*/

6 color_i← Gets the pixel value of the (x, y, t) point

7 /*Step 2: Obtain the eight field coordinates of the center point*/

8 neighbors← Obtain the coordinates of 8 field points of (x, y, t)

9 for neighbors← neighbors[0] to neighbors[7] do

10 /*Step3: Gets the pixel value of a field*/

11 color_j← Gets the pixel value of the i point

12 /*Step 4: Record the number of color pairs (color_i, color_j)*/

13 cgram[color_i, color_j]← cgram[color_i, color_j] + 1

14 end for

15 end for

16 end for

17 end for

18 return cgram

19 End

et al., 1997). Research shows that a color correlation map has
higher retrieval efficiency than does a color histogram or color
aggregation vector (Wei-Ying and Hong Jiang, 1998). A color
correlogram can express the proportion of pixels of a certain
color in the whole image and the spatial correlation between
pairs of a different color. Because the disease spots on strawberry
leaves are small, the local correlation between colors is a more
important consideration. Therefore, in order to reduce the space
and time requirements, this paper sets the spatial distance D
to a fixed value. The specific color extraction steps applied to a
strawberry disease leaf image are shown in Table 2.
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FIGURE 3 | (A,B) Color feature map corresponding to five different strawberry leaf disease images.

A color correlogram can be understood as a table indexed by
color pairs

〈

x, y
〉

. Because the color correlogram only considers
the local correlation between colors, this method is relatively
simple and less computational taxing than extracting all color

features of strawberry disease leaf images. Finally, the color
features of different kinds of strawberry leaf disease images are
extracted by the color correlogram (as seen in Figure 3). From
the color features in that figure, they evidently differ considerably

among the six diseases, indicating high discrimination.

Texture Feature Path
The texture feature pathway is composed of ACRI-LBP,
in addition to stage1 and stage2 of ResNeXt. The ACRI-
LBP algorithm is mainly used to describe and extract the

texture features from images of strawberry leaf diseases.
Therefore, the following focuses on the implementation
process of texture feature description and extraction
by ACRI-LBP.

LBP is a classical method for describing texture features (Tu

et al., 2016). The original LBP operator is defined as taking the

center pixel of the window as the threshold in a 3 × 3-window
and comparing the gray value of eight adjacent pixels with it. If

a surrounding pixel value is greater than the center pixel value,

the position of that pixel is marked as 1; otherwise, it is 0. In
this way, the eight points in the 3 × 3 neighborhood can be

compared, to generate 8-bit binary numbers (usually converted
into decimal numbers; i.e., LBP codes, for a total of 256); that

is, the LBP value of the window’s central pixel is derived, which

may be used to reflect the texture information of the region. To
resolve the issue arising when the LBP feature coding errs when

the scale of the image changes, Guo et al. (2010) proposed the

circular LBP (CLBP), which extends the 3 × 3 neighborhood to

any neighborhood, by replacing the square neighborhood with a

circular one, so as to obtain the LBP Operator with P sampling

points in the circular region with a radius R. However, that
LBP value will change once the image is rotated. Researchers
have extended the LBP Operator to include rotation invariance
(Mäenpää and Pietikäinen, 2005). Specifically, by continuously
rotating the circular neighborhood the minimum LBP value is
obtained, which then serves as the LBP feature of the central
pixel. No matter how the image is rotated, the minimum
eigenvalue in the field is finally found. For example, an initial
LBP value in the circular neighborhood of 225, a series of LBP
eigenvalues obtained after image rotation are 240, 120, 60, 30,
15, 135, and 195 respectively. In this group of LBP eigenvalues,
if the smallest LBP eigenvalue is 15, the LBP characteristic for the
central pixel of that circular neighborhood is 15. Given that the
minimum value of the circular field corresponding to each pixel
is different and fixed after rotation, the difference between pixels
can also be clearly expressed by using the obtained minimum
value. Therefore, RI-LBP (rotation invariant LBP) has rotation
invariance and high description ability.

Now, considering that the LBP feature value obtained by
RI-LBP is the minimum value obtained after the rotation of
the circular field, the image may nonetheless be too dark
because the feature value is too small, thus obscuring the texture
features. Therefore, this paper adds area gray compensation to
RI-LBP and proposes ACRI-LBP to extract the texture features.
The schematic diagram of ACRI-LBP is presented in Figure 4.

Specific steps for extracting texture features from a strawberry
leaf image by ACRI-LBP are as follows:

(a) Firstly, the color image is transformed into a gray image.
(b) Divide the image into non-overlapping small areas, each

16 × 16 in size. Select the average value of Agmax and the
maximum value of Agmin in the gray area of a pixel, and
calculate the minimum value of Agmax in the gray area.
The regional gray compensation value can then be calculated
this way:
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FIGURE 4 | Schematic diagram of ACRI-LBP.

Ac =
Agmin
Agmax

∗

Ag (1)

(c) Select a pixel point in the region as the center point, whose
coordinates are expressed as (xc, yc). Taking (xc, yc) as the
center, draw a circle with radius R, select P sampling points
with that circular area, and sampling points’ coordinates
as follows:

xp = xc + Rcos
(

2πp
P

)

(2)

yp = yc − Rsin
(

2πp
P

)

(3)

(d) If the coordinates of a sampling point are not at the center of
the pixel, the bilinear interpolation method is used to obtain
the coordinates of that sampling point. Set the coordinates of
the four pixels around the sampling point as Q11 =

(

x1, y1
)

,
Q12 =

(

x1, y2
)

, Q21 =
(

x2, y1
)

, Q22 =
(

x2, y2
)

, then derive
its pixel value this way:

f
(

x, y
)

= [x2 − x x− x1]

[

f (Q11) f (Q12)

f (Q21) f (Q22)

] [

y2 − y
y− y1

]

(4)

(e) Next, compare the gray value of a point in the neighborhood
with it. If the surrounding pixel value is greater than the
central pixel value, then the position of that point is marked
as 1; otherwise, it is marked as 0. In this way, the P-point
in the neighborhood can generate a P-bit binary number
after comparison; that is, the LBP value of the central pixel
is obtained:

LBP
(

xc,yc
)

=
∑p−1

p=0 2
ps

(

ip, ic
)

(5)

s (x) =

{

1 if ip ≥ ic
0 else

(6)

where ip denotes a pixel value of a neighborhood, and ip denotes
the center pixel value.

(f) Then, the binary values of the left turn bits are recycled, and
then the decimal minimum value is taken as the eigenvalue
of the current point.

(g) The eigenvalues of each pixel in each region are calculated.
The pixel values of the corresponding points can be obtained
by adding the eigenvalues of each pixel to the regional
gray compensation value. Finally, the texture feature map is
obtained by combining each pixel.

Because the radius is the amount actually selected according
to the data set, and the smaller the radius, the finer the image
texture, and the smaller the number of neighborhoods, the lower
the brightness of the image.

The Main Frame Road Path
The main frame, road path entails the merged texture feature
path and color feature path, the MDAM, and the stage3 and
stage4 of ResNeX. The output feature layer of the color feature
path and that of the texture feature path are fused after entering
the main frame road path; hence, the fused output conveys the
characteristics of color and texture. However, given the different
contribution weights of these two features in the subsequent deep
information extraction and disease classification performed by
stage3 and stage4 of ResNeXt, we introduce MDAM to assign
specific weights to different regions in the fused feature layer.
Although stage1 and stage2 of the ResNeXt framework are
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both distributed in texture feature path and color feature path,
stage3 and stage4 for extracting deep information and realizing
classification functions are located in the main frame road path.
Therefore, the frame of ResNeXt is introduced in the main frame
road. To sum up, the following describes the implementation
process of the main functions in the main frame road.

ResNeXt

When using a simple neural network for feature extraction, it is
easy to lose the main features and thereby alter the classification
effect. The deeper the network, the greater the possibility of
decomposing the gradient. Residual network (ResNet) (He et al.,
2016) can resolve this problem well. However, to improve model
accuracy, the traditional ResNet needs to deepen the network.
When deepening the network with more super parameters
(such as the number of channels, filter size, etc.), the difficulty
and computational overhead of network design will increase in
tandem. Therefore, this paper uses the ResNeXt structure of Xie
et al. (2017) as the basic framework for identifying strawberry leaf
diseases. The introduction of ResNeXt not only can retain the
residual structure of ResNet to preserve its excellent performance
capabilities, but it also improves the recognition accuracy of
strawberry leaves without exacerbating parameter complexity,
by reducing and minimizing the number of super parameters
needed and simplifying the network.

ResNeXt is based on ResNet, but the concept of cardinality
is proposed on the structure of ResNet. Each layer of ResNet50
includes two modules: the identity block and the convolution
block. The latter can change the network’s dimensions but cannot
be connected in series continuously, while the former is used to
deepen the network and are connectable in a series. With the
deepening of the network level, the things learned to become
more complex, and more output channels arise. Therefore, while
using identity blocks to deepen the network, it is also necessary to
use convolution blocks to convert the dimensions, so that those
features in the network’s front can be transmitted to the feature
layer in its back. Compared with previous networks, ResNeXt
remains a popular network because of its few parameters, deep
layers, and excellent classification ability and recognition effect.

MDAM

The attention mechanism (Luong et al., 2015; Cohn et al., 2016;
Tu et al., 2016) originates from the simulation of the visual signal
processing mechanism in humans. When people observe and
recognize a target, they will focus on its prominent part and
ignore some global and background information. This selective
attention mechanism is consistent with the characteristics of the
identification part in fine-grained image classification. Therefore,
in order to extract the features of strawberry leaf images more
thoroughly, a new attention mechanism—MDAM, is introduced
here into ResNeXt. The MDAM is added after establishing
the overall image feature connection layer. The MDAM model
performs shallow mining on the overall image features via two-
layer convolution. First, to each feature, MDAM assigns four
weight coefficients (i.e., horizontal weight coefficient, vertical
weight coefficient, left diagonal weight coefficient, and right
diagonal weight coefficient). Because the attention mechanism

in the Graph Attention Network (GAT) algorithm can assign
different weights to adjacent nodes, it provides a way to extract
deep-seated mutual features in adjacent directions (Velickovic
et al., 2017). Therefore, we use the attention mechanism in
the GAT algorithm to assign mutual weights to the four
directional features. Next, each weighting coefficient is extended,
by using the weight multiplication strategy and the maximum
matching strategy, and the depth feature is generated through
the convolution layer and an average pool. Meanwhile, the
relationship between depth features is constructed using the
MDAM algorithm (the weight feature map generated by the
“softmax” function serves as the adjacency matrix of MDAM).
By expanding the relationship between feature weight coefficients
and structural features, MDAM can contribute to enhancing the
overall classification of the whole strawberry leaf image. This
should improve the final effect of fine-grained classification.

The MDAM proposed in this paper has three parts. Its
algorithm block diagram appears in Figure 5.

Firstly, four primary image weight features CCCC are
generated in the horizontal, vertical, left diagonal, and right
diagonal directions. When a first-order image weight feature is
generated, the feature vector set of the vertices of the first layer
is h = [h1, h2, ..., hN]

T, where N is the number of nodes in the
graph (there are only four directions here, so N = 4). A weight
matrix is needed to obtain the eigenvector of the next layer, so
the weight matrix required is W. Then the feature vector set

of the next layer can be obtained: h
′

= [h1
′

, h2
′

, ..., hN
′

]. For
each node, the corresponding attention coefficient can be trained
accordingly. The attention coefficient is thus given expressed
as ei,j = a(WThi,W

Thj). Next, the weight assigned by each
vertex node i in each direction to node j on the feature sequence
is obtained. Finally, the “softmax” function is implemented to
regularize the attention coefficient, as shown in formula (7). The
features extracted in multiple directions are highly complete,
which is more conducive to extracting effective image features.
Further, the weight distribution across multiple directions is
more conducive to extracting the disease characteristics in
different directions.

Ci =
∑n

j=1
exp(ei,j)

∑n
k=1 exp(ei,k)

hj (7)

Secondly, the horizontal and vertical weight features are used
to obtain the first secondary weight, C21, via the weight
multiplication strategy given by Formula (8). This weight
multiplication strategy can mine the deep feature information
and expand the weight coefficient by multiplying it with the
minimum penalty. The weight multiplication can further amplify
the influence of a weight coefficient—for example, the small
weight may be 0.1∗0.2, while the large weight may be 0.9∗0.7–
so as to obtain the extended feature. The horizontal and vertical
weight features are then used to obtain the second secondary
image weight, C22, by applying a maximum weight strategy. In
the latter’s Formula (9), the maximum feature is deemed an
effective feature and consistent with the minimum feature α

multiple addition, where α is a decimal number between 0 and 1.
Thismethod takes themaximum as themain factor and considers
another feature to obtain the comprehensive feature. The weight
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FIGURE 5 | Algorithm block diagram of MDAM.

features of the left diagonal and right diagonal are multiplied
to obtain the third secondary image weight, C23. Likewise, the
weight features of the left diagonal and right diagonal are also
multiplied to obtain the third secondary image weight C24.
The specific formulae for obtaining C21,C22,C23,C24 weight are
as follows:

C21 = C∗C −min (C,C) (8)

C22 = max (C,C)+ α∗min (C,C) (9)

C23 = C∗, C −min (C,C) (10)

C24 = max (C,C)+ α∗min (C,C) (11)

Finally, the four types of weight features C21,C22,C23,C24 are
matched to obtain the maximum value, which is used to
supplement the results of four primary image weight coefficients
C,C,C,C . In MDAM, these eight different image weight
coefficients integrate the processed feature information in series
through the concatenate function.

MDAM = concatenate ([C, C, C, C, C21, C22, C23, C24]) (12)

ELU Function

The output of upper nodes in ResNeXt and the input of lower
nodes are connected by a ReLU activation function. Still, some
neurons in ReLU may never get activated. Compared with ReLU,
the ELU function does not have this “dead” problem, and it can
effectively solve the problem of gradient disappearance (Clevert
et al., 2015). Therefore, this paper selects the ELU activation

function to replace ReLU. The ELU function is expressed
this way:

f (x) =

{

x if (x > 0)
α (ex − 1) otherwise

(13)

According to that formula, an output from ELU is maintained
even if the input is negative. This ensures the advantages of
the ReLU function are inherited while letting the ELU function
solve the problem of gradient explosion in the network. Further,
because the output mean of ELU is close to zero, its convergence
speed is faster than that of the ReLU function. In addition,
for the MDAM-DRNet network in this paper, without batch
normalization, the ReLU network with > 30 layers will not
converge, whereas incorporating the ELU function enables the
network to reach high convergence despite more layers.

RESULTS

Laboratory Environment
The experimental works were carried out on Windows 10 64-
bit operating system equipped with a Core i9-9980xe CPU and
NVIDA GeForce RTX 2080ti GPU. The software environment
consisted of a CUDA Toolkit (v10.2), CUDNN (v7.6.5), Pycharm
(v2019.3), Python (v3.7), and torch (v1.9.1), Numpy (v1.21.4),
and OpenCV (v4.5.4.60). The experiments in this paper were all
carried out in the same computing environment.

The unified input size of each image is 224∗224. During the
input process, the data set was expanded by horizontal flipping,
small-angle rotation, and scaling, generating a total of 17440
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FIGURE 6 | Texture feature images extracted by different methods.

images for analysis. This augmented data set was divided into
a training set, testing set, and verification set in a ratio of 3:1:1.
There are 10,464 images in the training set and 3,488 images in
each test set and verification set.

Considering the hardware performance and training effect,
the random gradient descent method was used to train the
network. To do this, the size of each training and test was set
to 24, that is, the batch size is 24, the epoch count is 200, and
the momentum parameter is set to 0.9. The model used an
Adam optimizer (Kingma and Ba, 2014), because the setting of
a learning rate will affect the convergence speed and stability of
the model. A callback function was added, the learning rate of the
first 60 epochs was set to 0.0001, and the learning rate of the last
60 epochs reduced 10-fold; doing this increased the fitting speed
and set the weight falloff to 0.0005.

Evaluation Indicators
To evaluate the classification effect of the model, we selected
accuracy, precision, recall, and F1 score as evaluation indicators.
For a single category, the corresponding calculation formulae
were as follows:

Accuracy = TF+TP
FP+TN+TP+FN (14)

Precision = TP
TP+FP (15)

Recall = TP
TP+FN (16)

F1 = 2∗ Precision∗Recall
Precision+Recall

(17)

where TP is the number of strawberry leaf disease samples
predicted to be of class A that are actually class A (i.e., positive
samples are tested as positive samples). FP is the number of
strawberry leaf disease samples that are not predicted as class
A but actually are of class A (negative samples are tested as
positive samples). FN is the number of samples of strawberry
leaf diseases predicted to be of class A yet is not actually class
A (if no positive sample is detected, it is designated a positive
sample). Accuracy corresponds to the proportion of samples
correctly classified among all samples attempted; Precision is
used to measure the number of correctly predicted samples
whose predictions were positive; Recall is used to measure the
number of correct predictions among the real positive samples;

TABLE 3 | Experimental results using different texture extraction methods.

Radius Accuracy Precisionmacro Recallmacro F1macro

(%) (%) (%) (%)

LBP 85.75 85.76 85.73 85.75

Uniform LBP 87.90 87.93 87.91 87.92

CLBP 91.06 91.07 91.14 91.11

RI-LBP 92.57 92.59 92.61 92.60

ACRI-LBP 95.79 95.76 95.79 95.77

the F1 score is used to weigh precision and recall in the case of
binary classification. For the case of multiple categories, the F1
score must synthesize the calculation results of the evaluation
indicators of each category. Such a macro-F1 has the advantage
of treating all categories equally (Opitz and Burst, 2019); hence,
Macro-F1 was selected as the evaluation index, expressed by
F1macro, whose calculation formula is as follows:

Precisionmacro =

∑n
i=1 Precisioni

n
(18)

Recallmacro =

∑n
i=1 Recalli

n
(19)

F1macro = 2∗
Precision∗macroRecallmacro

Precisionmacro+Recallmacro
(20)

where i represents class i, Precisionmacro can be regarded as
averaging the precision of i categories, and Recallmacro can be
regarded as averaging the recall of i categories.

Performance and Analysis
Comparative Experiment Between ACRI-LBP and

Other Texture Extraction Methods
In order to verify the performance of ACRI-LBP, four methods—
LBP, CLBP, uniform LBP (Ojala et al., 2002), and RI-LBP—were
compared with ACRI-LBP to test the effect of different methods
for extracting texture features from the images (Figure 6). We
can see that the texture features extracted by the CLBP, RI-LBP,
and ACRI-LBP methods are relatively clear. To test the influence
of different texture feature extraction methods on the network
recognition rate, we replaced ACRI-LBP in MDAM-DRNet with
LBP, CLBP, uniform LBP, or RI-LBP, and carried out experiments
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FIGURE 7 | Texture feature map of the same image extracted under different brightness.

FIGURE 8 | Texture feature map extracted from the same image after selecting different domain radius.

on the same self-made data set. The scores of accuracy, precision,
recall, and F1 were the evaluation indicators.

According to these experimental results (Table 3), the
accuracy attained by the RI-LBP method was 95.79%, and whose
F1 score was 95.77%. Compared with that, our ACRI-LBP
had an accuracy of 3.22% higher and an F1 score of 3.17%
higher. Compared with the original LBP, accuracy increased by
10.04%, and F1 increased by 10.02% when using ACRI-LBP. This
proved that ACRI-LBP is effective at improving the accuracy
of network recognition and robust method to extract image
texture features.

Verification Experiment for the Illumination

Robustness of ACRI-LBP
According to the above description of ACRI-LBP’s properties,
it only considers the size relationship between the center and
adjacent pixel intensity, thus being invariant to a uniform change
in whole-image intensity and robust to illumination changes.
Therefore, different brightness processing was applied to the
same image of a diseased strawberry leaf to obtain five pictures
of increasing brightness, from left to right, as shown in Figure 7.

Then, ACRI-LBP was used to extract their texture features, whose
final texture features also appear in Figure 7.
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TABLE 4 | Experimental results with different radius.

Radius Accuracy Precisionmacro Recallmacro F1macro

(%) (%) (%) (%)

1 90.31 90.34 90.32 90.33

2 93.92 93.95 93.94 93.95

3 95.79 95.76 95.79 95.77

4 94.52 94.56 94.53 94.55

5 91.51 91.54 91.52 91.53

In that figure, the texture features extracted by ACRI-
LBP are consistent across images differing in brightness. This
indicated that extraction is not affected by light, and that texture
features are clearly extractable even for strawberry leaf images
obtained under low light conditions. Therefore, ACRI-LBP’s
texture extraction can safeguard the utility of the image from low
image quality caused by uneven illumination or low brightness.
This proved that texture feature extraction via ACRI-LBP can
effectively improve the subsequent recognition rate of various
strawberry leaf disease images.

Effect of the ACRI-LBP Domain Radius on Image

Recognition of Strawberry Leaf Diseases
Changing the domain radius can generate different scale texture
features. Accordingly, we selected four different radii (1, 2, 3,
and 4) as the domain radius to extract the texture features of a
strawberry leaf disease image. When different texture features are
inputted into the MDAM-DRNet network, different strawberry
leaf disease image recognition rates are obtained. Figure 8 shows
the texture feature map extracted for the same image after
applying the different field radii.

Evidently, the feature texture extracted is clearest when
the domain radius is 3. The specific reason for this is that
the regional feature information associated with other parts
cannot be extracted in a domain radius that is too small;
conversely, extracting more detailed location feature information
is precluded when too large a domain radius is used. To check
whether the texture features obtained when the radius is 3
are indeed more effective at improving the image recognition
accuracy, we set different radii and conducted experiments on
self-made data sets with MDAM-DRNet. These experimental
results are shown in Table 4.

We see that when the domain radius is set to 3, the recognition
accuracy ofMDAM-DRNet is 95.79%, and the F1 score is 95.77%,
each exceeding that when the radius is set to other values.
Therefore, the texture features obtained when the radius is 3 are
optimal for enabling the network to extract the key information
for strawberry leaf diseases’ classification.

Test Experiment for the Optimal Value of α

In equation 4, the α value is multiplied by the minimum
characteristic to compensate. To determine the appropriate α

value, we set different α values and appliedMDAM-DRNet to the
strawberry leaf data set we collected. This experiment’s results are
shown in Figure 9.

Evidently, the greatest recognition accuracy was obtained
when the x value is 0.3. If the value of α is too small, attention
is focused on the global features, and the smaller features go
ignored. But if the value of α is too large, attention is shifted
to focus on the smaller features, while ignoring the effective
features. Both cases will impact the extraction of important
feature information by MDAM.

Experiment for the Recognition Effect of

MDAM-DRNet on Early Disease Images of

Strawberry Leaves
In order to test the recognition effect of the model on the early
disease of strawberry leaves, we screened the images in the self-
made data set. A total of 3,768 images of early strawberry leaf
diseases were obtained, these were then divided into a training
set, test set, and verification set according to a 3:1:1 ratio. There
were 2,260 images in the training set and 754 images in each
test set and verification set. We tested the recognition effect of
ResNeXt and this paper’s proposed MDAM-DRNet model for
the early incidence of six disease types of strawberry leaves in
the data set. According to the experimental results in Table 5,
the recognition accuracy for early diseases of strawberry leaves
is significantly improved when using MDAM-DRNet compared
with ReNeXt, by about 9.16%. The recognition accuracy of both
models was lower for white spot and brown spot because these
two diseases cause dark, small round spots in their early stage,
whose color and texture are difficult to distinguish. However,
the recognition accuracy of MDAM-DRNet for these two kinds
of diseases was still >90%, indicating our proposed model
proposed is well able to distinguish similar features. In addition,
MDAM-DRNe had a high recall and F1 scores for each category,
indicating this new method is adept at recognizing leaf diseases
in their early stage of development.

The Comparative Experiment of MDAM-DRNet and

ResNeXt
We next conducted a comparative experiment between MDAM-
DRNet and ResNeXt, using the self-made data set, to verify the
optimization of MDAM-DRNet relative to ResNeXt. This paper
verifies the optimization effect of the network by comparing
the evaluation indicator values obtained for MDAM-DRNet and
ResNeXt applied to the same strawberry leaf disease data set.

According to the experimental results in Table 6, the
recognition accuracy of MDAM-DRNet for early-stage diseases
of strawberry leaves is significantly improved over ResNeXt,
by about 9.67%. The recognition accuracy of MDAM-DRNet
for healthy leaves, powdery mildew, leaf spot, Botrytis cinerea,
anthracnose, verticillium wilt, and leaf scorch was > 95%, and
the recognition accuracy of leaf spot and Botrytis cinerea was
relatively low. This is because the early symptoms of the white
spot are not readily apparent, allowing it to be mistaken for
another kind of disease, and the early disease images of gray
mold accounted for a high proportion, along with texture features
that are relatively complex. The recognition accuracy of MDAM-
DRNet for each category is at least 93%, and its recall is
above 95%, with an F1 score higher than 94%, thus indicating
the network has a good classification effect for strawberry leaf
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diseases. Figure 10 shows the loss and accuracy curves obtained
when the MDAM-DRNet and ResNeXt were trained on the same
date set, for six strawberry leaf disease images and one healthy
strawberry leaf image.

The experimental results in Figure 11 show that when the
epoch number of the MDAM-DRNet network reaches 75, the
accuracy curve converges and flattens, and its highest recognition
accuracy exceeds 95%. When the number of iterations of the
ResNeXt network reaches 50, the accuracy curve converges
and flattens, and its highest recognition accuracy is more than
85%, which this lower than that of the MDAM-DRNet. The
convergence speed of MDAM-DRNet was slightly slower than
that of ResNeXt, but it significantly improved the accuracy of
strawberry leaf disease identification.

Ablation Experiment
This was done to verify the effect of incorporating the MDAM
attention mechanism and dual-channel structure of ACRI-LBP
and the color correlogram into the ResNeXt model on the
image recognition accuracy of strawberry leaf diseases. Through
ablation experiments, we compared the recognition ability of
strawberry leaf disease images of the following five models and
conducted experiments on the same data set under the same
experimental environment.

According to their results inTable 7, ResNeXt’s strawberry leaf
disease recognition accuracy is the lowest among the five models,
and the single-use of color or texture features for classification
tasks did little to improve accuracy. But after adding MDAM
or dual-channel structure to the ResNeXt model, although the
number of parameters and training time both increased, overall
accuracy is greatly improved. The final superposition effect is
more than adequate, having a recognition accuracy of at least

95%, with an F1 score of 95.77%. This proves the modified model
is effective for the identification of various diseases afflicting
strawberry plants.

An Experiment Comparing the Recognition Rate With

Other Networks
To verify the performance of the MDAM-DRNet model in the
current network, the classification performance of the MDAM-
DRNet network model was tested vis-à-vis an existing partial
supervised model and a semi-supervised model. Among the
models selected for this experiment, AlexNet (Krizhevsky et al.,
2012), VGG16 (Simonyan and Zisserman, 2014), Efficientnet-
B5 (Tan and Le, 2019), and ResNet50, ResNeXt, and DensNet-
161 (Huang et al., 2017) are the most widely used supervision
models at present. Noisy Student Training (Xie et al., 2020a),
Meta Pseudo Labels (Pham et al., 2021), and SimCLRv2 (Chen
T. et al., 2020) are advanced semi-supervised models developed
in the past two years; likewise, the B-ARNet model, DMS-
Robust Alexnet model, and NFNet (Brock et al., 2021) model are
advanced supervision models proposed in the last two years. The
respective recognition accuracy of the above 13 models for seven
kinds of strawberry leaf images (6 strawberry leaf diseases and a
control image [healthy strawberry leaf] in the same strawberry
leaf disease data set is conveyed in Table 8.

Compared with other network models, the MDAM-DRNet
model proposed in this paper has higher recognition accuracy
for the six diseases, being higher than 93%. Thus, the application
value of the MDAM-DRNet model for strawberry leaf disease
detection is confirmed. To further evaluate the performance of
this model, accuracy, precision, recall, and F1 scores as evaluation
indicators were also compared amongmodels: these results are in
Table 9.

FIGURE 9 | Corresponding relationship between α value and accuracy.
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TABLE 5 | Effect of MDAM-DRNet model on early disease identification of strawberry leaves.

Methods Categories Number of pictures tested Precision (%) Recall (%) F1 (%) Accuracy (%)

ResNeXt Powdery mildew 645 83.72 80.60 82.13 83.00

Leaf spot 597 79.85 82.40 81.10

Botrytis cinerea 642 81.25 83.87 82.54

Anthracnose 622 83.06 79.85 81.42

Verticillium wilt 573 82.61 84.82 83.70

Leaf scorch 689 81.16 80.58 80.87

MDAM-DRNet Powdery mildew 645 93.02 90.91 91.95 92.16

Leaf spot 597 90.76 92.31 91.53

Botrytis cinerea 642 92.97 93.70 93.33

Anthracnose 622 93.55 92.80 93.17

Verticillium wilt 573 92.17 91.38 91.77

Leaf scorch 689 90.58 91.91 91.24

TABLE 6 | Recognition results of ResNeXt and MDAM-DRNet for strawberry leaf diseases.

Methods Categories Precision (%) Recall (%) F1 (%) Accuracy

ResNeXt Healthy leaves 89.19 87.33 88.25 86.12

Powdery mildew 86.23 86.75 86.49

Leaf spot 84.11 85.33 84.72

Botrytis cinerea 84.06 84.94 84.50

Anthracnose 86.52 87.38 86.95

Verticillium wilt 86.03 85.69 85.86

Leaf scorch 86.49 85.29 85.89

MDAM-DRNet Healthy leaves 98.07 95.31 96.97 95.79

Powdery mildew 96.01 96.78 96.39

Leaf spot 94.30 95.07 94.68

Botrytis cinerea 93.58 95.97 94.76

Anthracnose 95.90 97.04 96.46

Verticillium wilt 95.69 95.49 95.59

Leaf scorch 96.77 94.86 95.81

FIGURE 10 | The identification accuracy curves of MDAM-DRNet and ResNeXt for strawberry leaf diseases under the same data set.
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FIGURE 11 | F1 score histogram of each method.

TABLE 7 | Each model corresponds to the recognition accuracy of each strawberry leaf image.

Network Accuracy (%) Precisionmacro (%) Recallmacro (%) F1macro (%) Parameters Training time

ResNeXt 84.09 84.06 84.09 84.08 25M 9h 8 min

ResNeXt+color correlogram 84.58 84.58 84.57 84.57 25M 9h 49 min

ResNeXt+ACRI-LBP 83.52 83.51 83.48 83.50 25M 10h 20 min

MDAM-RNet 90.22 90.19 90.22 90.21 28M 9h 39 min

DRNet 88.16 88.12 88.14 88.13 27M 11h 36 min

MDAM-DRNet 95.79 95.76 95.79 95.77 30M 12h 10 min

We can see that the accuracy, precision, recall, and F1 score of
our proposedMDAM-DRNet proposed, respectively, were 95.79,
95.76, 95.79, and 95.77%, exceeding those of other models. This
substantiates the MDAM-DRNet model’s excellent recognition
ability for strawberry leaf diseases. To more intuitively compare
model accuracy, histograms were drawn (Figure 11); from these,
one can clearly see that the MDAM-DRNet has outstanding
recognition accuracy.

Among the evaluation indicators of machine learning, in
addition to those listed in Table 9, there is also a confusion
matrix (also known as a possibility table or error matrix).
It is a specific matrix used to visualize the performance of
an algorithm, usually one under supervised learning (for
unsupervised learning, it is usually called a matching matrix).
Each column represents the predicted value and each row

represents the actual category. This is very important because,
in the actual classification, TP and FP values are the most
direct indicators that ultimately determine whether the
classification is indeed correct, and the F1 value comprehensively
embodies these two critical indicators. As Figure 12 shows, we
calculated the confusion matrix based on the experimental
results of the MDAM-DRNet, NFNet, ResNeXt, and
AlexNet models.

In this confusion matrix, the values on the diagonal are all
the correct prediction results, and the remaining values are the
wrong prediction results arising from the model’s misjudgment.
Each row of the matrix represents the real category, and each
column of the matrix represents the prediction label of the
model. Evidently, the MDAM-DRNet proposed in this paper
has a robust classification effect for strawberry leaf diseases:

Frontiers in Plant Science | www.frontiersin.org 15 July 2022 | Volume 13 | Article 869524

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Liao et al. Strawberry Leaf Disease Detection

TABLE 8 | The recognition accuracy of 13 models for 7 categories of the same strawberry leaf disease data set.

Network Healthy Powdery Leaf Botrytis Anthracnose Verticillium Leaf

leaves (%) mildew (%) spot (%) cinerea (%) (%) wilt (%) scorch (%)

AlexNet 81.85 76.65 80.86 79.92 77.93 76.39 78.02

VGG16 83.40 81.04 82.08 81.99 82.27 81.11 80.85

ResNet50 86.87 83.83 81.87 81.78 84.18 83.78 86.09

ResNeXt 89.19 86.23 84.11 84.06 86.52 86.04 86.49

DensNet-161 88.80 85.63 83.71 83.64 85.94 85.63 85.69

Efficientnet-B5 92.28 87.62 87.78 86.96 88.87 87.68 88.10

Noisy Student Training 94.40 91.02 89.82 91.10 91.21 91.38 90.32

Meta Pseudo Labels 95.37 92.42 92.46 91.72 92.58 91.99 91.33

SimCLRv2 91.12 88.62 86.35 85.51 87.70 86.45 86.29

B-ARNet 92.66 89.62 87.37 87.99 90.63 89.53 88.71

DMS-Robust Alexnet 95.75 92.81 93.08 92.34 92.38 93.22 93.75

NFNet 93.24 90.42 87.78 87.78 90.23 89.12 92.14

MDAM-DRNet 98.07 96.01 94.30 93.58 95.90 95.69 96.77

TABLE 9 | Test results of 13 models on the same strawberry leaf disease data set.

Network Accuracy (%) Precisionmacro (%) Recallmacro (%) F1macro (%)

AlexNet 78.81 78.80 78.81 78.81

VGG16 81.82 81.81 81.83 81.82

ResNet50 84.09 84.06 84.09 84.08

ResNeXt 86.12 86.09 86.10 86.10

DensNet-161 85.61 85.58 85.58 85.58

Efficientnet-B5 88.50 88.47 88.49 88.48

Noisy Student Training 91.34 91.32 91.34 91.33

Meta Pseudo Labels 92.57 92.55 92.56 92.56

SimCLRv2 87.47 87.43 87.46 87.45

B-ARNet 89.54 89.50 89.54 89.52

DMS-Robust Alexnet 93.35 93.99 93.36 93.35

NFNet 90.14 90.10 90.12 90.11

MDAM-DRNet 95.79 95.76 95.79 95.77

compared with NFNet, ResNeXt, and AlexNet, the number
of successful predictions on the diagonal is higher than that
attained by other models. Importantly, its performance excelled
at detecting/identifying leaf spot diseases with small, cryptic
symptoms. Notably, the network framework of MDAM-DRNet
was able to correctly classify (more than 94% of cases) two easily
confused diseases, leaf spot, and anthracnose. This is because,
in its algorithm, the comprehensive weight obtained by MDAM
from weights in different directions is soundly aggregated,
enabling it to learn the contextual relationship of strawberry
leaf diseases, mitigating their similarity to enhance their
classification accuracy.

DISCUSSION

In order to better verify the generalization ability of our MDAM-
DRNet model, this paper conducted supplementary experiments
on three open data sets of leaf diseases: PlantVillage (Rauf
et al., 2019), Citrus (Singh et al., 2020), and PlantDoc (Tan
and Le, 2019). Among them, PlantVillage is a multi-category
laboratory data set, citrus is a laboratory data set with a small
number of categories, and PlantDoc is a multi-category non-
laboratory dataset. As neither PlantVillage nor Citrus is already
divided into a training set and test set, we divided their data
sets into two parts using this training set: a test set ratio of 8:2.
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FIGURE 12 | Confusion matrix corresponding to MDAM-DRNet, B-ARNet, ResNeXt, and CNN models.

TABLE 10 | Category of three public data sets, number of training set pictures, and number of test set pictures.

Dataset Category Training Testing

PlantVillage 38 43,447 10,862

Citrus 5 487 122

PlantDoc 27 2,334 236

The categories of these three public data sets, their number of
training set images, and their number of test set images are in
Table 10.

A total of 12 models—AlexNet, VGG16, ResNet50, ResNeXt,
DensNet-161, Efficientnet-B5, Noisy Student Training, Meta
Pseudo Labels, SimCLRv2, B-ARNet, DMS-Robust Alexnet,
and NFNet—were selected and tested against the three
public data sets. The experimental results are presented
in Table 11. According to these, the recognition accuracy

of our proposed network on PlantVillage, Citrus, and
PlantDoc data sets is 98.04, 98.36, and 90.16% respectively.
The test of MDAM-DRNet using the laboratory data sets
revealed a good recognition effect, which is equivalent
to the recognition accuracy of an advanced network. The
recognition accuracy on the non-laboratory data set (PlantDoc)
was >90%, exceeding that of the other model networks,
indicating that this paper’s proposed network is applicable to
real-world environments.
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TABLE 11 | Recognition accuracy of 13 models tested on three public data sets.

Network PlantVillage Citrus PlantDoc

Classification accuracy (%) Classification accuracy (%) Classification accuracy (%)

AlexNet 96.11 97.46 68.85

VGG16 94.53 96.61 65.57

ResNet50 97.66 98.31 79.51

ResNeXt 98.49 98.73 82.79

DensNet-161 95.27 97.46 72.13

Efficientnet-B5 98.40 99.15 83.61

Noisy Student Training 91.85 93.22 82.79

Meta Pseudo Labels 93.11 94.49 85.25

SimCLRv2 90.59 92.37 84.43

B-ARNet 99.03 99.15 87.70

DMS-Robust Alexnet 98.18 98.73 86.89

NFNet 99.34 99.58 89.34

MDAM-DRNet 98.26 99.15 90.16

CONCLUSION

In tackling the current problem of recognition accuracy of
strawberry leaf disease by image recognition models that are
not high, leaving it difficult to distinguish the early-stage disease
categories, our paper improves the functioning of ResNeXt for
this task. The key innovations of the image recognition network
MDAM-DRNet designed here for strawberry leaf diseases are
as follows:

(1) The color feature path is added to obtain the color
features in a strawberry leaf disease image. The color
feature path combines the color correlogram and ResNeXt
structure to analyze the texture features, which effectively
reduces the color interference of other objects in the
background and greatly reduces the difficulty of recognition
in color extraction.

(2) The texture feature path is added to obtain the texture
features in a strawberry leaf image. The texture feature
path combines ACRI-LBP and ResNeXt structure to analyze
the texture features, enabling deeper feature extraction,
effectively filtering out the interference of non-feature
texture information, which greatly reduces the difficulty of
recognition in texture extraction.

(3) MDAM is introduced into the main frame road path to
extract multi-directional attention, which can dynamically
weigh the characteristic data of the region of interest from
different directions. This improves the attention of the
network to the key region and overcomes the identification
difficulty caused by the target’s small size. Meanwhile, in
the main frame, the ELU function is applied to improve the
anti-interference ability of the network.

Compared with the traditional ResNeXt model, the newly
designed MDAM-DRNet network in this paper strengthens
the recognition accuracy of strawberry leaf diseases, and our
model’s effectiveness is corroborated by a suite of experiments.
In this paper, images of strawberry leave in different periods
and regions were collected in representative strawberry planting
areas in southern China. Through deep learning and comparison

of different models, strawberry leaf diseases in their natural
environmental settings are identified and detected, for which
high accuracy is achievable. Hence, the MDAM-DRNet network
in this paper can aid fruit farmers in accurately monitoring the
disease situation of leaves in strawberry orchards, for timely
control of disease according to its type, by curtailing its spread.
In follow-up work, the new model will be tested in real-world
agricultural situations, to contribute to the economic production
of strawberries and realize its potentially broader benefits for
society as soon as possible.
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