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Estimation of cotton yield before harvest offers many benefits to breeding programs,

researchers and producers. Remote sensing enables efficient and consistent estimation

of cotton yields, as opposed to traditional field measurements and surveys. The overall

goal of this study was to develop a data processing pipeline to perform fast and accurate

pre-harvest yield predictions of cotton breeding fields from aerial imagery using machine

learning techniques. By using only a single plot image extracted from an orthomosaic

map, a Support Vector Machine (SVM) classifier with four selected features was trained

to identify the cotton pixels present in each plot image. The SVM classifier achieved

an accuracy of 89%, a precision of 86%, a recall of 75%, and an F1-score of 80% at

recognizing cotton pixels. After performing morphological image processing operations

and applying a connected components algorithm, the classified cotton pixels were

clustered to predict the number of cotton bolls at the plot level. Our model fitted the

ground truth counts with an R2 value of 0.93, a normalized root mean squared error of

0.07, and a mean absolute percentage error of 13.7%. This study demonstrates that

aerial imagery with machine learning techniques can be a reliable, efficient, and effective

tool for pre-harvest cotton yield prediction.

Keywords: cotton yield estimation, machine learning, UAS, SVM, remote sensing

1. INTRODUCTION

Cotton is a major industrial crop in the United States (U.S.), especially in the southern and western
U.S. Cotton fiber is one of the principal natural textile fibers worldwide (Townsend and Sette, 2016),
and the U.S. is the third leading cotton producer with an expected production of 22.5 million bales
for 2019/20, just after China (27.5 million bales) and India (27 million bales). Cotton is a soft staple
fiber that grows from the surface of seeds, enclosed in pods known as bolls. Primary components
of economic yield, cotton boll number and boll weight are agronomic traits that help to define
cotton crop performance in its last stages of growth. These traits can be used as indicators of fiber
production, which ultimately play a key role in breeding programs and may also provide valuable
information for farmers to plan hedging strategies.

Lint yield is one of the most important criteria for selecting new lines in breeding programs
(Bourland and Myers, 2015), but it is costly to obtain reliable data. Visual estimation of yield
performance is often used by cotton breeders to select promising cotton genotypes, but it can be
challenging. Morphological characteristics of cotton plants such as general shape, branch density,
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or leaf area change during the growth cycle of the crop and they
may mislead visual ratings of yield (Bourland and Myers, 2015).
Moreover, boll size can vary by year, breeding line, and position
on each fruiting branch, which canmake it difficult to standardize
visual cotton yield quantification methods. Physical harvesting
of the bolls, either manually or by using mechanical pickers, to
reduce the estimation bias is labor intensive and time-consuming,
limiting the number of plots that can be quantified (Bowman
et al., 2004). Thus, the development of tools for effectively
automating plant phenotyping tasks is of great potential value for
breeding programs.

In recent years, the applications of unmanned aerial systems
(UAS) in agriculture have grown rapidly and have transformed
modern farming. UAS are relatively inexpensive and can be
equipped with a variety of sensors, which makes them a valuable
tool for large crop field monitoring. These systems can be
programmed easily to navigate pre-defined paths with a specific
velocity while retaining a specific distance from the crop. This
means that they can be used to collect data remotely from the
field at optimal resolutions quickly and easily. UAS surveying
has been widely used for monitoring different crops (Barbedo,
2019), but only a few studies have addressed the use of these
systems to estimate cotton yield, and only two have investigated
their use for cotton genotype selection. The methodologies used
to estimate cotton yield from UAS imagery can be classified in
two main groups: approaches based on the use of only 3-channel
RGB (Red, Green, Blue) color images, and approaches that utilize
a combination of different sensor data to indirectly calculate
lint yield.

To estimate cotton yield from RGB imagery, one of the main
techniques is color thresholding segmentation, which has been
applied either to a single color channel or to multiple channels
at the same time. For instance, Dodge (2019) applied a global
thresholding method (using a fixed threshold value) to the B
channel alone on RGB aerial images to isolate cotton-related
pixels. Their methodology achieved an R2 of 0.817 for the first
year’s experimental data. However, this relationship was not
consistent, and they needed to include additional postprocessing
to improve their model generalization for the next year’s data (R2

= 0.736). Yeom et al. (2018) analyzed the spatial and spectral
characteristics of open cotton bolls on RGB images during the
harvest period. They established a global automatic threshold
based on Otsu’s method to separate cotton bolls from other non-
target objects. They achieved R2 values of 0.63–0.65 at estimating
yield using the cotton boll area as the input variable. However,
they assumed that cotton bolls have higher spectral values than
the other elements of the crop, which can be a limiting factor
with changing illumination conditions when the range of image
intensities of the color channels for the cotton bolls can resemble
other crop elements. Huang et al. (2016) found that a global RGB
threshold could not extract the cotton pixels from the images
accurately because the range of image intensities in the R, G,
and B channels of the cotton bolls overlapped with that of the
soil and other crop elements. Alternatively, they proposed the
application of the thresholding technique on Laplacian images
obtained from the divergence of the gradient of each image
with respect to pixel intensity. They were able to establish a

ratio—cotton unit coverage (CUC)—of the number of cotton
boll pixels detected to the number of pixels in a particular area.
They achieved their best results (R2 = 0.83) after introducing
additional postprocessing steps to detect and remove poorly
illuminated plot images because their method was affected by
shadowing and changing illumination conditions.

Additional approaches based only on RGB images have also
been proposed. Maja et al. (2016) estimated cotton yield of
small field plots from a cotton breeding program using K-means
clustering algorithm with 4 classes. They clustered the cotton
pixels on the image based on their color and found a linear
relationship (R2 = 0.782) between the ratio of cotton pixels with
respect to the total image area and the actual yield. However, they
needed to introduce a fixed cluster size constraint to avoid large
clusters and reduce misclassification of highly reflective areas of
the scene such as the bare soil. This additional constraint can
limit the generalization of their methodology for highly dense
cotton crops where the cotton bolls tend to form large groups.
Chu et al. (2016) estimated additional crop information (plant
height and canopy cover) from aerial RGB images and were able
to model cotton yield (R2 = 0.529) before maturation and boll
opening. However, their study of yield was limited to the stages
of the crop before defoliation such that the canopy cover could be
computed correctly.

In addition to RGB cameras for lint yield estimation,
multispectral and thermal cameras have been used. Huang
et al. (2013) used various vegetation indices obtained from
multispectral aerial images in conjunction with soil properties
to estimate yield variation. Their model based on the ratio
of vegetation index (RVI) and soil electrical conductivity (EC)
measurements performed well for non-irrigated fields (R2 =

0.718) but was unable to estimate yield accurately for irrigated
fields (R2 = 0.033). Feng et al. (2020) modeled cotton yield using
multiple features derived from RGB, multispectral, and thermal
cameras. They applied a global threshold in all three channels
R, G, and NIR (near infrared radiation) to discriminate open
cotton bolls from the soil and leaves. They found that the ratio
of the number of cotton pixels to the overall number of pixels
in a specific area of a multispectral image (cotton fiber index,
CFI) could be used to estimate yield at the pre-harvest stage
(R2 = 0.90). Moreover, by using a combination of plant height,
CFI, canopy temperature and the a∗ component of the CIELAB
color space, they obtained an even better result (R2 = 0.94).
However, this sophisticated approach required the simultaneous
use of color, multispectral and thermal cameras, which is costly
and may require more computation capacity, time, and labor for
data collection and processing.

Methods based on machine learning (ML) techniques have
been explored recently. Support vector machines (SVM) are
one of the most widely used machine learning algorithms for
supervised data classification and regression analysis. Based on
statistical learning, SVMs aim to identify a decision boundary to
partition data in a high-dimension feature space into two sets.
This decision hyperplane can be then used for data classification
or regression analysis. There are two basic SVM formulations
to perform these tasks. For data classification, support vector
classification (SVC) models (Cortes and Vapnik, 1995) try to
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find the hyperplane to separate the input data belonging to
two different classes with the maximum margin. The learning
process for an SVC aims to maximize that margin and minimize
classification errors between the two classes. These classification
models return for each input data a class label and its probability
of belonging to each class. The second type of SVM is for
regression problems. Support vector regression (SVR) is a
regression function that can predict dependent variable by using
independent variables as continuous values instead of class labels.
The SVR works with the similar principle as SVM: to find the
hyperplane that best fits the data inside a decision boundary
delimited by a predefined error margin (Drucker et al., 1996;
Vapnik et al., 1997). The models can be optimized using the
regularization parameterC and themargin of tolerance ǫ. During
the last decade, SVMs and its variants have been successfully
applied in agricultural remote sensing for crop classification
(Song et al., 2014; Liu and Whitty, 2015) and plant disease
identification (Rumpf et al., 2010; Garcia-Ruiz et al., 2013; Raza
et al., 2015). For cotton crops, SVMs have been successfully used
to identify cotton flowers from multispectral imagery (Xu et al.,
2019) and for budding rate monitoring from aerial RGB imagery
(Xia et al., 2019). Regarding cotton yield estimation, other ML
methods have also been used. By using RGB and multispectral
aerial imagery, Ashapure et al. (2020) implemented an artificial
neural network (ANN) to estimate cotton yield throughout the
season based on crop canopy attributes. They were able to predict
cotton yield at early stages of the crop with an average R2 = 0.861
using features that included canopy information, multispectral
vegetation indices, cotton boll information (obtained by using
a color-based threshold method, Jung et al., 2018), and crop
irrigation status. This advanced methodology required the use
of color and multispectral imaging systems, which increases
platform costs andwould entail additional time and labor for data
collection and processing.

Methods for cotton yield estimation based on remote
sensing techniques have various limitations. Traditional image
processing techniques, such as thresholding, are not flexible
enough to adapt to variable conditions present in the scene,
resulting in relatively low performance. Some studies rely upon
additional sensors to retrieve new features, which ultimately
increases platform cost and usage and processing complexity.
In this article, we present a simple and easy-to-implement
methodology for estimating pre-harvest cotton yield at the plot
level. By using RGB airborne imagery and a SVM algorithm,
this new methodology could benefit cotton breeders by allowing
them to acquire accurate information about different crop
plots for their selection experiments in a timely manner.
Moreover, it also may provide farmers an inexpensive, quick,
and precise estimation of the yield in their cotton fields
before harvesting. The specific objectives of this study were
to (1) implement a support vector machine model to classify
cotton boll pixels in aerial images; (2) develop a predictor
to estimate the number of cotton bolls at the plot level;
(3) evaluate the performance of the proposed method against
ground truth yield measurements; and (4) apply the proposed
method to identify differences between genotypes in a cotton
breeding trial.

2. MATERIALS AND METHODS

2.1. Experimental Field
The field under study was located at the Iron Horse Farm (IHF)
in Greene County, Georgia, U.S. (33◦43′01.3′′N 83◦18′29.1′′W)
(Figure 1). The dimensions of the field were 200 × 12m (length
× width), and it comprised a total of 488 plots. These plots were
arranged into 10 rows with 46 plots per row and 1 additional
row of 28 plots. A total of 220 different cotton genotypes were
planted in plots of approximately 3-meters wide, with a final
plant density dependent on the germination rate of the seeds.
Six of the genotypes were commercial cultivars (TAM94L25,
Acala1517-98, UA48, FM832, DeltaPine393, and GA230) with 10
replications per cultivar. The rest were 214 breeding lines from
10 different cotton populations (J, K, L, M, N, O, P, Q, R, S) with
two replicates.

2.2. Data Collection
2.2.1. Aerial Imagery
Original RGB color images were captured on February 1, 2020 on
a single flight using a quadcopter DJI Matrice M100 (Shenzhen
DJI Sciences and Technologies Ltd., Shenzhen, China), equipped
with a Lumix G7 digital single-lens reflex (DSLR) camera
(Panasonic Corporation, Osaka, Japan). This camera has a 17.3
× 13 mm CMOS image sensor with 16.0 megapixels (4592 ×

3448 pixels) resolution and stores captured images using the
sRGB color space. The camera was mounted on the bottom of
the drone using a custom 3D-printed bracket, which ensured that
the camera lens was aligned to a 90 degree angle relative to the
ground. Figure 2 shows the system used for data collection. The
flight was controlled internally by the M100’s N1 flight controller
and was carried out at a height of 15 m above ground level, and
at a speed of 1.9 m/s. With this configuration, the ground pixel
size was 0.26 cm/pixel. The camera was configured automatically
according to the light conditions of the field. Different white
balance configurations were tested for color balancing before
the flight, and the “Auto White Balance” compensation (AWB)
was found adequate for the weather conditions on the collection
day. A Manifold onboard computer (Shenzhen DJI Sciences and
Technologies Ltd., Shenzhen, China) was in charge of triggering
the camera at a constant rate of 1 frame per second. The forward
overlap between images in the same flight line was configured
to 80%, while the side-by-side overlap between adjacent flight
lines was set to 60%. A total of 447 images were collected during
the flight.

A set of 12 ground control points (GCP) with circular patterns
were generated using Agisoft Metashape software (Metashape
Professional 1.5.5, Agisoft LLC, Russia) and deployed along the
field’s border for geo-referencing the UAS images (Figure 3). The
patterns were cut off from matte black adhesive-backed vinyl
sheet and pasted onto a white acrylic 60 cm square sheet. The
GCPs were surveyed in the field using an RTK-GPS system.

2.2.2. Ground Truth Data
A digital method was used to provide the ground truth
data to evaluate the remote sensing predictions. Since manual
harvesting of cotton bolls is time consuming, labor intensive, and
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FIGURE 1 | Experimental field location. The experiment was conducted in the Iron Horse Farm, Greene County, GA, U.S. (A) Location map of Georgia, marked in red,

in the U.S., (B) General map of Georgia, the experiment location is marked with a red star, (C) Iron Horse Farm aerial view (Greene County, GA), the specific location of

the experimental field is delimited by a red rectangle, (D) Field layout.

FIGURE 2 | Equipment used for image collection. Unmanned Aerial Vehicle,

DJI Matrice M100 Pro, equipped with a Manifold onboard computer and a

Panasonic Lumix DMC-G7 DSLR camera as imaging device.

destructive, we employed high resolution 3D point clouds and
a virtual reality (VR) annotation tool to count number of bolls
digitally. The field was scanned on February 2nd using terrestrial
laser scanning (TLS) techniques. A FARO Focus S70 3D laser
scanner (FARO Technologies Inc., Florida, U.S.) was used to
collect high resolution 3D point cloud data (PCD) from multiple
locations through the field. The scanner was configured to 1

2

resolution, and 2× quality. With these parameters a full scan can
collect up to 174.8 megapoints with a point distance of 3.1 mm
in a scan distance of 10 meters. The LiDAR data was captured
from the ground at a distance ranging between 1 and 2 m from
the plants, to enable the visual identification and counting of
the cotton bolls. Individual scans were registered as a single
PCD using FARO SCENE 2019 software (FARO Technologies
Inc., Florida, U.S.). A set of 10 coded planar markers obtained
from SCENE software were deployed around the field to facilitate
the coregistration of multiple PCDs. SCENE was configured to
automatically detect the registration markers and align the scans.
After registration, individual plots were manually segmented
and extracted from the 3D reconstructed PCD as .PTS files
using SCENE clipping box tool. Each individual plot was then
processed using CloudCompare software (version 2.11.2). A
statistical outlier removal using 2 points for mean distance
estimation and 1.0 as the standard deviation multiplier threshold
was applied to the individual point clouds to reduce noise
and clean spurious points. From the 488 plots that composed
the field, a set of 45 plots (Figure 3) were selected for digital
ground truth counting. A VR annotation tool developed by
the Virtual Experience Laboratory at the University of Georgia
was leveraged to count the cotton bolls from the clean PCDs
using an Oculus Quest 2 VR set (Facebook Technologies Inc.,
California, U.S.) and a desktop computer. More details of this
VR tool will be covered in a future manuscript. These counts
were considered as the ground truth measurements (GTVR) for
further analysis.
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FIGURE 3 | General orthomosaic map of the experimental field. Ground Control Points (GCP) used for image geo-referencing are identified as yellow circles; a total of

12 GCPs were used around the field. The red square at the bottom-left corner shows a zoom-in view of one of the 60 × 60 cm square GCPs with the 12-bit circular

coded pattern. Ground truth plots measured on February 2, 2020 using digital approaches are identified with green boxes (45 plots). Plots harvested on February 3,

2020 are identified with boxes filled in red (15 plots); ground truth plots harvested on February 27, 2020 are identified with boxes filled in blue (10 plots).

TABLE 1 | Ground truth data summary.

Samples no. Min (boll

number)

Max (boll

number)

Mean (boll

number)

Digital ground truth 45 14 362 160.933

Manual ground truth 25 61 367 184.680

Manual ground truth counts include the cotton boll number measured by destructive

sampling of 25 plots randomly selected from the field. Digital ground truth counts include

the cotton boll number of 45 ground truth plots measured using digital approaches.

The plots used as the ground truth included a representative
subset of the plots in the field: from plots with a small number
of cotton bolls (<20 cotton bolls) to highly dense cotton plots
(>350 cotton bolls). A summary of the ground truth values for
both the manual and digital sampling is presented in Table 1.
To calibrate this approach, the digital ground truth counts were
regressed against the actual number of cotton bolls in a subset
of manually harvested plots. The manual ground truth subset
was composed of 25 plots that were randomly selected from
the 45 plots in the digital ground truth set. In these plots, only
the open cotton bolls were harvested, counted, and weighted
manually. These manual ground truth measurements (GTmanual)
were performed in two different batches: 15 plots were harvested
on February 3rd, 2020 and 10 plots were harvested on February
27th, 2020 (Figure 3). A strong linear relationship (R2 = 0.996)
was found between GTVR and GTmanual for the 25 manually
harvested plots.

2.3. Data Processing Pipeline
The data processing pipeline for cotton yield estimation
presented in this article (Figure 4) involved four main
steps: (A) generation of an orthomosaic map of the entire
field from the aerial images collected, (B) individual plot
images extraction and pre-processing using image processing
techniques, (C) development of an image pixel classifier
based on SVM for cotton pixels segmentation at the plot
level, and (D) cotton boll number estimation for each
individual plot.

2.3.1. Orthomosaic Map Generation and Individual

Plot Image Extraction
An orthomosaic map was created from the RGB images using
AgisoftMetashape software. A generic pair preselectionwith high
accuracy setting was selected for photo alignment on Metashape
software. By using the “detect markers” tool, all GCP markers
were identified to georeference the images.

After applying a mild depth filtering and enabling
interpolation, a digital elevation model (DEM) was generated
using the dense point cloud from the estimated camera positions.
Finally, using the DEM and mosaic as the blending mode, the
orthomosaic map was obtained. To extract plot images from
the orthomosaic map we used the open-source geographic
information system (GIS) software Quantum GIS, version
3.8.2-Zanzibar (Open Source Geospatial Foundation, Beaverton,
OR, U.S.). A vector layer with the boundaries of each plot was
created manually and then clipped to the orthomosaic map to
obtain an individual GeoTIF image file for each plot.

2.3.2. Individual Plot Image Preprocessing
To reduce computation time and speed up the processing of
individual plot images, preprocessing was implemented. Each
individual plot image contains around 500,000 pixels. However,
just a small portion of these pixels are meaningful for yield
estimation, i.e., cotton-related pixels. As a general example, an
image of a typical cotton crop plot will include plant leaves,
weeds, and other plant matter (green to yellow color pixels); soil
and other mineral matter with near-neutral hues (gray, brown,
and tan color pixels); branches and other woody elements (light
brown color pixels); and cotton pixels (shades of white color
pixels). Hence, using traditional image processing techniques,
all vegetation and soil-related pixels from the images could be
potentially removed prior to pixel classification. A modified
version of the Excess Green minus Excess Red Index (ExG-ExR)
(Meyer and Neto, 2008) provided good results for removing
vegetation pixels. To compute themodified index ExGRmod index
for the cotton plots, the following equation was used:

ExGRmod = 2.5 × Gnorm − 3 × Rnorm − Bnorm (1)

Frontiers in Plant Science | www.frontiersin.org 5 April 2022 | Volume 13 | Article 870181

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Rodriguez-Sanchez et al. Yield Estimation From UAS Imagery

FIGURE 4 | Data processing pipeline. The process pipeline includes 4 main steps: (A) Orthomosaic map generation, (B) Individual plot extraction, (C) Image pixel

classifier development, and (D) Cotton yield estimation at plot level. Green arrows indicate the flow of data/information between processes.

where Rnorm, Gnorm, and Bnorm are the normalized R, G, and B
color channel values respectively that were computed as inMeyer
and Neto (2008).

Similarly, a new index that we called SoilIdx based on the
CIELAB color space was found useful to remove soil pixels
without having any visible impact on the pixels associated to
the cotton bolls. To compute this index the following equation
was used:

SoilIdx = 0.5 × Lnorm − 2 × anorm + bnorm (2)

where Lnorm, anorm, and bnorm are respectively the normalized L*,
a*, and b* components of the CIELAB color space.

2.3.3. SVM Classification Model Development
Cotton color is significantly different from most other elements
in the field. Hence, pixel color can be used intuitively as
a descriptor for cotton pixel segmentation. However, after a
preliminary analysis of the RGB color component values of the
image pixels, we found that some branches and woody elements
in the background were almost indistinguishable from the cotton
boll pixels, mainly because of shades and other light-blocking
effects. This suggests that RGB color space information alone was
not a robust enough descriptor to properly extract the cotton
pixels, as previous studies have noted. Other color spaces, in
particular HSV and CIELAB color models, increase invariance
with respect to luminosity and lighting changes and are more
robust than the RGB color space in relation to the presence of
shadows (Hdioud et al., 2018). In this study, we applied an SVM
model to classify image pixels using RGB, HSV, and CIELAB
color spaces information. This information was used as feature

descriptors to discriminate between cotton boll pixels and the rest
of background pixels.

The SVM model was developed using the Scikit-learn library
(Pedregosa et al., 2011) on the Jupyter Notebook interactive
computing platform, version 6.1.4. To reduce the annotation
burden, only a single plot image was used to extract features and
create the dataset for model training. Initially, an 11-dimensional
feature vector was extracted from each pixel. These vectors
contained the location of the point in the image (row, col); and
the values of the RGB, HSV and CIELAB color space components
of the point (R, G, B, H, S, V, L*, a*, b*) for each pixel in the image.
The Matlab Image Labeler app (The Math Works Inc., Natick,
MA, U.S.) was used to annotate the image. This annotation tool
enables the user to interactively draw pixel ROIs to label the
boundaries of the visible cotton bolls to classify every image
pixel into one of two target classes: cotton and non-cotton. The
class of each pixel—1 for cotton pixels, and 0 for non-cotton
pixels—was added to the features vector as the target column.
Tominimize the complexity of the model, a dimension reduction
step was introduced to identify the best set of features. A recursive
feature elimination (RFE) algorithm was applied for best features
selection. The resulting dataset was divided into training and
validation subsets with a ratio of 4:1. For model training, a radial
basis function (RBF) kernel was used, the hyperparameter C was
configured to be 1.0, and the hyperparameter γ was selected as
“scale”.

To evaluate the performance of the SVM model for cotton
pixels classification, accuracy, precision, recall, and Type I and
Type II error rates were calculated. In addition, to provide a more
comparable metric with other similar studies, the F1 score metric
was also computed. The accuracy can be defined as the percentage
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of correct predicted pixels for the total number of pixels analyzed
and can be calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
× 100 (3)

where TP and TN—true positives and true negatives,
respectively—are the number of pixels correctly classified
for each class, and FP and FN—false positives and false negatives,
respectively—are the number of misclassified pixels.

The precision metric measured the proportion of pixels
classified as cotton pixels that were classified correctly. This
metric accounts for the ability of the classifier to not label a pixel
that is not cotton as cotton. In contrast, the Type I error rate
indicates the probability of misclassifying an non-cotton object
as cotton using the classifier. The precision and the Type I error
rate can be calculated as follows:

precision =
TP

TP + FP
× 100 (4)

Type I error rate =
FP

TP + FP
× 100 (5)

The recall measured the proportion of cotton pixels that were
classified correctly by the SVMmodel among all the actual cotton
pixels in the image. This metric describes the ability of the
classifier to find all cotton pixels. The Type II rate, in contrast,
indicates the probability of misclassifying a cotton pixel as a
non-cotton pixel. These metrics can be calculated as follows:

recall =
TP

TP + TN
× 100 (6)

Type II error rate =
TN

TP + FP
× 100 (7)

Finally, F1 score, as a function of precision and recall, conveyed
the balance between those two metrics by taking their weighted
average. It can be calculated using the following equation:

F1-Score = 2×
precision× recall

precision+ recall
× 100 (8)

All these metrics ranged from 0% to 100%, 100% being related to
the best performance.

2.3.4. Yield Prediction Model Development and

Evaluation Metrics
The developed SVM classifier was used to classify the cotton
pixels presented on the unseen 45 plot images corresponding
to the ground truth plots. After each image pixel was classified
as a cotton or non-cotton point, a morphological erosion
operation using a 3 × 3 elliptic structuring element, followed
by a morphological dilation operation with a 5 × 5 rectangular
structuring element were applied to eliminate noisy points and
reduce the effect of pixels misclassification. Then, connected
components labeling was applied to the binary image to count

number of bolls. The connected components were computed
using an 8-way pixel connectivity, where pixels are considered
connected if they share any of the pixels that compose
their respective Moore Neighborhood. These post-processing
operations were performed using the OpenCV library (Bradski,
2000), version 4.5.3.

To evaluate the performance of the cotton yield prediction
model, a linear regression analysis was performed between the
estimated cotton boll numbers and the ground truth values. The
coefficient of determination (R2) was used to check how closely
the estimations mirrored the actual boll number at the individual
plot level. Additionally, to facilitate performance comparison
with other yield prediction studies that may use different
scales, the normalized root mean squared error (NRMSE)
was computed over the range of observed values—maximum
cotton boll number minus minimum cotton boll number for
the ground truth plots. The residuals were also computed to
observe the difference between the ground truth data and the
predicted values. Furthermore, to validate the performance of the
yield prediction algorithm, the mean absolute percentage error
(MAPE) was computed between the predicted number of cotton
bolls and the ground truth measurements. These performance
indices were computed using the following equations:

NRMSE =

√

1
N ×

∑N
i=1(yi − ŷi)2

ymax − ymin
(9)

MAPE(%) =
1

N
×

N
∑

i=1

|
yi − ŷi

yi
| × 100 (10)

where N is the total number of data points used for the linear
regression analysis (N = 45), yi is the actual number of cotton
bolls for the ith ground truth plot, ŷi is the number of cotton
bolls predicted by the SVM model for the image plot associated
to the ith ground truth plot, and y is the average number of cotton
bolls per plot calculated from the ground truth values of all the 45
ground truth plots.

2.4. Genotype Analysis
The average number of predicted cotton bolls and the standard
error (SE) for each genotype and population were calculated
to evaluate the statistical accuracy of the yield estimations.
To evaluate the effectiveness of the yield estimations, the null
hypothesis of equal mean value of yield across all the commercial
cultivars and breeding lines was tested using the one-way analysis
of variance (ANOVA) at the significance level of 0.05. The
statistical computing and graphics software R (R Core Team,
2020), version 4.0.3, was used for this test. After testing the
effects due to genotype and its significance, the Fisher’s Least
Significant Difference (LSD) test was used to judge the likelihood
that the observed differences between genotypes and populations
comprised non-zero differences in yield performance. The LSD
test was performed using the R package agricolae (de Mendiburu
and Yaseen, 2020), version 1.3-5, to test differences among means
of yield for all the genotypes.
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FIGURE 5 | Individual plot image preprocessing results, (A) Raw RGB image

extracted from the orthomosaic map, (B) Preprocessing results for the same

plot image after removing vegetation pixels using the ExGRmod index

(Equation 1), (C) Preprocessing results for the same plot image after removing

also bare soil pixels using the SoilIdx index (Equation 2), (D) Binary mask used

for SVM pixel classifier training. White color identifies cotton pixels. Black color

identifies non-cotton pixels.

3. RESULTS

3.1. Individual Plot Image Extraction and
Preprocessing
A total of 408 valid aerial images were used to generate the
orthomosaic map (Figure 3). The 45 plots with the associated
ground truth data were extractedmanually from the orthomosaic
map and saved as individual GeoTIF files. Figure 5 shows one
of the extracted plot images. Specifically, this image was used
for training the SVM classifier. The raw RGB image (Figure 5A)
had 523,092 pixels. After removing the vegetation pixels using
the EXGRmod index (Equation 1), the new processed image
(Figure 5B) had 231,447 pixels, which means that the total
number of points to analyze was reduced to 44.25%. Finally, after
removing the bare soil pixels using our SoilIdx index (Equation 2),
the processed image (Figure 5C) was down to 34,212 pixels,
6.54% of the raw image.

3.2. SVM Classification Model
Development
A single image plot was used to train the SVMmodel. The image
selected for developing the classifier included not only the cotton
plants and the cotton bolls, but also other objects typically found
in the crop such as old branches and other woody objects from
previous crops, weeds, and soil (Figure 5A). The result of the
annotation process was a binarized image mask in TIF file format
(Figure 5D).

For feature selection, just the 9 color channels (R, G, B, H, S,
V, L*, a*, b*) were analyzed. The RFE algorithm was configured

FIGURE 6 | Feature selection analysis. Feature importances obtained using

random forest algorithm for feature selection. Blue bars represent the

importance of each feature in the classifier model. L*, a*, and b* refer to the

CIELAB color space components.

to select the 4 best features, by removing one feature at each
iteration using a Random Forest (RF) classifier as the estimator.
Results from the RF classifier (Figure 6) showed that the 4 most
important features were S, B, b*, and H color components. These
features were then used to create the training dataset, implying
a reduction from the original 11-dimensional feature vector to
a 4-dimensional vector. The resulting dataset, which contained
34,212 pixels of the preprocessed training image, was then split
into the training subset (27,369 pixels) and the testing subset
(6,843 pixels). By reducing the number of features from 11 to 4,
the average time needed to classify the pixels of the training image
plot was reduced a 13.3%, from 8.42 to 7.3 s.

To analyze qualitatively the results of our cotton pixel
classifier, a color code was used to identify image pixels. Figure 7
shows the inference results of the cotton classifier on the training
plot image compared to the annotated mask. As can be seen,
most of the cotton pixels are marked with cyan color, which
indicates that they were correctly classified by the SVM model,
i.e., true positives (Figures 7B–D). However, the classifier missed
some of the cotton pixels presented in the image. A small
portion of real cotton pixels were wrongly classified as non-
cotton pixels, comprising false negatives or Type II errors and can
be seen as pure blue pixels in Figures 7B,D. A smaller portion of
non-cotton pixels were misclassified as cotton, comprising false
positives or Type I errors and can be identified as pure red pixels
in Figures 7A,D.

Quantitatively, the classification results of the trained SVM
model on the testing subset are summarized in Figure 8. The
column and row shown in gray indicate the classifier’s overall
performance. The cell in the bottom right of the plot shows
the overall accuracy—correct predictions—of the pixel classifier.
The model achieved an accuracy of 88.7%; 22.9% of the 6843

Frontiers in Plant Science | www.frontiersin.org 8 April 2022 | Volume 13 | Article 870181

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Rodriguez-Sanchez et al. Yield Estimation From UAS Imagery

FIGURE 7 | Inference results of the SVM classifier on the training plot image. Blue pixels were missed by the classifier (Type II errors); red pixels were misclassified as

cotton by the classifier (Type I errors); cyan were correctly classified cotton pixels, (A) Training plot image classification results, (B) Non-cotton pixels misclassified as

cotton (Type I errors), (C) Cotton boll pixels not fully detected (Type II errors), (D) Cotton boll pixels fully correctly detected, (E) Type I and Type II errors mixed together.

testing pixels were correctly classified as cotton and 65.8% of
all testing pixels were correctly classified as non-cotton. Only
11.3% of predictions were wrong; 7.5% of the cotton pixels were
incorrectly classified as non-cotton and 3.8% of non-cotton pixels
were incorrectly classified as cotton. The column on the far
right of the plot shows the percentages of all pixels predicted to
belong to each class that were correctly and incorrectly classified.
Accounting only for the positive class identification, the upper
right cell indicates the precision and the rate of Type I errors of
our model. With 1564 out of 1821 cotton pixels being correctly
predicted, the SVM classifier achieved a precision of 85.8%, and
a Type I error rate of 14.2%. The row at the bottom of the plot
shows the percentages of all the pixels that belonging to each
class were correctly and incorrectly classified. The bottom left cell
indicates the recall and the rate of Type II errors of our classifier.
Out of 2079 actual cotton pixels, the model achieved a recall of
75.2% and a Type II error rate of 24.8%. Finally, the image pixel
classifier achieved an F1 score of 80.2% at detecting cotton pixels
on the testing subset.

3.3. Plot-Level Cotton Yield Estimation
Model Development
The pixel classifier we developed was then used to extract the
cotton pixels from the 45 individual images associated with the
digital ground truth plots. It was able to detect subtle color
changes, and was robust enough to avoid misclassifying most
of the woody elements and the soil (Figure 9A). After applying
the image post-processing steps and the clustering algorithm, we
obtained an estimation of the number of cotton bolls for each
image. Figure 9B shows the clustering results of a sample image
plot extracted from the orthomosaic map. A total of 344 different
cotton bolls (pixel clusters) were identified on this particular
image plot. Each one of these clusters are identified by a unique
color to facilitate the visual analysis.

The number of cotton bolls estimated for the 45 individual
image plots analyzed was regressed against its ground truth

FIGURE 8 | Confusion matrix chart. Green cells show the number of correct

classifications by the SVM model. Red cells show the number of classification

errors. Gray cells show overall performance of the model.

measurement (Figure 10). The estimations of number of cotton
bolls at the plot level shows a strong linear relationship (R2

= 0.932) with the ground truth measurements. This trend is
consistent at different numbers of cotton bolls, which indicates
that our pixel classifier and clustering algorithm adapted to the
changing scenes and was able to segment properly the cotton
bolls from both low yielding plots and high yielding plots. The
analysis of residuals showed randomly dispersed points around
the horizontal axis with no apparent pattern, which indicates that
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FIGURE 9 | Cotton boll inference results. Cotton pixels segmentation and clustering results for a representative plot (Plot ID 45003), (A) SVM classifier inference

results. Red pixels represent the cotton pixels detected by the SVM classifier as cotton, (B) Cotton boll clustering results. Each cluster is identified by a unique color.

the linear model was a good fit for the input data. Only one data
point does not follow the regular distribution (red circled point
on Figure 10) and given its value is more than three standard
deviations from the mean, it was identified as an outlier. Our
model achieved a MAPE of 13.672% at detecting cotton bolls and
a normalized RMSE value of 0.066 over the range of observed
cotton bolls.

3.4. Web API Deployment
A web-based API (web app) was developed to integrate the
developed pipeline into a more usable interface with the aim
of improving automation and usability (Figure 11). The web
app consisted of three basic functions to process each input
plot image: the preprocessing steps (vegetation and soil pixels
removal), the SVM classifier deployment (creation of features
and SVM pixel classification), and the final cotton boll number
estimation (morphological image processing operations and
connected components labeling algorithm). The SVM classifier
and the clustering algorithm were deployed using Flask as
the core of the API, in a dockerized environment. A Docker
container image of the web app is available on Docker Hub in the
repository https://hub.docker.com/r/javirodsan/yieldestimation.
Additionally, we will provide the code and some sample
images for testing at https://github.com/Javi-RS/Cotton_Yield_
Estimation.

3.5. Genotype Analysis Results
The mean number of predicted cotton bolls and the SE for each
genotype are summarized inTable 2. Results show that the cotton
yield estimations produced by the proposedmethod has relatively
low SEs for each cultivar and breeding line, which indicates that
the means of the yield for the different genotypes are centered
around the population mean, and hence, the sampled plots are
representative of the population.

FIGURE 10 | Estimated vs. actual number of cotton bolls per ground truth plot

(GTVR). Blue dots represent inference results of our model. Red line represents

the linear fit. Red dotted lines represent the 95% confidence interval for the fit.

One outlier is marked with a circle surrounding the data point.

The ANOVA test identified significant differences between the
means of estimated yield for cotton genotypes, with F(15, 472) =
1.874 and p< 0.05. Thus, the null hypothesis of equal mean value
of yield across all the genotypes can be rejected, which suggests
that our methodology was effective in identifying differences in
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FIGURE 11 | Web API for automatic image analysis.

TABLE 2 | Statistical analysis summary of predicted yield for commercial cultivars

and breeding lines.

Genotype Sample size Mean (boll number) SE Groups

UA48 10 237.300 26.755 a

Acala1517-98 10 211.500 25.937 ab

GA230 10 199.100 21.969 abc

DeltaPine393 10 198.300 23.137 abc

L† 16 179.625 15.264 abcd

N† 20 178.800 32.627 bcd

FM832 10 176.800 19.960 bcd

Q† 40 172.525 11.224 bcd

S† 184 166.576 5.380 bcd

O† 22 163.591 18.585 bcd

M† 8 158.875 32.627 bcd

K† 44 158.364 10.682 cd

TAM94L25 10 156.300 18.049 cd

R† 44 151.614 10.072 cd

J† 18 143.889 14.703 cd

P† 32 137.594 11.275 d

Data are sorted from higher to lower yield by genotype. Genotypes are grouped according

to the probability of means differences and alpha level (0.05). Cultivars and breeding lines

with the same letter are not significantly different. † Indicates breeding line populations,

comprised of samples of progeny from crosses between different mutant lines described

in Patel et al. (2014).

yield. The Fisher’s LSD identified statistical differences between
the estimation of average yield for the cultivars, with UA48
and Acala1517-98 being significantly higher than TAM94L25,
while FM832 being significantly lower than UA48. Regarding
the mutant-derived populations, L and N populations had the
highest yielding, and P had the lowest yielding, with other
groups in-between. While the LSD test was able to identify
significant differences of means of yield among the commercial
cultivars, individual breeding lines had only two replications
which provided insufficient evidence for definitive ranking.

4. DISCUSSION

Estimating cotton yield before harvesting would assist breeders to
identify highly productive genotypes without incurring the time
and cost of actually harvesting the field. Our study demonstrated
that the number of cotton bolls present on each individual plot of
a field can be estimated accurately by using RGB images captured
from a drone flight at a low altitude. This approach can be
used to quickly estimate yield at the plot level and would allow
cotton breeders analyze large variety trials efficiently, especially
with higher levels of replication as were used for the cultivars.
However, additional data would be needed to confirm its usability
on experimental breeding lines.

4.1. Comparison With Other Studies
As opposed to previous methods, our method used a supervised
machine learning model to classify the pixels in the image instead
of using traditional global thresholding techniques. Approaches
for cotton yield estimation based on traditional image processing
techniques (Huang et al., 2016; Yeom et al., 2018; Dodge, 2019)
usually assume that cotton has a distinctive spectral response
that enables the easy discrimination of cotton bolls from the
rest of the elements of the crop just by using a threshold value
in one or more of the RGB channels. However, in a real-case
scenario the illumination conditions can change considerably
during data collection, and often the range of image intensities
of the color channels for the cotton bolls are similar to other
crop elements. Although some studies have applied adaptive
threshold techniques or have included prior preprocessing steps
to minimize the limitations of global thresholding techniques
(Maja et al., 2016), these approaches are not flexible enough
to cope with the variability of reflectance across a field, and
hence their accuracy is limited. Our method uses an SVM model
based on 4 image channels to segment cotton-related pixels.
Machine learning techniques are more flexible than traditional
image processing methods at finding patterns on data with non-
obvious relationships. A recent study (Ashapure et al., 2020) has
already investigated the use of machine learning techniques to
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FIGURE 12 | Qualitative analysis of the yield estimator. (A) Original image plot (Plot ID 45003), (B) Zoomed-in view to Type I and Type II errors at segmenting cotton

pixels. Red represents the pixels segmented by the SVM classifier as cotton pixels, (C) Zoomed-in view to the same zones as (B) to visualize the clustering results.

Different colors identify different clusters (cotton bolls).

estimate cotton yield. However, the focus of their study was to
find the relationship between cotton yield and the parameters
of the crop during the course of the season, not near harvest.
Therefore, the potential of this approach for later growth stages
might be limited because it includes crop features related to the
canopy status. Our approach was developed to be applied after
crop defoliation (which commonly precedes cotton harvest) to
reduce the effects of occlusions by leaves and maximize cotton
boll visibility. Although this limits the applicability of ourmethod
to the pre-harvesting time frame, this is the period during which
breeders evaluate the overall performance of new breeding lines,
so it can be considered one of the key stages in the selection trials.

4.2. Type I and II Errors Analysis
Our SVM classifier was able to segment the cotton pixels
accurately from the input images, showing a promising overall
performance for the training image (Figure 7). As we have
commented in section 3.2, the classifier made some Type I errors
(false positives), and Type II errors (false negatives). In our
context we tried to minimize the Type I errors, i.e., the number of
background pixels wrongly classified as cotton pixels. We aimed
to detect all the cotton pixels in the image, but we did not want
to overestimate them. Usually, the number of cotton boll pixels
in a plot image is much lower than the number of pixels from
other parts of the plants and background. Hence, the chances
of misclassifying non-cotton pixels are higher. Figure 12 shows
the performance of the SVM classifier model on an unseen plot
image. Type I errors were mainly caused by elements of the scene

with a spectral response similar to the cotton bolls. As shown in
Figure 12B, some branches and other foreign objects in the field
were highly reflective and they were misclassified as cotton pixels.

Type II errors were caused primarily by dark cotton pixels
in the image that were not properly detected by the classifier.
Bolls from the lower parts of the canopy were less reflective
than those from the top parts with more light. Therefore, the
image pixels were usually darker on these parts, and the SVM
classifier was not able to detect completely all the cotton pixels
of some cotton bolls (Figure 12B). These zones are usually small,
and the image post-processing operations tend to remove them
before clustering (Figure 12C). Even though there were some
obvious classification errors, most of the cotton bolls detected
by our algorithms were true cotton bolls. These errors do not
necessarily have a substantial effect on our estimations of yield
because it was expected that not all the cotton bolls can be seen
from downward images.

Themorphological operations enhanced the appearance of the
cotton bolls in the binarized images and reduced the influence
of the SVM Type I errors on the cotton boll estimation. The
small elliptic structuring element used for the erosion operation
contributed to removing isolate pixels and small pixel clusters
associated to branches and other wrongly classified elements,
and hence the pixel clustering step performed relatively well at
isolating cotton bolls and correcting Type I errors (Figure 12C).
A larger element for the dilation operation aided to extend the
boundaries of the rest of cotton pixels to eliminate gaps between
close pixels and consolidate cotton bolls (Figure 12C).
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FIGURE 13 | Outlier analysis: 2D vs. 3D comparison. (A) Original image plot (Plot ID 41028), (B) Cotton boll clustering results; each cluster is identified by a unique

color, (C) TLS reconstructed 3D point cloud: Top view, (D) TLS reconstructed 3D point cloud: Frontal view.

4.3. Limitations
We used a digital RGB camera to collect the aerial images, which
internally processes the data from the image sensor and performs
the JPEG compression to save the image in a removable storage
media. These images are stored without a previous radiometric
correction. We tried to minimize the effect of the illumination
on the data collection day by using an automatic color balance
compensation. Although the AWB compensation was adequate
for our data analysis, it might not be a universal solution for
all the possible illumination conditions in the field. Therefore,
the use of our model directly to images collected at different
timesmay be limited if the atmosphere and solar radiation greatly
differ from those on our data collection day. However, since the
method we proposed is relatively fast and easy to use, retraining
the SVM model with new data from the specific collection day
can be feasible.

Additionally, as we noted in section 3.3, one of the points
in the data set was identified as an outlier during the linear
regression analysis (red circled point in Figure 10). By further
analyzing this particular data point and the associated plot
(Figure 13), we can determine that these kind of errors are
caused by one of the main limitations of 2D image analysis:
lose of depth information. The SVM classifier detected the
cotton pixels in the orthomosaic image fairly well. Moreover, the

clustering algorithm was able to find and segment properly some
of the cotton bolls (Figure 13B). However, the high density of
cotton bolls in this plot made the cotton pixels to appear close
together on the 2D aerial image (Figure 13A), which prevented
our clustering algorithm from segmenting all the cotton bolls
properly. Therefore, the estimation of number of cotton bolls
for this plot was not accurate—only 154 out of 253 cotton bolls
were detected. If we compare this image with its 3D point cloud
counterpart, we can see that a substantial number of the cotton
bolls were located in almost vertical branches (Figure 13D),
which made the lower cotton bolls to be heavily occluded by the
rest when looking from the top (Figure 13C). In a 2D image all
the pixels are contained in the same plane. This lack of depth
information impeded our algorithm to identify cotton pixels at
different height levels and led to underestimating the number of
cotton bolls.

4.4. Future Work
Most of the image processing can be performed automatically
without any supervision. However, the extraction of plot
images from the orthomosaic map was carried out manually.
A future research direction could investigate the feasibility
of automatically separating the plots from the orthomosaic
map using only geographic information. This would improve
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the efficiency of this methodology and would contribute to
improving the throughput for breeding purposes. Additional
research could also be performed to improve cotton pixel
classification, including the use of more advanced deep learning
methods such convolutional neural networks (CNN) that
could discriminate cotton pixels from the rest of elements by
automatically integrating spatial and morphological information
as additional features without needing to design them manually.
Even though the methodology presented here was developed
and tested using individual plot images, it could be modified
easily to perform yield estimations on production fields because
of its ease of use. Some minor modifications on the processing
pipeline would make it suitable for production fields. Instead of
extracting entire plots, the orthomosaic map could be divided
into several sections or cells using grids with fixed dimensions.
Then, our method could be used to estimate the yield from each
cell and then aggregate the estimations to have an estimation
of the total production of the entire field. However, further
studies will need to be carried out to validate this approach on
different crop densities. Additionally, our model was able to
detect cotton bolls consistently from almost all the plots of the
field. However, we didn’t correct the images atmospherically,
which may affect the direct application of our model to images
collected under different conditions. We will investigate how
to further improve our pipeline by including a preprocessing
step to correct radiometrically the images and make our method
agnostic to illumination lighting conditions and imaging sensors.
Finally, we were able to use digital ground truth techniques based
on 3D information to demonstrate some of the limitations of
2D approaches for estimating yield from aerial imagery. We will
investigate the feasibility of using 3D crop analysis to overcome
these limitations and its viability to estimate other crop traits.

5. CONCLUSIONS

This study presents a cost-effective approach for estimating
cotton yield production from images collected using a drone
and a conventional RGB camera. A supervised machine learning
classifier based on an SVMmodel was trained using only a single
plot image. Since this approach requires the annotation of only
one RGB image, it reduces the complexity and time needed for
model deployment. The classifier demonstrated to be robust to
changing scenes and discriminated accurately the cotton pixels
in individual plot images with different number of cotton bolls.
Consequently, reliable cotton boll counting was obtained. In

addition, themethodology was found to be effective in identifying
the differences in yield among different commercial cultivars and
breeding lines. Overall, the proposed method can help improve
the efficiency of decision making for breeding programs and
optimize the use of resources by speeding up the analysis of entire
field trials. Future work will focus on automating the extraction of
plot images, as well as on the application of 3D-based approaches
andmore advancedmachine learningmethods to improve cotton
boll detection.
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