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Urticeae s.l., a tribe of Urticaceae well-known for their stinging trichomes, consists
of more than 10 genera and approximately 220 species. Relationships within this
tribe remain poorly known due to the limited molecular and taxonomic sampling in
previous studies, and chloroplast genome (CP genome/plastome) evolution is still
largely unaddressed. To address these concerns, we used genome skimming data—CP
genome and nuclear ribosomal DNA (18S-ITS1-5.8S-ITS2-26S); 106 accessions—for
the very first time to attempt resolving the recalcitrant relationships and to explore
chloroplast structural evolution across the group. Furthermore, we assembled a taxon
rich two-locus dataset of trnL-F spacer and ITS sequences across 291 accessions to
complement our genome skimming dataset. We found that Urticeae plastomes exhibit
the tetrad structure typical of angiosperms, with sizes ranging from 145 to 161 kb and
encoding a set of 110–112 unique genes. The studied plastomes have also undergone
several structural variations, including inverted repeat (IR) expansions and contractions,
inversion of the trnN-GUU gene, losses of the rps19 gene, and the rpl2 intron, and
the proliferation of multiple repeat types; 11 hypervariable regions were also identified.
Our phylogenomic analyses largely resolved major relationships across tribe Urticeae,
supporting the monophyly of the tribe and most of its genera except for Laportea,
Urera, and Urtica, which were recovered as polyphyletic with strong support. Our
analyses also resolved with strong support several previously contentious branches:
(1) Girardinia as a sister to the Dendrocnide-Discocnide-Laportea-Nanocnide-Zhengyia-
Urtica-Hesperocnide clade and (2) Poikilospermum as sister to the recently transcribed
Urera sensu stricto. Analyses of the taxon-rich, two-locus dataset showed lower support
but was largely congruent with results from the CP genome and nuclear ribosomal
DNA dataset. Collectively, our study highlights the power of genome skimming data
to ameliorate phylogenetic resolution and provides new insights into phylogenetic
relationships and chloroplast structural evolution in Urticeae.
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INTRODUCTION

Urticaceae, commonly known as the nettle family, is a
cosmopolitan group of plants comprising approximately 54
genera and ∼2,600 species circumscribed into six tribes
(Boehmerieae Gaudich., Cecropiaceae Gaudich., Elatostemateae
Gaudich., Forsskaoleae Gaudich., Parietarieae Gaudich., and
Urticeae Lam. and DC.; Conn and Hadiah, 2009) with various
distinct morphological characters (Stevens, 2017). For example,
members of tribe Urticeae are well known for their stinging
trichomes (Friis, 1993). Urticeae sensu Friis (1989) consists of
10 genera of vast economic importance as sources of fiber
(Singh and Shrestha, 1988; Bodros and Baley, 2008; Gurung
et al., 2012) medicine (Momo et al., 2006; Tanti et al., 2010;
Luo et al., 2011; Benvenutti et al., 2020; Sharan Shrestha et al.,
2020), and food (Di Virgilio et al., 2015; Mahlangeni et al.,
2020). This generic circumscription of the Urticeae, however,
was established prior to the era of molecular phylogenetics.
With the advent of the molecular tools, classification within
tribe Urticeae has received much attention, with both taxonomic
and phylogenetic studies spurring realignments (Hadiah et al.,
2008; Kim et al., 2015; Huang et al., 2019; Wells et al., 2021).
Molecular analyses have led to the exclusion of Gyrotaenia
and the inclusion of Touchardia, Poikilospermum and Zhengyia
in the tribe; hence, Urticeae presently comprises 12 genera
(Wu et al., 2013; Kim et al., 2015; Jin et al., 2019). Molecular
phylogenetic studies have also been able to demonstrate the
monophyly of this tribe as well as which genera are polyphyletic
or monophyletic.

Although our understanding of evolutionary relationships of
the tribe Urticeae has improved in recent years, some important
nodes remain unresolved. For example, the phylogenetic position
of Laportea remains contentious in previous studies. Wu et al.
(2013), using seven combined markers from the mitochondrial,
nuclear, and chloroplast genomes, recovered Laportea sister to a
clade comprising Obetia-Urera-Touchardia and Poikilospermum,
though with weak support (Figure 1A). Subsequent studies,
however, have supported alternative, conflicting resolutions of
Laportea (Figures 1B–D; Kim et al., 2015; Wu et al., 2018;
Huang et al., 2019) probably due to the limited sampling. The
placement of Poikilospermum also remains uncertain; although it
has consistently been placed sister to Urera, support for this was
either lacking (Figures 1A–C; Wu et al., 2013, 2018; Kim et al.,
2015; Wells et al., 2021) or low (Figure 1D; Huang et al., 2019).
The genus Hesperocnide, although supported as monophyletic in
earlier studies, was recently recovered as polyphyletic by Huang
et al. (2019), suggesting that further investigation of this genus
may be required. Conflict concerning the placement ofGirardinia
further compounds taxonomic problems within Urticeae; several
studies support its relationship with Dendrocnide-Discocnide, but
without support (Figures 1A,B; Wu et al., 2013; Kim et al., 2015),
while others (Wu et al., 2018; Huang et al., 2019) have recovered
Girardinia sister to a clade comprising Dendrocnide-Discocnide-
Laportea-Nanocnide-Zhengyia-Urtica-Hesperocnide, albeit also
with low support (Figures 1C,D). These uncertainties around
phylogenetic relationships within Urticeae are likely due to
limited taxon or genic sampling in previous studies. Therefore,

a broadly sampled phylogenomic study should offer useful
framework for resolving these outstanding problems and guiding
revised taxonomic treatments of the tribe.

Chloroplasts are ubiquitous organelles in plants with tractable
attributes that make them highly suitable for use in phylogenetic
and phylogeographic studies (Demenou et al., 2020; Silverio et al.,
2021; Simmonds et al., 2021; Wang et al., 2021). In Urticaceae,
whole chloroplast genomes have proven to be indispensable
for sequence variation exploration (Wang et al., 2020b; Li
et al., 2021). More broadly, studies of chloroplast genomes
have been useful for understanding molecular evolutionary
patterns of gene duplication, loss, rearrangement, and transfer
across angiosperms (Yan et al., 2018; Do et al., 2020; Liu
et al., 2020a; Oyebanji et al., 2020), though discordant
relationships may be caused by plastid capture and other
evolutionary processes.

For the present study, we sequenced and examined chloroplast
genomes (CP genome/plastome) of the tribe Urticeae in order
to explore plastome structural evolution in the tribe and to
reconstruct the first-ever full plastome phylogeny for the tribe.
Furthermore, we generated a robustly sampled dataset of Urticeae
(comprising 291 accessions) aimed at reconstructing a more
taxonomically rich phylogeny for the tribe. Specifically, we aimed
to (1) characterize structural changes in Urticeae plastomes,
(2) resolve deep relationships in the tribe using different data
partitioning strategies, and (3) evaluate and update existing
classifications for Urticeae in the light of our phylogenetic results
based on both plastome and nuclear data.

MATERIALS AND METHODS

Taxon Sampling
In this study, we sampled a total of 106 accessions, comprising
90 ingroup accessions (58 spp. in 12 genera) from the tribe
Urticeae, plus 12 accessions (12 spp. in 11 genera) from other
Urticaceae tribes and four (3 spp. in 3 genera) from outside the
family as outgroups. These represent the genome skimming—CP
genome and the nuclear ribosomal DNA (18S-ITS1-5.8S-ITS2-
26S) dataset for the phylogenetic analyses (Supplementary Table
1). Of the 106 accessions, 57 representative accessions (each a
different taxon) were selected for CP genome structural analyses.
To produce a more comprehensive phylogenetic framework for
the tribe Urticeae, we also generated a new two-locus dataset
of 291 accessions (145 spp. in 26 genera) based on ITS and
the trnL-F intergenic spacer. The ITS and the trnL-F intergenic
spacer dataset was sampled based on maximum taxon data
availability on NCBI database. Of the 291 accessions included,
187 sequences were obtained from NCBI GenBank while the
remaining were newly sequenced for this study. Information on
the plant material (collection localities and voucher specimen
numbers) and the associated GenBank accessions are listed in
Supplementary Table 1.

DNA Extraction and Sequencing
A modified cetyl trimethyl ammonium bromide (CTAB) protocol
(Doyle and Doyle, 1987) was used to extract total DNA from both
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FIGURE 1 | Alternative relationships of Urticeae based on combined loci data from previous analyses. (A) Wu et al. (2013): Maximum likelihood (ML)/Maximum
parsimony (MP)/Bayesian inference (BI) analyses based on nuclear, chloroplast, and mitochondrial loci; (B) Kim et al. (2015): MP/BI tree inferred from chloroplast and
nuclear DNA data; (C) Wu et al. (2018): ML/MP/BI tree inferred from nuclear, chloroplast, and mitochondrial data; (D) Huang et al. (2019): MP/BI analyses based on
chloroplast and nuclear data. Numeric values besides each genus correspond to the total number of accessions sampled per genus and the number below each
figure represents the total number (individual/species) of Urticeae samples used in each respective analysis. “*” indicates full support; “–“ indicates no support in
(A,C), support values of < 75 (MP) and < 0.95 (BI) in (B), and support values of < 50% (MP) and < 0.7 (BI) in (D).

silica gel-dried leaves and herbarium samples. Genomic DNA
from each sample was then assessed for quality and quantity
using both a NanoDrop 2,000 spectrophotometer (Thermo
Fisher Scientific, United States) and agarose gel electrophoresis
before library preparation. The library was built using the
NEBNext Ultra II DNA Library Prep Kit for Illumina (New
England BioLabs) according to the manufacturer’s instructions.
Sequencing was then done using the Illumina HiSeq X Ten
platform, yielding 150 bp paired-end reads. For each individual,
2–4 Gb of clean data was generated.

Assembly and Annotation
SPAdes (Bankevich et al., 2012) was used for de novo
assembly of all sequences using kmer length of 85–111 bp.
For the CP genome, we visualized and filtered the newly
assembled contigs to generate a complete circular genome
in both Bandage v. 0.80 (Wick et al., 2015) and Geneious
v. 8.1 (Kearse et al., 2012). The newly assembled sequences
were annotated using the reference genome Debregeasia
longifolia_MBD01 (MN18994) in the Plant Genome Annotation
(PGA) platform (Qu et al., 2019), followed by manual
curation of genes in Geneious to check if the start and
stop codons are correct. Furthermore, for CP genomes,
tRNAscan-SE v. 1.21 (Schattner et al., 2005) was used to
further verify the tRNA genes with default settings. We used
Chloroplot (Zheng et al., 2020) to generate the physical maps
of the CP genomes.

Plastome Structural Variation Analyses
Patterns of Inverted Repeat Boundary Shifts and
Inversion
We characterized the genomic features of the 57 unique
plastomes, including their size, structure (SC and IR regions),
protein coding (PCG) and other (tRNA and rRNA) genes,
and GC content. The junctions between the IR and single
copy (SC) regions were then compared and analyzed using

Geneious v. 8.1 (Kearse et al., 2012). ProgressiveMAUVE
(Darling et al., 2010) was used to detect gene rearrangements
and inversions among Urticeae taxa with Elatostema parvum
as the reference genome. Default settings were used in
ProgressiveMAUVE to automatically calculate the seed weight
(15), and calculate Locally Collinear Blocks (LCBs) with a
minimum LCB score of 30,000.

Repeat Sequence Analyses
We searched for the occurrence and distribution of three types of
repeats within the studied plastomes of the tribe Urticeae. First,
the program REPuter (Kurtz et al., 2001) was used to identify
dispersed repeat sequences (forward, reverse, complement, and
palindromic) using the following constraint values: a hamming
distance of 3, minimum repeat size of 30 bp, and a maximum
computed repeat of 100. Second, the tandem repeats were
identified using the online program Tandem Repeats Finder
(Benson, 1999) with the alignment parameters match, mismatch,
and indels set to 2, 7, and 7, respectively. For this analysis,
the maximum period size and TR array size were limited to
500 and 2,000,000 bp, respectively, and the minimum alignment
score for reporting repeats was set at 50. Third, we used a Perl-
based microsatellite identification tool (MISA; Thiel et al., 2003)
to search for simple sequence repeats (SSRs) (i.e., mono-, di-,
tri-, tetra-, penta-, and hexanucleotide repeats) within Urticeae
plastomes. The threshold values for this analysis were set at
10, 6, 5, 5, 5, and 5 for mono-, di-, tri-, tetra-, penta- and
hexanucleotides, respectively.

Sequence Divergence Analyses
To illustrate interspecific sequence variation and gene
organization of the entire plastomes across the 57 examined
species, we used mVISTA with the shuffle-LAGAN mode
(Frazer et al., 2004) and E. parvum as the reference genome.
For the assessment of sequence divergence and exploration of
highly variable chloroplast markers, a sliding window analysis
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was performed in DnaSP v. 6 (Rozas et al., 2017) to compute
the nucleotide diversity (π) for all protein-coding (CDS) and
non-coding (nCDS i.e., intron and intergenic spacer) regions.
The step size was set to 300 bp, with a window length of 1,000 bp.
The gene recovered to have the highest nucleotide diversity was
then used to draw a phylogenetic tree to test the resolution of the
identified barcode for our species.

Phylogenetic Inference
Phylogenetic analyses were conducted using different
partitioning schemes from two datasets: the genome skimming
[CP genome and the 18S-ITS1-5.8S-ITS2-26S (nrDNA)
sequences] and two-locus (ITS and the trnL-F intergenic spacer)
dataset. We extracted the coding (CDS) and non-coding (nCDS)
regions from the CP genome to elucidate the phylogenetic
utility of the different regions. This partitioning is important
as both CDS and nCDS regions have been shown to exhibit
distinct rates of nucleotide substitution (Wolfe et al., 1987;
Jansen and Ruhlman, 2012). In total, six molecular data matrices
were generated to explore the phylogenetic relationships of the
tribe Urticeae, of which five were from the genome skimming
dataset: (1) Whole chloroplast (CP) genomes, (2) CP coding
regions (CDS), (3) CP non-coding regions (nCDS), (4) nuclear
ribosomal DNA (nrDNA), and (5) combined whole CP genomes
and nuclear ribosomal DNA (CP+ nrDNA). The final matrix (6)
sampled the two-locus dataset trnL-F intergenic spacer and ITS
sequences (trnL-F + ITS) across expanded taxonomic sampling
of 291 accessions.

Phylogenetic analyses were conducted using maximum
likelihood (ML) and Bayesian inference (BI) methods in RAxML
v. 8.2.11 (Stamatakis, 2014) and MrBayes v. 3.2 (Ronquist et al.,
2012), respectively. Substitution models for all the datasets were
first determined based on Akaike information criterion (AIC;
Akaike, 1973) in jModelTest2 v. 2.1.7 (Darriba et al., 2012;
Supplementary Table 2). Maximum likelihood analyses was
done in RAxML using the bootstrap option of 1,000 replicates.
For BI analyses, we performed two independent runs, each
consisting of four Markov Chain Monte Carlo (MCMC) chains,
and sampling of one tree every 1,000 generations for 1 million
(CP, nCDS, and CP + nrDNA), 3 million (CDS), and 20 million
(trnL-F + ITS and only nrDNA) generations. The convergence of
the MCMC chains of each run was determined when the average
standard deviation of split frequencies (ASDSF) achieved ≤ 0.01,
and adequate mixing was based on the Effective Sample Sizes
(ESS) values ≥ 200. Stationarity was assessed by checking if
the plot of log-likelihood scores had plateaued in Tracer v1.7.1
(Rambaut et al., 2018). The first 25% of the sampled trees
acquired from all the runs were discarded as burn-in, and
consensus trees were constructed from the remaining trees to
estimate posterior probabilities.

RESULTS

Chloroplast Genome Organization
The plastomes of Urticeae species varied greatly in sequence
length, ranging in size from 145,419 bp (Nanocnide lobata)

TABLE 1 | Summary of sizes of the whole Urticeae plastomes, and the
three compartments.

Species Nucleotide length (bp)

Genome LSC SSC IR

Dendrocnide
basirotunda_J2078

152,646 83,433 18,229 25,492

Dendrocnide meyenia_D7 152,621 83,430 18,149 25,521

Dendrocnide
sinuata_J7885

152,559 83,348 18,187 25,512

Dendrocnide
urentissima_D4

152,658 83,444 18,230 25,492

Discocnide
mexicana_W268

153,327 83,841 17,580 25,953

Girardinia bullosa_A1 152,388 82,974 17,728 25,833

Girardinia chingiana_G1 152,659 83,451 18,068 25,570

Girardinia diversifolia_G56 152,979 83,636 18,127 25,608

Girardinia formosana
hayata_G3

152,596 83,364 18,056 25,588

Girardinia suborbiculata
subsp. grammata_G22

152,687 83,453 18,020 25,607

Girardinia suborbiculata
subsp. suborbiculata_G15

152,894 83,650 18,104 25,570

Girardinia suborbiculata
subsp. triloba_G19

152,874 83,516 18,142 25,608

Hesperocnide tenella_W61 146,864 79,555 17,691 24,809

Laportea aestuans_L30 153,521 82,883 16,500 27,609

Laportea
bulbifera_GLGE14842

149,436 81,759 17,859 24,909

Laportea
canadensis_W167

150,253 82,394 17,783 25,038

Laportea cuspidata_L27 149,149 80,905 17,450 25,397

Laportea decumana_L15 151,855 82,777 18,080 25,499

Laportea grossa_L2 161,930 83,658 19,838 29,217

Laportea
medogensis_GLGE141037

150,196 82,385 17,759 25,026

Laportea mooreana_L12 150,827 81,878 18,371 25,289

Laportea ovalifolia_L14 153,659 82,193 16,596 27,435

Nanocnide japonica_N3 145,970 78,396 17,300 25,137

Nanocnide lobata_N6 145,419 77,955 17,258 25,103

Obetia aldabrensis_W291 153,239 84,219 18,628 25,196

Poikilospermum
cordifolium_Poi7

153,801 84,436 18,617 25,374

Poikilospermum
lanceolatum_Poi8

153,879 84,521 18,618 25,370

Poikilospermum
naucleiflorum_Poi6

153,782 84,414 18,600 25,384

Touchardia latifolia_T2 152,871 84,003 18,252 25,308

Urera baccifera_Ur21 153,215 84,314 18,027 25,437

Urera cameroonensis_Ur12 153,212 83,990 18,532 25,345

Urera capitata_W143 153,771 84,297 18,626 25,424

Urera cf cordifolia_Ur15 153,214 83,992 18,536 25,343

Urera glabra_Ur17 152,663 83,499 18,502 25,331

Urera
hypselodendron_Ur16

153,212 84,007 18,515 25,345

Urera oligoloba_Ur23 153,919 84,056 18,561 25,151

Urera robusta_Ur19 153,198 84,017 18,491 25,345

Urtica angustifolia_J3303 146,703 79,830 17,683 24,595

(Continued)
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TABLE 1 | (Continued)

Species Nucleotide length (bp)

Genome LSC SSC IR

Urtica
ardens_GLGE152058

146,795 79,693 17,686 24,708

Urtica
atrichocaulis_S11193

146,717 79,884 17,633 24,600

Urtica
chamaedryoides_W162

146,455 79,304 17,701 24,725

Urtica dioica subsp.
xijiangensis_U41

147,935 79,627 17,530 25,389

Urtica dioica_W174 146,928 80,052 17,676 24,600

Urtica domingensis_W145 146,125 79,260 17,665 24,600

Urtica hyperborea_J5455 147,898 79,748 17,588 25,281

Urtica kioviensis_U24 146,725 79,855 17,666 24,602

Urtica macrorrhiza_U50 146,747 79,886 17,661 24,600

Urtica magellanica_U33 146,606 79,613 17,657 24,668

Urtica mairei_J1664 146,790 79,689 17,685 24,708

Urtica
membranifolia_S13031

158,078 79,719 17,689 30,335

Urtica morifolia_U200 146,755 79,643 17,690 24,711

Urtica radicans_U21 146,667 79,819 17,662 24,593

Urtica rupestris_U28 146,751 79,859 17,696 24,601

Urtica sp_U19 147,508 79,069 17,669 25,385

Urtica thunbergiana_J2498 146,846 79,667 17,711 24,734

Urtica urens_W175 147,516 79,076 17,668 25,386

Zhengyia
shennongensis_Zh1

150,109 81,186 17,885 25,519

LSC, Large Single Copy; SSC, Small Single Copy; IR, Inverted Repeat.

to 161,930 bp (Laportea grossa) (Table 1). All exhibited a
quadripartite structure typical of angiosperms (Figure 2A)—a
pair of IRs (24,593–30,335 bp) separated by the LSC (77,955–
84,521 bp) and SSC regions (16,500–19,838 bp). We observed a
marginal difference in the GC content across the whole plastome
(36.3–37.2%) and its elements — the IR (41.8–43.3%), LSC (33.8–
34.7%), and SSC (29.6–31.1%) regions.

A range of 110–112 unique genes was detected across
these plastomes, including 76–78 PCGs, 30 tRNA genes, and
4 rRNA genes. The IR region had complete duplications for
7 tRNA genes, 6 PCGs, and 4 rRNA genes. Across all 57
plastomes, 15 genes had a single intron (atpF, ndhA, ndhB,
petB, petD, rpl2, rpl16, rpoC1, rps16, trnA-UGC, trnG-UCC,
trnI-GAU, trnK-UUU, trnL-UAA, and trnV-UAC), while two
genes (clpP and ycf3) had two introns. The rps12 gene was
spliced into two transcriptions, with one exon in the LSC
and two in the IR. Notably, the rpl2 gene of Hesperocnide
tenella and most Urtica taxa except for Urtica dioica subsp.
xijiangensis_U41, Urtica dioica_J5488, Urtica hyperborea_J5455,
Urtica sp_U19, and Urtica urens lacked an intron. Apart from
the region containing an inverted trnN-GUU in five species (four
Dendrocnide species and Laportea decumana; Figures 2B,C), no
significant gene rearrangement was observed within the studied
plastomes (Supplementary Figure 1A).

Inverted Repeat Expansion and
Contraction
Comparison of the IR boundaries among the 57 plastomes from
tribe Urticeae revealed varying expansion and contraction of
the IRs (Figure 3A). Herein, we report only the functional
genes located at the IR-SC boundaries. The LSC/IRb border
was embedded in the rps19 gene (with 50–131 bp located
within IRb) in 43 taxa. The remaining 14 species showed:
an expansion in three species (rpl22 in the LSC—rps19 in
the IRb); contraction (rps19 in the LSC—rpl2 in the IRb)
of the IR in three species; the loss of the rps19 gene in
eight species (rpl22 in the LSC—rpl2 in the IRb), causing
variations in the boundary (Figure 3B). The IRb/SSC boundary
generally fell within the ndhF gene (with 50–131 bp located at
IRb), except in six species where the boundary was detected
in the intergenic region of trnNGUU-ndhF (Figure 3B). We
observed that the IRa/LSC boundary of most species lay within
either the intergenic rpl2-trnHGUG or non-coding trnH-GUG
regions, except for four species (Hesperocnide tenella_W61,
Urtica chamaedryoides_W162, Urtica magellanica_U33, and
Urtica morifolia_U200) in which the boundary was located
within the intergenic region trnH-GUG—psbA (Figure 3B).
The most conserved boundary across species was that of the
SSC/IRa, which was always positioned within the ycf1 coding
gene, which had a length of 195–3,054 bp overlapping into the
IRa region (Figure 3B).

Repeat Structure and Search for Simple
Sequence Repeats
The 57 Urticeae plastomes showed a total of 6,274 repeats based
on four classifications (Figure 4A and Supplementary Table 3).
Generally, the most frequent repeat type was the SSR (2,919,
46.53%), followed by tandem (1,185, 18.89%), dispersed (1,140,
18.17%), and palindromic repeats (1,030, 16.42%) (Figure 4A).
The distribution of the dispersed, tandem, and palindromic
repeats varied between 25 (Nanocnide japonica_N3) and 124
(Discocnide mexicana_W268 and Zhengyia shennongensis_Zh1)
(Figure 4B), and that of the number of SSRs ranged
from 18 (Laportea cuspidata_L27) to 82 (Laportea grossa_L2)
(Figure 4C). The majority of the SSRs were mononucleotides
(2,627, 89.97%), with poly-A and poly-T SSR motifs being the
two most frequent (Figure 4D and Supplementary Table 5).
Dinucleotides, trinucleotides, tetranucleotides, pentanucleotides,
and hexanucleotides accounted for 8.50, 1.27, 0.14, 0.03,
and 0.07% of the SSR repeats, respectively (Figure 4C and
Supplementary Table 4).

Sequence Divergence Analysis
Pairwise comparison of divergent regions within the 57 Urticeae
plastomes using mVISTA revealed very low intra- and inter-
generic (Supplementary Figure 1B) sequence divergence across
the plastomes. Moreover, nCDS regions were generally more
divergent and had higher levels of variation than CDS regions
(Supplementary Figures 1B, 2). For the CDS, the top five
genes with the highest nucleotide diversity (π) values (all
with π > 5%) were rpoc2, cemA, rpoA, rpl22, ccsA, and ycf1
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FIGURE 2 | (A) Gene map of complete chloroplast genome of Girardinia bullosa (a typical representative of gene organization in Urticeae s.l. plastomes); (B) inset
map showing the inverted orientation of trnN-GUU in clade 3C except for Discocnide mexicana; (C) inset map of the Urticeae plastome, showing the typical
orientation of trnN-GUU. Genes inside and outside the outer circle are transcribed clockwise and counterclockwise, respectively.

(Supplementary Figure 2A). The most variable nCDS regions
were the trnQ(UUG)—psbK, trnG(GCC)—trnfM(CAU), ycf3—
trnS(GGA), cemA—petA, and ndhE—ndhG spacer regions, all
with π > 10% (Supplementary Figure 2B). The ycf 1 gene tree
depicted highly resolved and supported relationships, owing to
the gene’s high nucleotide diversity (Supplementary Figure 2C).

Phylogenetic Relationships
The sequence characteristics, tree diagnostic values, and the best-
fit model determined by jModelTest for all datasets are given in
Supplementary Table 2. The phylogenetic results presented here
are based on both ML and BI analyses. The ML and BI analyses
generated here generally had nearly identical topologies with few
differences at the shallow nodes. Factors driving discrepancies
between the ML and BI topologies have been previously reported
(Huelsenbeck, 1995; Sullivan and Joyce, 2005; Som, 2014). Of
those, the optimality criterion and specific hypotheses in the
modeling of sequence evolution are parsimonious to explain the
few discrepancies between the ML and BI topologies inferred
from the same data matrix in our study. In most cases, the
phylogenetic relationships inferred from ML were discussed
because it has the most supporting shreds of evidence from the
morphological affinities between the known species within the
tribe Urticeae. The phylogenetic relationships constructed for
each data matrix are further reported.

Chloroplast Data Analyses
The CDS, nCDS, and whole CP phylogenetic trees were
largely identical in their topologies with only a few exceptions

concerning the relationships of two clades 3F3I and 3F3II
(Supplementary Figures 3A–CI). In the CDS data, these were
sister to one another, hence formed a monophyletic clade
3F3 (Supplementary Figure 3A). However, in the whole CP
dataset, 3F3I was sister to both 3F3II, and 3F4, while in nCDS
dataset, 3F3II was sister to both 3F3I and 3F4 (Supplementary
Figures 3B,CI). Nevertheless, it should be noted that the whole
CP dataset generally had better support compared to both the
CDS and nCDS datasets.

nrDNA Data Analysis
Regarding relationships between major clades in Urticeae, the
results from the nrDNA dataset (Supplementary Figure 3CII)
recovered almost congruent relationships with that of the
whole CP dataset (Supplementary Figure 3CI), other than a
few discrepancies in particular major clades and phylogenetic
placement of some species. For instance, in the nrDNA
phylogeny, clade 3D (Girardinia) was recovered as sister to
clade 3C (Supplementary Figure 3CII), whereas in whole CP
phylogeny, clade 3D was recovered as sister to a clade comprising
subclades 3C, 3B, and 3A (Supplementary Figure 3CI).
The sister relationships of clade 3G, and those within clade
3E-F also changed depending on the dataset examined.
Moreover, we found slight differences in some shallower
relationships between the whole CP and nrDNA phylogenies
(e.g., the contradicting phylogenetic positions of Dendrocnide
urentissima, Girardinia suborbiculata subsp. suborbiculata, etc.;
Supplementary Figure 3C). These differences were, however,
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mostly restricted to areas of poor support, and the whole CP
phylogeny was generally better supported than that of nrDNA.

Combined Whole Chloroplast Genome
and nrDNA (CP + nrDNA) Analysis
Phylogenetic resolution and node support values were
significantly improved by the combination of whole CP
genome and nrDNA data (Figure 5). The phylogeny inferred
from the combined data matrix was the best resolved and
supported phylogenetic tree amongst all the other data matrices,
and was more similar in topology to the three chloroplast
data matrices (whole CP, CDS, and nCDS, regions) than the
nrDNA one (Figure 5 and Supplementary Figures 3A–C). The
monophyly of Urticeae was strongly supported (BS/PP= 100/1),
with Elatostemeae as its sister tribe (Figure 5). Generally,
the phylogeny was well resolved, with most nodes being
strongly supported by both ML and BI analyses, except the
placement of Zhengyia shennongensis (BS = 100 PP = “–“),
the relationship between Urtica domingensis and Hesperocnide
tenella (BS= “–“ PP= 1), and the relationship between Laportea
aestuans and Laportea ovalifolia (BS = “–“ PP = 1) (Figure 5).
Nine genera within Urticeae were recovered as monophyletic
(Dendrocnide, Discocnide, Girardinia, Hesperocnide, Obetia,

Nanocnide, Poikilospermum, Touchardia, and Zhengyia) and
three as polyphyletic (Urtica, Laportea, and Urera), all with
strong support. For ease of discussion, we sectioned Urticeae
into six major clades, each with full bootstrap support; the
names reflect the clade naming system of Wu et al. (2013). They
include Clade 3A (Urtica, Hesperocnide, and Zhengyia), Clade
3B (Nanocnide and Laportea cuspidata), Clade 3C (Dendrocnide,
Discocnide, and Laportea decumana), Clade 3D (Girardinia),
and Clade 3G (Laportea). Clade 3E-F was recovered as sister
to the rest of the Urticeae tribe with maximum support, and
comprised Poikilospermum, Urera, Obetia, and Laportea. Within
it, Poikilospermum (sub-clade 3F4) was recovered for the
first time as a sister clade to Urera (sub-clade 3F3) with full
support (Figure 5). Urera comprised three separate subclades
within Clade 3E-F, each with strong support. Moreover, in this
study Laportea was split into five different clades. Clade 3D
(Girardinia) was also recovered for the first time as sister to a
clade comprising 3A, 3B, and 3C, with full support.

Combined Analysis of trnL-F + ITS
The tree topology from the analysis of the trnL-F and ITS dataset
was largely congruent with the previously published phylogenies
inferred from a small number of loci. Eight genera were strongly

FIGURE 3 | (Continued)
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FIGURE 3 | (A) representative map showing expansions and contractions in the IR region; (B) comparison of the IR/SC junctions among 57 Urticeae plastomes. The
genes around the borders are shown above or below the main line. LSC, Large Single Copy; SSC, Small Single Copy; IR (a and b), Inverted Repeat a and b.
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FIGURE 4 | (A) Chord diagram showing a connection between species and their corresponding repeat types (Dispersed, Palindromic, Tandem, and SSR). The tick
marks beside each repeat type indicate the frequency of the number of repeats detected and their percentages, respectively; (B) frequency of tandem, palindromic,
and dispersed repeats; (C) number of the six SSR(simple sequence repeats) nucleotides; (D) the seven most abundant SSR motifs in Urticeae plastomes. The
values along the axis represent the abundance values.

supported as monophyletic (i.e., Dendrocnide, Discocnide,
Girardinia, Obetia, Nanocnide, Poikilospermum, Touchardia, and
Zhengyia) while four genera were recovered as polyphyletic
(i.e., Hesperocnide, Urtica, Laportea, and Urera). Hesperocnide
was recovered here as polyphyletic (BS/PP > 90/0.90 and
BS/PP < 90/0.90; Figure 6) as compared to the combined whole
(CP + nrDNA) where it was retrieved as monophyletic with
full bootstrap support (Figure 5). Moreover, most of the shallow
nodes of trnL-F and ITS tree received lower bootstrap support
(Figure 6) compared to the combined whole (CP+ nrDNA) tree,
in which nearly all the nodes were fully supported.

DISCUSSION

Plastome Structural Evolution
All 57 Urticeae CP genomes examined are quadripartite but
varied in size. The observed range was consistent with chloroplast
genome sizes of angiosperms (Zhang et al., 2021) and the

few existing sequenced plastomes of Urticaceae (Wang et al.,
2020b; Li et al., 2021), which range between 120 and 180 kb.
Of the plastomes in our study, Laportea grossa had the largest
genome, while Nanocnide lobata had the smallest, implying
that CP genomes in Urticaceae are structurally different. Also,
the number of PCGs in the Urticeae plastomes in our study
(76–78) was comparable with the typical range for angiosperm
plastomes (70–88 genes) (Wicke et al., 2011). Likewise, we found
congruence with the range of GC content previously reported
in other plastomes of Urticaceae, e.g., Pilea mollis (36.72%;
Li et al., 2021), Elatostema dissectum (36.2%; Fu et al., 2019),
Droguetia iners (36.9%), and Debregeasia elliptica (36.4%) (Wang
et al., 2020b). Generally, the GC content had no significant
phylogenetic implication in our study. Moreover, consistent
with previous studies (Li et al., 2020, 2021; Dong et al., 2021),
the GC content was higher in the IR than in the SC. The
GC inequality perhaps also plays a significant factor in the
conservatism of the IR region compared to the SC regions
(Li et al., 2020).
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FIGURE 5 | Phylogenetic relationships of Urticeae inferred from maximum likelihood (ML) and Bayesian inference (BI) based on combined complete plastome and
nrDNA sequences. Numbers on the branch indicate clade classification (in purple) and ML_BS/BI_PP values (in black)—note that branches with no support values
indicate both ML_BS ≥ 90 and BI_PP = 1.00; lastly, “*” indicate incongruence between ML and BI trees and “–” no support values. Representative images of genera
within Urticeae s.l. are shown on the right. Photographs: (A–C,E,G,K) by Z.Y. Wu, (D,F) by C.A. Ogoma, (H) by U. Dreschel, (I) by C. Kunath, and (J) photographed
by J. Cantley.
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Among the genes present in our Urticeae plastomes, rpl2 was
noteworthy, considering that 18 of the examined species had no
introns for this gene. Intron loss has been widely documented
in angiosperm plastomes: e.g., Avena sativa (rpoC1 intron loss;
Liu et al., 2020b), Cicer arietinum (rps12 and clpP intron losses;
Jansen et al., 2008), Lagerstroemia (rpl2 intron loss; Gu et al.,
2016), and Asteropeiaceae + Physenaceae (rpl2 intron loss; Yao
et al., 2019). Another notable structural change found here was an
inversion of the trnN-GUU gene, which is a synapomorphy of the
clade 3C, except for the clade’s basal species Discocnide mexicana
(Figure 2B). Gene inversions have also been detected in many
angiosperm plastomes, including those of Poaceae (Guisinger
et al., 2010), Styracaceae (Yan et al., 2018), Orchidaceae (Uncifera
acuminata; Liu et al., 2020a), and Adoxaceae (Wang et al.,
2020a). The latter, involving the inversion of the ndhF gene
in Adoxaceae, is relevant to our study since it involves only
one gene that also borders the inverted gene in our study
(trnN-GUU). Typically, plastome inversions are deemed highly
valuable in phylogenetics owing to their relative rarity, easily
determined homology, and easily inferred state polarity (Cosner
et al., 1997; Dugas et al., 2015; Schwarz et al., 2015). Despite
some significant research efforts regarding the intramolecular
recombination between dispersed short inverted/direct repeats
and tRNA genes (Cosner et al., 1997; Haberle et al., 2008;
Sloan et al., 2014), the cause of inversions in plant genomes
remains unclear.

Our analyses showed that IR expansion and contraction
vary across Urticeae, and lack taxonomic utility at a broader
scale. Mostly, the SC/IR borders are relatively conserved among
angiosperm plastomes and usually located within the rps19 or
ycf1gene (Downie and Jansen, 2015), even though it is assumed
that IR expansion or contraction is accompanied by the shift of
genes located in the IR/SC boundary (Zhu et al., 2016). Similar
IR/SC changes are also evident in other Urticaceae plastomes
(Wang et al., 2020b; Li et al., 2021). Changes in the IR/SC
junctions have been considered one of the main drivers of the
size diversity in the CP genomes of higher plants (Ma et al.,
2013; Yang et al., 2016; Yan et al., 2018; Xue et al., 2019).
Notably, we found the loss of the rps19 gene to be the most
parsimonious explanation for the diversification of the genes
bordering the IR/LSC in the eight plastomes examined from
the genus Urtica—(U. ardens_GLGE152058, U. dioica subsp.
xijiangensis_U41, U. domingensis_W145, U. hyperborea_J5455,
U. mairei_J1664, U. membranifolia_S13031, U. morifolia_U200,
and U. thunbergiana_J2498; Figure 3A).

We detected several repeat types within the sampled
plastomes of tribe Urticeae, among which SSRs were
the most frequent, accounting for 46.53% of the repeats
(Figure 4A). The most abundant SSRs were mononucleotide
homopolymers, particularly poly−A and T motifs (Figure 4D
and Supplementary Table 5). This phenomenon of A/T motif
abundance has also been reported in Pilea (Li et al., 2021)
and Debregeasia (Wang et al., 2020b) species, and might
occur because the A/T motifs are more frequently dynamic
compared to G/C (Li et al., 2020). Generally, it is presumed
that repeat sequences are closely connected with a vast number
of indels; therefore, the more abundant they are, the greater

FIGURE 6 | Phylogenetic relationships of Urticeae tribe inferred from
maximum likelihood (ML) and Bayesian inference (BI) based on trnL-F
intergenic spacer and ITS (trnL-F + ITS) loci sequences. Support values
indicated by black circle show ML_BS ≥ 90 and BI_PP ≥ 0.90.

the nucleotide diversity (McDonald et al., 2011). Hence, the
chloroplast repeat sequences could be potential sources of
variation for evolutionary studies, and population genetics (Xue
et al., 2012). We also found higher nucleotide diversity in the
nCDS than in the CDS regions, consistent with findings from
other taxa (Jansen and Ruhlman, 2012; Huang et al., 2014).
Although the nucleotide content of chloroplast genomes is
usually relatively stable, with a highly conserved gene structure
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(Jansen et al., 2005; Ravi et al., 2008; Wicke et al., 2011), mutation
hotspots still exist within it (Zhang et al., 2021). We detected a
total of 11 hypervariable loci in both CDS and nCDS regions
(Supplementary Figure 2) that could be potentially used as DNA
barcodes in future studies of this group. Among them was the
locus ycf1, which was also reported in previous Urticaceae studies
(Wang et al., 2020b; Li et al., 2021) as a highly variable locus
with great taxonomic utility. Moreover, a study by Dong et al.
(2015) reinforces this view, and recommemnds ycf 1 as a suitable
plastid barcode for land plants. Indeed, our ycf 1 phylogenetic
tree (Supplementary Figure 2C) is consistent with the above
studies, especially with regard to the high resolution and support
level. Therefore, we suggest that ycf1 represents a highly useful
molecular marker, not just for tribe Urticeae, but likely for the
entire family. Presently, DNA barcodes are widely used in species
identification, resource management, and studies of phylogeny
and evolution (Gregory, 2005; Liu et al., 2019).

Phylogenetic Relationships of Urticeae
Phylogenetic Relationships Based on Genome
Skimming (CP Genome + nrDNA) Data
The combined matrix (CP genome + nrDNA) yielded a
well-supported phylogeny and resolved many relationships
of the tribe Urticeae depite the topological difference in
clades 3(D, 3G, and E-F), between the two separate datasets
(Supplementary Figure 3C). This resolution shown by the
combined matrix may be ascribed to the greater number
of phylogenetically informative plastid sites (Supplementary
Table 2). Moreover, it could be due to a weak phylogenetic
signal in the nrDNA that agrees and complements the signal
of the CP matrix. However, beyond some major conflicts, the
individual CP and nrDNA trees are generally in agreement with
most conflicting relationships pertaining to poorly supported
areas of the phylogeny, although we did not perform follow-
up analyses to identify what this means for different parts
of the tree. Cases of topological dissimilarity are often
reported in phylogenetic studies (Wendel and Doyle, 1998;
reviewed by Degnan and Rosenberg, 2009). This phenomenon
can be best explained by a number of factors including
differences in taxon sampling, incomplete lineage sorting,
hybridization/introgression, paralogy, gene duplication and/or
loss, and horizontal gene transfer (Degnan and Rosenberg, 2006;
Naciri and Linder, 2015; Lin et al., 2019; Nicola et al., 2019).
Hence, as more samples become available, future studies should
investigate the factors responsible for the observed conflicting
relationships within the Urticeae.

Our study represents the first phylogeny of the tribe Urticeae
based on a broad sampling of both CP genomes and nrDNA
sequences. Importantly, we clarify which of the Urticeae
genera are strongly supported as monophyletic or polyphyletic
(Figure 5). Compared to previous studies based on a limited
number of genes (Hadiah et al., 2008; Deng et al., 2013; Wu
et al., 2013, 2018; Kim et al., 2015; Grosse-Veldmann et al., 2016;
Huang et al., 2019; Wells et al., 2021), we exploited the utility of
whole CP genomes for resolving phylogenetic relationships in
Urticeae, and also revealed the most informative sites and regions

across the plastome. Our results proved to be largely consistent
with most of the recently established phylogenetic relationships
of Urticeae based on a range of 3–7 selected marker regions
(Wu et al., 2013, 2018; Kim et al., 2015; Huang et al., 2019;
Wells et al., 2021). In general, however, our data improved
resolution throughout Urticeae compared with previous studies,
with almost all nodes being fully supported, especially those
previously known to be problematic. Four of the most important
new phylogenetic insights generated by the current study are
discussed below.

First, the sister relationship of Girardinia has been
contentious. Girardinia had been resolved as sister to
Dendrocnide-Discocnide based on chloroplast, mitochondrial,
and nuclear data (Wu et al., 2013), and using ITS, rbcL, and
trnL-F regions (Kim et al., 2015), but without support in either
case. Subsequently, using expanded taxon sampling and five
markers from both the nuclear and CP genomes, the sister
relationship of Girardinia to Dendrocnide-Discocnide-Laportea-
Nanocnide-Zhengyia-Urtica-Hesperocnide was resolved, but with
limited support (Wu et al., 2018; Huang et al., 2019). Our results
support this latter relationship but with maximum support
(BS/PP= 100/1), for the first time.

Second, our molecular phylogeny of the “Urera alliance clade”
(this study clade 3E-F) corroborated the generic delimitation and
subdivisions of the “Urera clade” from Wells et al. (2021), and
showed two clades of Laportea (which they did not examine)
as also a member (Figure 5). Their division of the paraphyletic
Urera into three genera was strongly supported here: these were
Urera s.s. (our Clade 3F3), Scepocarpus (entirely African; our
clade 3F1, which also includes Laportea grossa), and an expanded
Touchardia (part of clade 3E, that includes Urera glabra from
Hawaii and three species of Laportea as per our study). Our
data suggests that the two Laportea clades should hence be fully
examined and considerations made as to whether to subsume
them within the resurrected Scepocarpus and the expanded
Touchardia.

Third, previous studies (Kim et al., 2015; Wu et al., 2018;
Huang et al., 2019) have typically resolved Laportea into three
clades. For instance, Kim et al. (2015) recovered three Laportea
clades corresponding to sections Laportea Gaudich. (L. alatipes,
L. bulbifera, L. canadensis, L. lanceolata), Sceptrocnide (Maxim.)
C. J. Chen (L. cuspidata), and Fleurya (Gaudich.) Chew [L.
aestuans (L.) Chew, L. interrupta, L. ruderalis (G. Forst.) Chew],
consistent with the sectional classification of Wang and Chen
(1995). Our analysis, however, resolved Laportea into five major
clades. Moreover, we found that L. aestuans was polyphyletic:
one subgroup was sister to L. mooreana with full support and
the other was sister to L. ovalifolia with support of BS/PP = –
/1. The latter relationship was detected by Wu et al. (2018)
but without support. However, other studies found different
relationships: L. aestuans as sister to L. interrupta, and L. ruderalis
with full support according to Kim et al. (2015), or sister to
L. ruderalis and L. peduncularis with support of MP/PP = 96/1
according to Huang et al. (2019). These discrepancies likely
reflect differences in taxon and molecular sampling—with a
wider sampling of populations, L. aestuans might comprise
more than two unrelated clades. While additional study on
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Laportea is clearly needed, the current study provides one of
the most comprehensive phylogenetic perspectives on this little-
studied genus. Future investigations should, however, employ
more extensive molecular data across the entire phylogenetic
spectrum of Laportea to further clarify its relationships and the
number of lineages.

Finally, our analysis resolved the sister relationship between
Poikilospermum and Urera previously obtained by Huang et al.
(2019), but replacing their modest support (BS/PP = 65/0.89)
with full support (BS/PP= 100/1) for the first time.

Comparison Between Genome Skimming (CP
Genome + nrDNA) and Two-Locus (trnL-F + ITS)
Phylogeny
In our study, the trees inferred from both the CP genome+DNA
and the two-locus dataset (trnL-F + ITS) provided full
support for the monophyly of Urticeae. However, the CP
genome + nrDNA tree presented a higher percentage of fully
supported nodes compared with that of the two-locus tree
(Figures 5, 6). This underscores the importance of genome-scale
datasets for resolving major recalcitrant relationships.

The most notable finding from our two-locus phylogenetic
analysis was the reconstruction of Hesperocnide as polyphyletic,
consistent with Huang et al. (2019). Our current CP
genome+ nrDNA analysis and prior molecular studies, however,
recovered Hesperocnide as monophyletic (Kim et al., 2015), with
a close relationship to Urtica (Sytsma et al., 2002; Hadiah et al.,
2008; Deng et al., 2013; Wu et al., 2013; Kim et al., 2015). The
polyphyletic results from the two-locus tree can be ascribed
to the sampling of members of the second species that were
absent in the plastome analysis. Consequently, Wu et al. (2013)
suggested that Hesperocnide be subsumed in the genus Urtica,
since these two genera show some morphological similarities.
However, owing to this equivocality about the phylogeny of
Hesperocnide, we suggest a more rigorous examination of this
genus to fully validate its status.

CONCLUSION AND FUTURE
DIRECTIONS

Our study provides important novel insights on Urticeae
phylogeny and plastome evolution. The detailed comparative
analyses show that Urticeae plastomes exhibit striking differences
in genome size, gene number, inversions, intron loss, sequence
repeats, and IR/SC boundaries. These kinds of variations
will be useful for studies on molecular marker discovery,
population genetics, and phylogeny. Resolving the enigmatic
relationships within tribe Urticeae has, to date, been a
daunting task due to the paucity of genomic resources for
the clade. Our study is the first to report phylogenetic
relationships in Urticeae based on a broad sampling of
whole plastome sequences. This dataset allowed for resolution
of several recalcitrant branches (e.g., the relationship of
Poikilospermum to Urera, the sister relationship of Girardinia,
etc.) that were ambiguous in previous studies. Although
our taxon sampling was sufficient to resolve relationships

among the major clades in the tribe, additional sampling of
particular genera (e.g., Laportea) and species (e.g., Laportea
aestuans and Hesperocnide sandwicensis) would further refine
our understanding of phylogenetic relationships in Urticeae.
Building on the solid framework established here, future studies
with even greater taxonomic and genomic sampling could
contribute to a better understanding of the diversification
patterns in Urticeae in relation to climatic, biogeographic, and
ecological factors.
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Supplementary Figure 1 | (A) Mauve alignment showing gene arrangements
within the studied 57 Urticeae plastomes (length indicated above). Large colored
boxes represent the gene blocks and the colored lines indicates linear position of
different genes in the plastome. (B) Comparison of 57 Urticeae CP genomes using
mVISTA, with the E. parvum genome as the reference. The y-axis represents the
percent identity within 50–100%. Gray arrows indicate the direction of gene
transcription. Blue blocks indicate conserved genes, while red blocks indicate
conserved non-coding sequences (CNS).

Supplementary Figure 2 | Variable sites in homologous regions of the 57
sampled plastomes from Urticeae. The y-axis represent the nucleotide diversity
(Pi) of each window, and x-axis is the position of the midpoint of each window
used in the Sliding window analysis. (A) Coding regions. (B) Non-coding regions.
(C) The ycf1 gene tree depicting highly resolved and supported relationships
achieved by the identified barcode.

Supplementary Figure 3 | (A) Phylogenetic relationships of Urticeae tribe inferred
from maximum likelihood (ML) and Bayesian inference (BI) based on CP coding
(CDS) regions. Support values above the branches are maximum likelihood
bootstrap support values (ML_BS)/Bayesian posterior probabilities (BI_PP)—note:
branches with no support values indicate both ML_BS ≥ 90 and
BI_PP = 1.00—whereas “∗” indicate incongruence between ML and BI trees.
Major clades of Urticeae s.l. are indicated on the right, respectively. CDS,
chloroplast coding region. (B) Phylogenetic relationships of Urticeae tribe inferred
from maximum likelihood (ML) and Bayesian inference (BI) based on CP
non-coding (nCDS) regions. Support values above the branches are maximum
likelihood bootstrap support (ML_BS)/Bayesian posterior probability (BI_PP)—note
that branches with no support values indicate both ML_BS ≥ 90 and
BI_PP = 1.00—whereas “∗” indicate incongruence between ML and BI trees.
Major clades of Urticeae s.l. are indicated on the right, respectively. nCDS,
chloroplast non-coding region. (C) Phylogenetic relationships of Urticeae tribe
inferred from maximum likelihood (ML) and Bayesian inference (BI) based on
integrated CP genome and nrDNA trees. Support values above the branches are
maximum likelihood bootstrap support (ML_BS)/Bayesian posterior probability
(BI_PP)—note that branches with no support values indicate both ML_BS ≥ 90
and BI_PP = 1.00—whereas “∗” indicate incongruence between ML and BI trees.
Major clades of Urticeae s.l. are indicated on the right, respectively. CP, Complete
chloroplast genome; nrDNA, nuclear ribosomal DNA (18S-ITS1-5.8S-ITS2-26S).
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