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Grape downy mildew (GDM) disease is a common plant leaf disease, and it causes

serious damage to grape production, reducing yield and fruit quality. Traditional manual

disease detection relies on farm experts and is often time-consuming. Computer vision

technologies and artificial intelligence could provide automatic disease detection for

real-time controlling the spread of disease on the grapevine in precision viticulture. To

achieve the best trade-off between GDM detection accuracy and speed under natural

environments, a deep learning based approach named YOLOv5-CA is proposed in

this study. Here coordinate attention (CA) mechanism is integrated into YOLOv5, which

highlights the downy mildew disease-related visual features to enhance the detection

performance. A challenging GDM dataset was acquired in a vineyard under a nature

scene (consisting of different illuminations, shadows, and backgrounds) to test the

proposed approach. Experimental results show that the proposed YOLOv5-CA achieved

a detection precision of 85.59%, a recall of 83.70%, and a mAP@0.5 of 89.55%,

which is superior to the popular methods, including Faster R-CNN, YOLOv3, and

YOLOv5. Furthermore, our proposed approach with inference occurring at 58.82 frames

per second, could be deployed for the real-time disease control requirement. In addition,

the proposed YOLOv5-CA based approach could effectively capture leaf disease related

visual features resulting in higher GDE detection accuracy. Overall, this study provides a

favorable deep learning based approach for the rapid and accurate diagnosis of grape

leaf diseases in the field of automatic disease detection.

Keywords: grape downy mildew, disease detection, deep learning, attention mechanism, data augmentation,

digital agriculture

1. INTRODUCTION

Grape as an important fruit crop makes a large economic income contribution in many countries
(Liu et al., 2020; Zhou et al., 2021). As the grape grows in a natural condition, diseases will
often appear on the leaves due to the complex weather condition and changing surrounding
environments. Grape downy mildew (GDM) is one of the serious diseases caused by the oomycete
pathogen Plamopara viticola, which seriously affects the growth of the grapes, causes a decrease
in quality and yield, and results in huge economic losses in the grape industry (Chen et al.,
2020; Ji et al., 2020). Downy mildew often happened in wet and rainy areas in spring and
summer, it is initiated at the stomata on the underside of the leaf, and then on the whole leaf
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(Chen et al., 2020). Monitoring grape leaf health and detecting
pathogen are essential to reduce disease spread and facilitate
effective management practices. Grape leaf diseases are currently
controlled by repetitive fungicide treatments throughout the
season. Reducing the treatment costs is a major challenge from
both environmental and economic views. Timely detection and
treatment at the initial stage of downy mildew infection (Adeel
et al., 2019) is a good solution to control and cut down the spread
of downy mildew in a large area. Therefore, if an automatic
detection method can be achieved when the spots appear, the
leaf disease control plan can be made to control the diseases,
guarantee the grape plant health, and improve the quality and
yield of the grapes. Vision based detection approaches have
been developed to detect plant diseases, which is performed
by extracting visual features (e.g., texture, shape, and color of
leaf lesions) of leaf images and using models (e.g., support
vector machine, linear regression) to recognize and detect the
diseases (Tang et al., 2020; Hernández et al., 2021). Zhu et al.
(2020) identified grape diseases using image analysis and BP
neural networks. Chen et al. (2020) developed and compared
several generalized linear models to predict the probability of
high incidence and severity in the Bordeaux vineyard region.
Abdelghafour et al. (2020) detected downy mildew symptoms
using proximal color imaging and achieved 83% pixel-wise
precision. However, the traditional image processing technology
needs to manually extract the leaf disease characteristics, which
is often time-consuming, and easy to miss the best disease
prevention time. In addition, under the nature scene (e.g.,
different illumination, symptoms, camera viewpoints), classical
algorithms or models lack robustness and cannot achieve stable
detect performance.

Many scholars have proposed approaches for earlier plant
disease detection and monitoring of the disease symptoms
(Mutka and Bart, 2015). At the earlier stage, the human-
crafted features such as texture, color, or shape characteristics
are extracted from RGB or hyper-spectral plant leaf images
for identifying the plant diseases (Mahlein, 2016). For
example, Atanassova et al. (2019) proposed spectral data based
classification models to predict the infection in plants, which
achieved over 78% accuracy. Waghmare et al. (2016) proposed
an automatic grape diseases detection system using the extracted
color Local Binary Pattern (LBP) features. Mohammadpoor et al.
(2020) proposed a support vector machine for grape fanleaf virus
detection and achieved 98.6% average accuracy. However, this
kind of method mostly depends on selected features and their
extraction is easy to be influenced by the camera viewpoints,
shadows, and lighting.

In recent years, deep learning methods such as convolutional
neural networks (CNN) have been widely implemented in
leaf disease detection, scene perception, and smart agriculture.
Variates CNN based detection methods have been proposed
for leaf disease recognition and monitoring (Liu et al., 2020).
Ferentinos (2018) proposed convolutional neural network
architectures to identify healthy or diseased plants. Arsenovic
et al. (2019) developed a two-stage architecture of neural
networks to classify plant disease and achieved an accuracy
of 93.67%. Zhang et al. (2019a) proposed an AlexNet based

cucumber disease identification approach, achieving 94.65%
recognition accuracy. Ji et al. (2020) proposed CNN based
approach to classify common grape leaf diseases and obtained
average classification accuracy of 98.57%. Liu et al. (2020)
proposed Inception convolutional neural network (DICNN) for
identifying grape leaf diseases and realized an overall accuracy
of 97.22% on single-leaf datasets. Thet et al. (2020) used an
improved VGG16 model that achieved 98.4% classification
accuracy for five different leaf diseases. Tang et al. (2020)
classified grape disease types using lightweight convolution
neural networks and channel-wise attention, which achieved
99.14% accuracy. Liu and Wang (2020) improved the YOLOv3
model to directly generate the bounding box coordinates for
tomato diseases and pests detection, which achieved a detection
accuracy of 92.39%. According to these studies, CNNs can
learn advanced robust features of leaf diseases directly from
original images, outperforming the traditional feature extraction
approaches. Yu and Son (2020) proposed a leaf spot attention
mechanism to increase apple leaf disease discriminative power
and enhance the identification performance. Hernández and
Lopez (2020) developed Bayesian deep learning techniques and
an uncertainty probabilistic programming approach for plant
disease detection.

With the continuous development of smart sensors, big data,
and cloud computing, many automatic approaches have been
proposed to identify and detect plant leaf diseases (Vishnoi et al.,
2021). The rapid development of artificial intelligence and the
Internet of Things (IoT) has significantly facilitated automatic
disease detection (Zhang et al., 2020). Using deep learning
models and noninvasive sensors to identify plant diseases has
drawn more attention in the field of precision agriculture
and plant phenotyping (Nagaraju and Chawla, 2020; Singh
et al., 2020). Hernández et al. (2021) investigated hyperspectral
sensing technologies and artificial intelligence applications
for assessing downy mildew in grapevine under laboratory
conditions. Gutiérrez et al. (2021) differentiated downy mildew
and spider mite in grapevine under field conditions using the
CNN model. Liu et al. (2021) proposed Hierarchical Multi-
Scale Attention Semantic Segmentation (HMASS) to identify
GDM infected regions, and the calculated infection severity
percentage was highly correlated (R = 0.96) with the human
field assessment.

Choi and Hsiao (2021) classified Cassava leaf diseases using
the Residual Network. Zhang et al. (2021) developed a multi-
feature fusion Faster R-CNN model and achieved 83.34%
detection accuracy for soybean leaf disease. Dinata et al. (2021)
proposed CNN based approach for 6 types of strawberry disease
classification and achieved 63.7% accuracy. Abbas et al. (2021)
detected tomato plant disease using transfer learning and C-
GAN synthetic images, which achieved 99.51% accuracy. Cristin
et al. (2020) proposed a deep neural network based Rider-Cuckoo
Search Algorithm and achieved 87.7% plant disease detection
accuracy. Roy and Bhaduri (2021) proposed deep learning-
based multi-class plant disease and achieved 91.2% mean average
precision. However, most of these methods are only tested in
experimental situations, which need to be verified on the complex
background situation.
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Despite deep learning based approaches demonstrating its
facilitate in GDM detection, the detection accuracy and speed
restricted its application in autonomous viticulture management.
Plant leaf disease detection in the real vineyard is facing many
challenges, such as the small difference between the lesion area
and the background, different scales of the spots, variation of
symptoms, and camera viewpoints (Liu and Wang, 2021). Also,
light changing in a real complex natural environment further
increased the difficulty to achieve high detection accuracy.
Therefore, real-time and accurate detection of grape downy
mildew is of great significance for the scientific management and
control of grape diseases in precision vineyard farming.

Recently, the attention mechanisms such as Squeeze-and-
Excitation Networks (SE) (Hu et al., 2018), Convolutional block
attention module (CBAM) (Woo et al., 2018), and CA (Hou
et al., 2021) have been widely used to enhance the deep learning
model performances. SE simply squeezes each 2D feature map
to efficiently build interdependencies among channels (Hu
et al., 2018). CBAM introduces spatial information encoding via
convolutions with large-size kernels and gathers channel-wise
and spatial-wise attention sequentially. The recently proposed
CA adopts different spatial attention mechanisms and designs
advanced attention blocks. Zhang et al. (2019b) applied an
attention mechanism to object detection networks, enhancing
the impact of significant features and weakening background
interference. Experimental results show that the proposed
approach achieved an object detection accuracy of 75.9% on
PASCAL VOC 2007, which is 6% higher than Faster R-CNN.
Liu et al. (2019) presented a deep neural network architecture
based on information transmission and attention mechanisms.
Zhao et al. (2021) diagnosed tomato leaf disease using an
attention module improved network, which achieved 96.81%
average identification accuracy on the tomato leaf diseases
dataset. Ravi et al. (2021) integrated the attention module into
the EfficientNet model to locate and identify the tiny infected
regions in the Cassava leaf. The proposed method achieved
better performance than non-attention-based CNN pre-trained
models. Wang et al. (2021b) proposed a Fine-Grained grape
leaf disease recognition method using a lightweight attention
network, which can efficiently diagnose orchard grape leaf
diseases with low computing cost. The above studies have
demonstrated that attention mechanisms could enhance feature
extraction ability for leaf disease detection and identification.

In this study, to improve GDM detection accuracy in the
natural grape farm environment, we proposed YOLOv5-CA
based GDM detection approach by combing YOLOv5 and CA
mechanism. Different scales of image features were extracted
through CNN layers of YOLOv5, and these features were
weighted by CA for GDM detection. By using CA, the features’
effectiveness for GDM detection is highlighted and those less
effective features are suppressed. The proposed YOLOv5-CA
based GDM detection is tested on our acquired grape leaf image
dataset.

The remaining part of the article is organized as follows.
Section 2 illustrates the used datasets, the proposed approaches,
and evaluation indicators. Experimental results are presented
in Section 3. Discussions of the performance are presented in

Section 4. Finally, conclusions and future areas for research are
given in Section 5.

2. MATERIAL AND METHODOLOGY

2.1. Plant Material and Image Acquisition
Grape leaf image data were acquired in a commercial vineyard
located in the college of Enology, Northwest A&F University,
north of China (Yangling, Shaanxi Province). The vineyard
manifested downy mildew (Plasmopara viticola) in many plants.
Images were taken manually for several days (each day is from
8:00 a.m. to 16:00 p.m.) in early August on a partly cloudy day
(Figure 1). The used camera is a Canon EDS 1200D (a field
of view of approximately 504 mm horizontally and 360 mm
vertically), and the external conditions for shooting are automatic
mode. There is approximately 30 cm between the camera lens and
the grape leaves.

A total of 820 leaf samples were collected from different
lights, leaf overlapping, and disease severity. The dataset is
challenging considering the complex background, occlusions,
different disease spot-areas, and shadow influence. Figure 1

shows images of diseased leaves in a typical complex environment
in the dataset. Downy mildew first appears as brown patches.
These patches gradually spread and a leaf that is severely affected
may have a reduced yield with a shorter lifetime and fruits with a
small size.

To validate the proposed YOLOv5-CA based GDM detection
approach, the randomly selected 500 leaf images were used as
training datasets, while the remaining 320 images were used as
testing data. For experiment testing, the LabelImg annotation
tool (Tzutalin, 2015) was used to manually label the leaf
disease areas.

2.2. YOLOv5-CA Based GDM Detection
In order to make YOLOv5 more suitable for GDM detection
in complex natural scenarios such as complex background,
occlusions, different disease spot-areas, and shadow influence,
YOLOv5-CA based GDM detection approach is proposed to
improve the GDM detection performance for real farming
applications. Grape leaves’ RGB images were acquired
under field conditions from a commercial vineyard. These
collected images contain healthy and downy mildew infected
leaves. Then detection model YOLOv5-CA was trained to
identify the GDM infected regions. As shown in Figure 2,
the proposed YOLOv5-CA approach extracted features
using YOLOv5 and learned key features through CA,
enhancing the feature extraction ability and improving the
leaf disease detection performance. As YOLOv5 could adjust
the width and depth of the backbone network according to
application requirements, for GDM detection, moderate model
parameters (i.e., width and depth parameters are 0.75 and
0.67, respectively) were used to achieve reasonable detection
speed.

YOLOv5-CA network is mainly composed of backbone part,
neck network, and head part: 1) The backbone of YOLOv5 is
responsible for extracting image features, which includes several
different layers types such as Focus, Conv, C3, CA, and Spatial
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FIGURE 1 | Commercial vineyard and acquired images under natural light conditions.

FIGURE 2 | The architecture of the proposed YOLOv5-CA based GDM detection.

Pyramid Pooling (SPP) layer. 2) The neck module generates a
feature pyramid based on the PANet (Path Aggregation Network)
(Liu et al., 2018). It is a series of feature aggregation layers of
mixed and combined image features, enhancing the ability to
detect objects with different scales by fusing low-level spatial
features and high-level semantic features. 3) The head module
generates detection boxes, indicating the category, coordinates,
and confidence by applying anchor boxes to multi-scale feature
maps from the neck module. The proposed YOLOv5-CA
boosts the detection ability of different GDM infection regions

through an attentionmechanism, which provides a feasible GDM
detection and monitoring solution for automatic disease control.

2.2.1. Backbone of YOLOv5-CA
The backbone of the YOLOV5-CA object detector mainly
contains Focus, Conv, C3, CA, and Spatial Pyramid Pooling
(SPP) layer. The features from deeper layers are more abstract
and semantic, while the low-layer features contain spatial
information and fine-grained features. For an input image, the
Focus module rearranged it through stridden slice operations
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in both width and height dimensions, which reduces model
calculation time. C3 module contains three convolutions and is
used to extract the deep features of the image. The following
SPP is used to improve the receptive field of the network by
converting any size of the feature map into a fixed-size feature
vector. SPP (He et al., 2015) concatenates layer outputs with
different kernel sizes (e.g., 13×13, 9×9, 5×5) to boost multi-scale
image feature representation ability. All the convolutions utilize
Swish activation:

Swish(x) = x× σ (x) (1)

where σ denotes the sigmoid function.
In our study, we integrated the CA layer into the YOLOv5

backbone, CA layer factorizes channel attention into two 1D
feature encoding processes and preserves the precise positional
information, which augments the representations of the leaf
disease regions.

2.2.2. Neck of YOLOv5-CA
The neck structure used in YOLOv5-CA is a PANet (Liu et al.,
2018), which fuses the information of all layers to aggregate
features by combing bottom-up pyramid and element-wise max
operations. PANet combines convolution features of different
layers for images, thus the useful information in each feature
layer can be directly propagated to the following subnetwork.
By this, PANet can not only realize the abstract description of
large objects but also retains the feature details of small objects.
In addition, C3 modules are also added at this stage to enhance
the feature fusion capability. Through the neck part, the features
of infected areas can be extracted to maintain the detection
performance.

2.2.3. CA Layer
In terms of GDM detection, because the GDM is randomly
distributed in the grape leaf, there is inevitably a mix of
overlapping occlusion, and the GDM infection regions account
for a relatively small percentage of the images, resulting in missed
and mis-detected. In our study, a plug-and-play CA layer was
introduced to assist YOLOv5 focused on key disease-related
features, and improve the detection accuracy.

The CA layer embeds the location-aware information into
the channel attention simultaneously, which increases the
spatial range of attention and avoids a lot of computational
overhead (Hou et al., 2021). CA layer can be regarded as
a computational unit that enhances the representation ability
of the learned features. For any intermediate feature X =

[x1, x2, · · · xc] ∈ R
C×H×W , CA could outputs a transformed

feature with augmented representations Y = [y1, y2, · · · , yc] of
the same size to X.

As shown in Figure 3, the CA mechanism can be divided
into two parts: the coordinate information embedding part
(encodes the information of the channels in the horizontal and
vertical coordinates) and the coordinate attention generation
part (captures the positional information and generates the
weight values).

2.2.4. Coordinate Information Embedding
Attention mechanisms have been demonstrated helpful to
enhance the overall performance of deep learning models
(Chorowski et al., 2015). The attention mechanism can be
regarded as a feature weighting scheme, which helps the
deep learning model to pay more attention to the task-
related information, and suppress or ignore the less-contribution
features (Li et al., 2020; Mi et al., 2020). Through this, the
attention mechanism strengthens the deep learning model’s
learning ability and boosts performance (Niu et al., 2021). In
recent years, attention mechanisms based on deep learning
networks have been applied to a wide variety of computer vision
tasks such as image classification, object detection, and image
segmentation (Qiao et al., 2019, 2021). Wang et al. (2021a)
developed a deep attention module for vegetable and fruit
leaf plant disease detection. Kerkech et al. (2020) used a fully
convolutional neural network approach to classify Unmanned
Aerial Vehicle (UAV) image pixels for detecting mildew disease.

It is known that channel attention could increase the value
of the important channel while punishing the non-significant
channels, however, channel attention is difficult to preserve
positional information (Zhang et al., 2018). To capture precise
positional information, the global average pooling was factorized
into the average pooling from two directions of each channel.
Specifically, given the input X, two spatial extents of pooling
kernels (H, 1) and (W, 1) were used to encode each channel
along the horizontal coordinate and the vertical dimensions,
respectively. The output of the c-th channel along height h and
width w dimensions can be formulated as:

zhc (h) =
1

W

∑

0≤i<W

xc(h, i),

zwc (w) =
1

H

∑

0≤j<H

xc(w, j).

(2)

where zh and zw are the outputs of the transform at h direction
width w, respectively; xc is the feature map at c-th channel;
W and H are the width and height dimensions of the feature
map separately.

The Equation (2) encodes each channel along with the
horizontal and vertical coordinates, preserving the positional
information of each channel of feature maps, which facilitates the
network to locate the GDM-related visual features precisely.

2.2.5. Coordinate Attention Generation
To further exploit resulting expressive representations, a simple
and effective coordinate attention generation was used as the
second transformation. Here, the obtained feature maps from the
coordinate information embedding stage were concatenated and
then sent to a shared 1×1 convolution layer. The relevant process
is defined as:

f = Relu(F([zh, zw])) (3)

where [, ] indicates concatenate operation, F is 1×1 convolution

operation; f ∈ R
C
r ×(W+H) is the output feature map of the ReLU

layer, r is reduction rate.
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FIGURE 3 | Schematic of coordinate attention module.

Next, the feature map f was decomposed into two separate

tensors: f h ∈ R
C
r ×H and f w ∈ R

C
r ×W . Then the following two

1×1 convolution layers for f h and f w, respectively, are recovered
to the same shape as zh and zw. The operation is formulated as:

gh = σ (Fh(f
h)),

gw = σ (Fw(f
w)).

(4)

where σ is the sigmoid activation function, and Fh and Fw are the
convolution manipulation for f h and f ω separately.

The obtained feature maps gh and gw are then expanded
and used as attention weights for the horizontal and vertical
coordinates, respectively. This operation can enhance the
effective leaf disease related features and reduce the influence
of less important information. The reweighing process of the
original input feature map can be defined as:

yc(i, j) = xc(i, j)× ghc (i)× gwc (j). (5)

where yc is the c-th channel in the generated feature map y of the
attention block.

2.3. YOLOv5-CA Model Training for GDM
Detection
2.3.1. Network Training Parameters
In our study, the experimental platform is based on a computer
equipped with an NVIDIA RTX 1080Ti GPU, Ryzen 7 3600
CPU@3.6 GHz. The proposed GDM detection approach was
implemented using Pytorch.

In addition, to verify the effectiveness of the YOLOv5-CA
based GDM detection approach, Faster R-CNN (Ren et al., 2015),
YOLOv4 (Bochkovskiy et al., 2020), and YOLOv5 (Tzutalin,
2015) were also used for comparison. Faster R-CNN generates
regions of interest (RoIs) candidates and then classifies them into
objects (and background) and refines the boundaries of those
regions. YOLOv4 and YOLOv5 are the two widely used detection
methods from the YOLO series (Redmon et al., 2016).

For network training, the network’s input size was set to
416×416×3, the training epoch was set to 1000, batch size was
set to 16, and the learning rate was 0.0013. The momentum

factor (momentum) was set to 0.937, the initial learning rate was
1 × 10−5 and the decay rate of weight was set to 0.001. The
other parameters of each network are their default settings. In the
training process, the network predicts the bounding box based
on the initial anchor box. The gap between the prediction and
ground truth was calculated to update the network in reverse and
adjusts the network parameters. After training, the weight file of
the detection model obtained was saved.

2.3.2. Network Loss Function
YOLOV5-CA automatically updates the best bounding box
for GDM detection during the training process. The default
optimization method of the model is the gradient descent
method. The loss function Lloss used in YOLOv5-CA includes
bounding box location loss LCiou, confidence loss Lconf and
classification loss Lcls:

Lloss = Lcls + Lconf + LCIoU (6)

Classification loss Lcls computes the loss of class probability using
Cross Entropy:

Lcls =

s2
∑

i=0

ℓ
obj
i,j

∑

c∈classes

[

∧
pi(c)log(pi (c))+ (1−

∧
pi(c))log(1− pi(c))

]

(7)

where ℓ
obj
i is used to judge whether there is an object center. p̂i(c)

is the probability of class c; pi(c) is the probability of predicted
box that belongs to class c.

Confidence loss Lconf penalizes object confidence error if
that predictor is responsible for the ground truth box, which is
computed using mean squared error:

Lconf =

s2
∑

i=0

B
∑

j=0

ℓ
obj
i,j

[

∧
Ci log(Ci)+ (1−

∧
Ci)log(1− Ci)

]

+λnoobj

s2
∑

i=0

B
∑

j=0

ℓ
noobj
i

[

∧
Ci log(Ci)+ (1− Ci)log(1−

∧
Ci)

]

(8)

where λnoobj represents the weight of the classification error, S is
the number of grids, and B is the number of prior boxes in each
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grid;Ci is the confidence of the predicted box; Ĉi is the confidence
of the ground-truth (Ĉi is always 1).

The LCiou computes the loss related to the predicted bounding
box and ground truth, it can be defined as follows:







LCIoU = 1− IoU +
ρ2(b,bgt)

e2
+ ν2

(1−IoU)+ν

IoU =
|b∩bgt|
|b∪bgt|

(9)

where v represents the coincidence degree of the two frame aspect
ratios, b and bgt are the center coordinates of the prediction box
and the real box respectively; ρ is the Euclidean distance between
the two center points, and e represents the diagonal distance of
the smallest closed area containing both the prediction and real
boxes. IoU means the ratio of the intersection and union of the
prediction bounding box and the actual bounding box.

2.3.3. Performance Evaluation
The used performance evaluation indicators for GDM detection
include precision, recall, F1-score, mAP (mean average
precision), and FPS (frame per second). Precision shows the
ability of the model to accurately identify targets; recall reflects
the ability of the model to detect targets; the F1-score is a
harmonic mean of the precision and recall; FPS is the average
inference speed. The F1-score is the reconciled mean of precision
and recall, taking into account both the precision and recall of
the classification model. Based on tp (the number of hlcorrectly
detected downy mildew areas), fp (the number of incorrectly
detected downy mildew areas), and fn (the number of disease
regions that are incorrectly identified as background), the
relevant calculation equations are as follows:

Precision =
tp

tp+ fp
× 100% (10)

Recall =
tp

tp+ fn
× 100% (11)

F1 = 2×
Precision× Recall

Precision+ Recall
× 100% (12)

From the values of precision and recall, a precision-recall curve
can be plotted to observe their distribution. The value of AP
is the area under the precision-recall curve, and a larger value
means better model performance. mAP@0.5 is the average value
of precision under different recall values when the intersection
over union (IoU) is 0.5. The calculation of mAP is as follows:

mAP =
1

n

N
∑

k=1

APk (13)

where N denotes the number of disease types (N is 1 in
our study).

TABLE 1 | Comparison of different GDM methods.

Method
Precision

(%)

Recall

(%)

F1

(%)

mAP@0.5

(%)
FPS (Frame/s)

Faster R-CNN 79.97 87.80 83.70 80.65 35.90

YOLOv4 82.69 83.63 83.15 82.65 75.20

YOLOv5 85.35 81.45 83.36 87.41 84.74

YOLOv5-CA 85.59 83.70 84.63 89.55 58.82

3. EXPERIMENTAL RESULTS

3.1. Comparison of Different Object
Detection Algorithms
There are varieties of deep learning based detection methods, in
order to verify the effectiveness of the proposedmethod for GDM
detection, three popular detection algorithms—Faster R-CNN,
YOLOv4, and YOLOv5 were compared. The GDM detection
results were presented in Table 1.

In Table 1, the proposed YOLOv5-CA based approach
achieved 85.59% precision, 83.70% recall and 84.63% F1, and
89.55% mAP, respectively. Compared with the other methods,
the proposed YOLOv5-CA GDM detection method is better
than that of Faster R-CNN (80.65% mAP), YOLOv4 (82.65 %
mAP), and YOLOv5 (87.41%mAP). From these results, it is clear
that the CA mechanism of YOLOv5-CA improves the feature
representation ability, enhancing the final detection accuracy
for identifying the leaf disease areas. Meanwhile, the proposed
approach could detect the GDM with a speed of 58.82 frames
per second. These results illustrated that the proposed method
could achieve high precision with a fast speed to meet real-time
requirements, which is favorable for the deployment of the GDM
detection model in spraying robots for the plant diseases control
in smart vineyard farming.

3.2. Qualitative GDM Detection
Comparison
Figure 4 demonstrates the comparison of different methods’
qualitative results on our acquired grape leaf dataset. It can
be seen that the proposed YOLOv5-CA could detect GDM
at different leaf parts (e.g., leaf edge, the leaf central parts).
Especially, the proposed YOLOv5-CA method could detect less
obvious GDM lesions on the leaves, which outperformed the
other methods such as Faster R-CNN, YOLOv4, and YOLOv5.
The main reason could be that the CA mechanism strengthens
the feature representation ability, which enhances the GDM
detection performance.

Additionally, more examples of YOLOv5-CA based GDM
detection are presented in Figure 5. It can be seen that the
GDM infected regions are well detected (blue bounding box)
under complex background, especially, YOLOv5-CA could well
detect the GDM regions nearby the leaf edge and petioles. It
also can be noted that the YOLOv5-CA could detect both large
and small GDM regions. The main reason is that the YOLOv5-
CA makes the network pay more attention to the GDM-related
visual features, reducing the false or mis-detection cases. The
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FIGURE 4 | Examples of different GDM detection attention methods. (A) Faster R-CNN, (B) YOLOv4, (C) YOLOv5, and (D) YOLOV5-CA.

good detection performance of YOLOv5-CA provides valuable
information for automatic disease control.

3.3. Influence of Different Network
Input-Sizes on GDM Detection
The network input size is one factor that would influence the
GDM detection performance. Here, we also investigate different
input-sizes’ influence on YOLOv5-CA based GDM detection. In
Table 2, five typical network input sizes, namely, 112 × 112,

224× 224, 320× 320, 416× 416, and 512× 512 were compared
in terms of GDM detection performance.

According to Table 2, the network input with 416×416
size achieved 85.59% precision, 83.70% recall, 84.63% F1-score,
and 89.55% mAP@0.5, which outperformed the performance
of input size with 112×112, 224×224, and 512×512. This
means the proposed YOLOv5-CA could extract and learn the
more useful information from the large input size. However,
when the network input-size increases to 512×512, there is
not much performance improvement but significantly increased
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FIGURE 5 | Examples of YOLOv5-CA based GDM detection results.

TABLE 2 | Grape downy mildew Detection performance with different network

input sizes.

Network input size
Precision

(%)

Recall

(%)

F1

(%)
mAP@0.5 FPS (Frame/s)

112 × 112 80.32 72.76 76.35 76.71 102.04

224 × 224 83.73 79.32 81.47 82.63 92.63

320 × 320 84.75 84.32 84.53 85.25 76.92

416 × 416 85.59 83.70 84.63 89.55 58.82

512 × 512 86.71 82.80 84.71 87.89 45.45

the processing time and calculating memory size, which is not
favorable for fast detection and real applications. By balancing
the speed and accuracy, the input size of 416×416 was selected in
our work for real-time GDM detection.

3.4. Data Augmentation for YOLOv5-CA
Detection
Offline data augmentation could increase the dataset diversity,
explore the network hyperparameters, and finally enhance
the accuracy and robustness of the trained model (Zoph
et al., 2020; Su et al., 2021). To further improve the GDM
detection performance, in our study, bounding box based data
augmentation was used. The augmentation technique was only
applied to disease areas within the manually labeled bounding
boxes. The transformations for data augmentation implemented
include: flipping horizontally and vertically, randomly cropping
between 0 and 20% of the bounding box, random rotation,
random shear of between −15◦ to +15◦ horizontally and
vertically, random brightness adjustment (between 0 and +10%),
and Gaussian blur (between 0 and 5 pixels). The original 500
training images were expanded to 2000 images, and then they
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FIGURE 6 | Examples of Bounding box based data augmentation. (A) Manual label, (B) Flip (vertical), (C) Flip (horizontal), (D) Crop, (E) Rotation, (F) Shear, (G)

Brightness, and (H) Gaussian blur.

TABLE 3 | Comparison of different GDM methods.

Method
Precision

(%)

Recall

(%)

F1

(%)

mAP@0.5

(%)

YOLOv5-CA 85.59 83.70 84.63 89.55

YOLOv5-CA

(with data augmentation)

88.82 83.63 86.15 90.02

were used to train the YOLOv5-CA network, which forces neural
nets to optimize hyperparameters and generate a high-robust
model. Some augmented bounding boxes on grape leaves can be
seen in Figure 6.

As illustrated in Table 3, the data augmentation based
YOLOv5-CA detection achieved a precision of 88.82%, a recall
of 83.63%, and an F1-score of 86.15%, which is slightly
higher than those without data augmentation. The data
augmentation positively influences the model’s performance
by increasing the size of the dataset and mitigating the
over-fitting. The overall improvements demonstrated that the
data augmentation module is helpful in the GDM detection,
enlarging model learning ability and significantly improving
detection performance.

4. DISCUSSIONS

This study presents a deep learning-based pipeline for automatic
GDM detection in the vineyard. The grape leaf images acquired
directly from the plants under field conditions were used to
verify our proposed YOLOv5-CA approach. According to our
experimental results presented in Table 1, a precision of 85.59%,

a recall of 83.70%, an F1-score of 84.63%, and a mAP@0.5 of
89.55% with the inference speed of 58.82 frames per second
(FPS) was obtained for GDM detection. The detection accuracy
of the proposed YOLOv5-CA is superior to that of state-of-
the-art methods such as Faster R-CNN, YOLOv4, and YOLOv5.
This high accuracy demonstrates the effectiveness of YOLOv5-
CA for GDM detection of grapevine leaf images taken under
field conditions. There yield results show that it is feasible to
model visual symptoms for automatic GDM detection using
a combination of the YOLOv5 and the CA mechanism. The
proposed YOLOv5-CA automatically finds complex features
capable of differentiating leaves with downy mildew symptoms
and without any, which provides a precise and effective method
for automatic disease detection.

On the other hand, the results presented in Table 2 reveal
the appropriate network input size in our experiments is
416×416. Additionally, Table 3 compared the GDM detection
performance with and without data augmentation, it shows that
data augmentation enhances the GDM detection performance.
The possible reason is that data augmentation increases the size
of the dataset and brings more diversity to leverage the model
training.

Although this study mainly focuses on GDM detection,
it is suitable for multi-diseases detection (e.g., black spot,
powdery mildew) after the model was re-trained with the dataset
containing these diseases. As our approach uses RGB images,
it would be a restriction for detecting GDM in the very earlier
stage (i.e., non-visible symptoms) detection. However, if the
multi-spectral images were acquired and used, our proposed
YOLOv5-CA could be a potential tool to distinguish downy
mildew from other leaf diseases/damage.
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5. CONCLUSIONS AND FUTURE STUDY

To achieve an accurate and real-time intelligent detection of
GDM under natural environments, an automatic YOLOv5-CA
based detection method was proposed in this study. By combing
YOLOv5 and coordinate attention, the GDM related visual
features are well focused on and extracted, which boosts the GDM
detection performance. Our proposed YOLOv5-CA achieved
85.59% detection precision, 89.55% mAP@0.5 with 58.82 FPS,
which outperformed Faster R-CNN, YOLOv4, and YOLOv5.
Moreover, the test results showed that the different disease levels
of GDM and the illumination influence would not have a great
impact on the GDM detection results, indicating the proposed
method is feasible for the rapid and accurate detection of GDM.
Ablation studies show that a network input size of 416×416 is
favorable for fast GDM detection, and bounding box-based data
augmentation boosts the GDM detection precision by 3.23%.
The results exposed in this work indicate that downy mildew
in grapevine can be automatically evaluated using artificial
intelligence technology.

Overall, our approach achieved a good trade-off between
speed and accuracy for GDM, and can be adapted to
applications with autonomous-based smart farming. For future
study, the multi-spectral information and edge computing will

be exploited to further improve detection performance and
computational efficiency.
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