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The efficiency with which plants use nutrients to create biomass and/or grain is
determined by the interaction of environmental and plant intrinsic factors. The major
macronutrients, especially nitrogen (N), limit plant growth and development (1.5–2%
of dry biomass) and have a direct impact on global food supply, fertilizer demand,
and concern with environmental health. In the present time, the global consumption
of N fertilizer is nearly 120 MT (million tons), and the N efficiency ranges from 25 to
50% of applied N. The dynamic range of ideal internal N concentrations is extremely
large, necessitating stringent management to ensure that its requirements are met
across various categories of developmental and environmental situations. Furthermore,
approximately 60 percent of arable land is mineral deficient and/or mineral toxic around
the world. The use of chemical fertilizers adds to the cost of production for the farmers
and also increases environmental pollution. Therefore, the present study focused on
the advancement in fertilizer approaches, comprising the use of biochar, zeolite, and
customized nano and bio-fertilizers which had shown to be effective in improving
nitrogen use efficiency (NUE) with lower soil degradation. Consequently, adopting
precision farming, crop modeling, and the use of remote sensing technologies such as
chlorophyll meters, leaf color charts, etc. assist in reducing the application of N fertilizer.
This study also discussed the role of crucial plant attributes such as root structure
architecture in improving the uptake and transport of N efficiency. The crosstalk of N with

Frontiers in Plant Science | www.frontiersin.org 1 April 2022 | Volume 13 | Article 877544

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.877544
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpls.2022.877544
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.877544&domain=pdf&date_stamp=2022-04-29
https://www.frontiersin.org/articles/10.3389/fpls.2022.877544/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-877544 April 25, 2022 Time: 12:51 # 2

Javed et al. Nitrogen Use Efficiency in Agriculture

other soil nutrients plays a crucial role in nutrient homeostasis, which is also discussed
thoroughly in this analysis. At the end, this review highlights the more efficient and
accurate molecular strategies and techniques such as N transporters, transgenes, and
omics, which are opening up intriguing possibilities for the detailed investigation of the
molecular components that contribute to nitrogen utilization efficiency, thus expanding
our knowledge of plant nutrition for future global food security.

Keywords: agriculture, nitrogen use efficiency, climate change, sustainability, molecular approaches

INTRODUCTION

Efforts to end hunger are as old as human civilization, and they
have affected the history of humanity. The concern for global
food security results primarily from saturated crop yields and
also an imbalance between the supply and demand of the major
food crops (wheat, rice, and maize) (DeFries et al., 2015; Wood
et al., 2018). Increasing production on a sustained basis is an
essential component of ensuring food security. Food production
needs to increase 50% by 2030 and double by 2050 to meet
projected demands (Pastor et al., 2019). Effective nutrient use
especially nitrogen (N) and phosphorous (P) are important
for sustained food security. A reliable supply of N and other
nutrients vital for plant growth has allowed farmers to improve
productivity over the past century, thus promoting economic
development (Drechsel et al., 2015; McLaughlin and Kinzelbach,
2015; Reis et al., 2016).

Nitrogen (N) plays a prominent role in the plant metabolic
system (Shah et al., 2021a,b). Nitrogen, is a principal component
of many organic compounds (protein, nucleic acids, alkaloids
enzyme) and is also associated with energy transfer molecules like
adenosine diphosphate (ADP) and adenosine triphosphate (ATP)
(ATP). It consists the 16% of the total protein biomass present in
plants. N is also found in nucleic acids (deoxyribonucleic acid and
ribonucleic acid), which play an important role in plant genetics
and heredity. It is also a component of chlorophyll, which
serves as a photosynthesis factory. N also has a major role in
photosynthetic processes, leaf area production, leaf area duration
as well as net assimilation rate that is directly related to yield
enhancement (Leghari et al., 2016). More than half of the world’s
population is fed by crops cultivated using synthetic nitrogen (N)
fertilizers, which were made feasible by the advent of the Haber-
Bosch process in the early twentieth century, which converts
atmospheric nitrogen gas (N2) to active forms of nitrogen. Total
global consumption of N fertilizer was 112.5 million tons in 2015,
118.2 million tons in 2019, and likely to reach 7.9–10.5 billion
by 2050 (Zhang X. et al., 2015). The demand for huge amounts
of N fertilizers is a major concern for farmers as it increases
the cost of cultivation and also degrades the inherent fertility of
the soil. Consequently, the use of excess N fertilizers causes the
problem of N pollution, which is now considered a new threat to
environmental sustainability (Kanter et al., 2020).

Nitrogen use efficiency (NUE) is defined as the yield of
grain achieved per unit of N available to the crop from
soil and applied fertilizer, and it can be divided into two
biological components, N uptake efficiency (NUpE) which
is the efficiency of absorption/uptake of supplied N, and
N utilization efficiency (NUtE) which is the efficiency of

assimilation and remobilization of plant N to ultimately produce
grain (Han et al., 2015; Yadav et al., 2017; Congreves et al., 2021).
It has been documented that the NUE value is decreased with the
application of N fertilizers. For instance, in developed countries,
NUE increased because of the adaption of best agronomical and
fertilizer management practices, while it reduced in developing
countries like India as the use of N fertilizer dramatically
increased (Heffer and Prud’homme, 2016). It was reported
that the world average NUE was nearly 47 and 42% in 2009
and 2010, respectively, and the major reason behind the NUE
decreasing is the adoption of agronomical practices (nutrient
management and varieties) associated with low NUE (Zhang X.
et al., 2015). Therefore, this study primarily focused on the
advanced agronomical and molecular strategies, which reduce the
N fertilizer demand and enhance NUE.

Several morphological and physiological traits such
as root length, lateral roots, root architecture, light
capture photosynthesis, canopy height, flowering time,
carbohydrate partitioning, storage, and the remobilization
of N, (stem remobilization, leaf blade remobilization, and
total remobilization) are linked with higher NUE in plants
(Mosleth et al., 2015; Carmo-Silva et al., 2017; Guttieri et al.,
2017; Tabbita et al., 2017; Hawkesford and Griffiths, 2019).
Improving nitrogen use efficiency is essential for tackling the
triple threat of environmental degradation, climate change, and
food security. The efficiency of applied nitrogenous fertilizers is
very low due to their various losses i.e., volatilization, leaching,
surface runoff, and denitrification from the soil-plant system
(Zhang X. et al., 2015). Nitrogen use efficiency (NUE) is a
convoluted phenomenon governed by various edaphic, climatic,
and management factors; it has to be managed through an
amalgamated approach involving agronomical, physiological,
and molecular aspects. Among these, the agronomical approach
is economically feasible, ecologically viable, and sustainable.
The modern fertilizers (customized fertilizer, nano fertilizers,
bio-fertilizers, biochar, and zeolite) and deep fertigation helps
in improving NUE in sustainable ways. Likely, the precision
farming (Leaf color chart, chlorophyll meter, and remote sensing)
and modern agronomical practices (Diversified crop rotation, 4R
nutrient stewardship, and crop modeling) have been developed
for enhancing NUE and can support good plant performance
and better crop output. New technological developments need
to achieve further gains by new varieties, slow-release fertilizers,
nitrification and urease inhibitors, fertigation, and high-tech
approaches to precision agriculture (Pires et al., 2015; Cao et al.,
2017; Mylonas et al., 2020). The identification and employment
of QTLs/genes/transporters which are responsible for NUE at
the molecular level is now a more feasible and robust technique
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with the availability of efficient molecular tools (Ali et al.,
2018). Previously, Zhang X. et al. (2021) employed the RNA
sequencing (RNA-seq) technique to investigate the genotypic
difference in response to N deficiency between two wheat NILs
(1Y, high-NUE, and 1W, low-NUE). The high- and low-NUE
wheat NILs showed different patterns of gene expression
under N-deficient conditions, and these N-responsive genes
were classified into two major classes, including “frontloaded
genes” and “relatively upregulated genes.” In total, 103 and
45 genes were identified as frontloaded genes in high-NUE
and low-NUE wheat, respectively. Moreover, the expression
of TaPT4, TaNRT2.2, and TaAMT1.2 was down-regulated by
arbuscular mycorrhizal (AM) colonization only when roots of
host plants received phosphate or nitrogen nutrient signals.
However, the expression of TaPHT1.2, TaNRT2.1, and TaNRT2.3
was down-regulated by AM colonization, regardless of whether
there was nutrient transfer from AM hyphae. The expression of
TaNRT1.2 was also down-regulated by AM colonization even
when there was no nutrient transfer from AM hyphae (Zhang X.
et al., 2021). Nitrogen limitation adaptation (NLA) was involved
in source-to-sink remobilization of nitrate by mediating the
degradation of NRT1.7 in Arabidopsis (Liu et al., 2017). In the last
decade, numerous studies suggested that the use of advanced soil
and agronomical practices with modern molecular techniques
could be the best way to enhance NUE swiftly under future
climate change. Therefore, the objective of the present study is
to discuss the role of advancement in agronomy, breeding, and
molecular biology to enhance NUE and this information might
be helpful in reducing N pollution.

FUNCTIONS OF NITROGEN
THROUGHOUT THE PLANT LIFE CYCLE

In healthy plants, nitrogen concentrations range from 3 to
4%. When compared to other nutrients, this is a substantially
higher amount. In plant cells, nitrogen is a significant source
of various morphological, genetic, and metabolic components.
The biological combination of nitrogen with C, H, O, and S
to form amino acids, the building blocks of proteins, makes
nitrogen a key component of protein (Okumoto and Pilot, 2011).
Protoplasm, the site of cellular division and consequently of
growth and development of plants, is formed using amino acids.
The N increases the leaf area (AF) and leaf area index (LAI),
promoting the synthesis of proteins involved in cell development,
cell proliferation, and the development of the cell wall and
cytoskeleton (Luo et al., 2020; Sun et al., 2020). Plant development
and grain output are fueled by nitrogen’s role in the chlorophyll
molecule, which allows the plant to absorb sunlight energy
through photosynthesis (Evans and Clarke, 2019). Compounds
that transport energy, such as ATP (adenosine triphosphate),
include nitrogen. Adenosine triphosphate (ATP) helps cells store
and utilize the energy supplied during metabolism (Evans and
Clarke, 2019). As an osmotic agent N also plays an important
role in water retention in plant vacuoles found to be essential
toward its nutrition function. Water is the key limiting element
in plant development since it is the main factor that can regulate
cell growth and metabolism (Ding et al., 2018). Nitrogen raises

the protein concentration of forage crops, improves the quality of
the fruit, and speeds up the growth of green vegetables. Potassium
and phosphorous are absorbed and utilized more efficiently by
plants that are fed this nutrient (Chand et al., 2022). Nitrogen is
essential for plants’ healthy growth and development. Nitrogen
deficiency greatly impacts crop productivity, whereas extra N
might have detrimental consequences on the plant. This topic
is always being discussed in crop production. Therefore, this
concern is constantly being addressed in agricultural output
(Mu and Chen, 2021).

NITROGEN USE EFFICIENCY

As of today, the primary strategy for preserving and increasing
agriculture production is the administration of mineral fertilizers,
such as nitrogen. Commercial fertilizers contain N which is
highly soluble, making it easy for plants to absorb and assimilate.
Only 30–40% of the applied nitrogen is utilized by crops since
the N compounds are often available in the form of nitrate and
ammonium and are highly mobile in the soil (Omara et al.,
2019). NUE can be described in a variety of approaches, but the
most fundamental is the yield (grain, fruit, or forage) per unit
of nitrogen present in the soil. The utilization of nitrogen by
plants occurs in two distinct stages (Dobermann, 2005). In the
first step, the quantity of N taken in, stored, and converted into
amino acids and other essential nitrogenous molecules is a factor
in the production of biomass. The eventual yield is determined
by the amount of nitrogen (N) given to the seed at the second
phase. Plants use the nitrate acquisition pathway to take in and
synthesize inorganic nitrogen and store amino acids in immature
leaves and roots. Their use in protein and enzyme biosynthesis,
as well as the photosynthetic machinery that controls plant
growth, architecture, and development, is extensive. For optimal
flowering and grain development, nitrogenous molecules must
be supplemented during the reproductive stage. Nitrogen
absorption and remobilization are crucial, with leaves and shoots
serving as a source of amino acids for the reproductive and
storage organs (Chen et al., 2020). As a result, improving
NUE necessitates an understanding of the processes by which
N is taken up, assimilated, and remobilized throughout the
plant life cycle. But over 60% of soil nitrogen is lost via
leaching, runoff, denitrification, evaporation, and microorganism
utilization (Ding et al., 2021). The intricacy of NUE lies in the
multiple N sources that contribute to crop production, including
soil N availability, conversion, accumulation, transport, and
depletion, microclimatic conditions, crop genetics, and the effect
of administration, environment, and climate (Chen et al., 2020).
This leads to N losses in diverse types to the soil, air, and water,
which is both economically and environmentally problematic.

NITROGEN UPTAKE AND TRANSPORT
IN PLANTS

Nitrate is a key source of nitrogen for plants; in fact, the majority
of plants spend a substantial percentage of their carbon and
energy reserves on its uptake and assimilation (Kant, 2018).
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Nitrate is a nutrient and a signaling molecule that has a dramatic
influence on plant metabolism and development. Plants have
evolved complex methods for detecting nitrate and integrating its
absorption into their transport systems (Vega et al., 2019). Nitrate
assimilation begins with its absorption into the cell. Normally,
nitrate is taken up from the soil solution through the root’s
apopalsm and then absorbed into the epidermal and cortical cells.
Once inside the symplast, it is reduced or mobilized into the
xylem for transport to the shoots through the Casparian strip
(Islam, 2021).

Plants utilize both high affinity and low-affinity transporters
to import nitrate. These import pathways allow plants to
accommodate a wide range of external nitrate concentration
without experiencing severe deficiency or toxicity. A wide
array of genes are associated with the uptake of nitrogen in
plants. The nitrate uptake by plant roots appears to be a
complex process involving at least four distinct transport systems:
(a) constitutive high-affinity transporters (cHATS); (b) nitrate-
inducible high-affinity transporters (iHATS); (c) constitutive
low-affinity transporters (cLATS); and (d) nitrate-inducible low-
affinity transporters (iLATS) (O’Brien et al., 2016). In plants,
two families of genes producing nitrate transporters have
been identified: NRT1 and NRT2. The NRT 2 family encodes
transporters to the high-affinity uptake system whereas NRT
1 family is more complex, including nitrate transporters with
dual affinity or low affinity. The nitrate uptake is driven
by the proton gradient against the plasma membrane and
its uptake is driven by ATPases (Wang et al., 2020; You
et al., 2022). In comparison to nitrate, plants generally do

not collect excessive amounts of ammonium ions. Toxicity
symptoms usually occur when agricultural plants are cultivated
in ammonium deficient in nitrate (Duan et al., 2018). Initially,
a family of five ammonium transporter genes named AMT1;1–
AMT1;5 was found in Saccharomyces cerevisiae and Escherichia
coli (Loqué and von Wirén, 2004). However, the scenario
is somewhat different in rice, where 10 distinct genes have
been found (Suenaga et al., 2003). Attempts have been made
further to identify transporters of nitrogen uptake in plants
and overexpression of nitrogen transporters genes will lead to
enhanced nitrogen uptake efficiency of the roots from the soil.
Some of the nitrogen and ammonium transporters and their
function are highlighted in Figure 1.

ADVANCES IN AGRONOMICAL
STRATEGIES TO ENHANCE NITROGEN
USE EFFICIENCY

Advancement in Fertilization
Fertilizers play a pivotal role in enhancing and sustaining crop
yield. It is reported that a 50% yield increment is contributed by
nitrogen (N) fertilizer. However, about 40–50% of the applied
N is lost by ammonia volatilization, leaching, run-off, and
denitrification. Therefore, in place of conventional chemical
fertilizers, the use of modern fertilizers could be a potential
alternative (Dass et al., 2017). These fertilizers are more efficient
than conventional fertilizers to meet the food requirement of the

FIGURE 1 | N dynamic in plants. This figure represents the addition and losses of N through soil. There are several soil reactions such as mineralization, nitrification
involved in the conversion of fixed N to available form and then uptake and transport from root to shoot. Nitrate (NRT; nitrate transporter) and ammonium (AMT;
ammonium transporter) are the major forms of N movement through soil to root, root to root-shoot junction, then through phloem tissue. In this process, several
transporters are involved which are highlighted in the figure such as phloem loading and unloading, xylem loading and unloading. After reaching the N in the leaf
tissue is used for conversion of different compound synthesis and stored in the form of amino acids and proteins.
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burgeoning population and improve NUE, it is important to look
for new fertilizer materials that help ensure world food security
on one hand and safeguard the environment on the other (Singh
et al., 2019). Some of the advanced strategies in improving NUE
are highlighted in Figure 2.

Customized Fertilizers
Customized fertilizers (CF) are a multi-nutrient carrier that
contains macro and micro nutrient forms (Mudalagiriyappa
et al., 2015). “Paras Formula” was the first CF developed in India
which contains (10% N, 18% P2O5, 25% K2O, 3% S, and Zn
0.5%). It encompasses both macro and micro-nutrients required
by selected crops in specific regions. Adoption of such fertilizers
would enhance NUE which is currently 40% for N, 20% for
P, 50% for K, and 2–5% for other micronutrients (Dass et al.,
2017). Many scientists have reported that the application of CF
improved the yield, NUE, nutrient uptake, and was also more
economical. Sekhon et al. (2012) observed that application of
CF (16% N, 24% P, 9% K, 5% S, and 0.7% Zn) in wheat crop
increased the growth, grain yield, agronomic efficiency of N, and
economics in Ludhiana region of Punjab. Similarly, Dwivedi and
Meshram (2014) also reported that application CF (11% N, 18%
P, 9% K, 5.3% S, and 0.7% Zn) in wheat improved uptake of
N, P, K, and Zn which ultimately crop led to higher grain yield
under Raipur region of Chhattisgarh. In Maharashtra also use
of CF (20% N, 12% P, 10% K, 4% S, 0.25% Mg, 0.5% Zn, and
0.5% Fe) in onion improved the soil fertility as well as economics
(Kamble and Kathmale, 2015). The quality of pomegranate has
been enhanced through the application of CF (20% N, 10% P, 10%
K, 5% S, 2% Mg, 0.5% Zn, 0.3% B, and 0.2% Fe) in the Rahuri
region of Maharashtra (Goel et al., 2011).

Nano Fertilizers
Due to the subsidization of fertilizers, farmers apply fertilizers
in an excess amount which ultimately either enters into the
groundwater causing nitrate pollution, or into aquatic systems
leading to eutrophication (Shah et al., 2021a). To sort out the
problem of excess consumption of fertilizers, enhance the NUE,
and prevent environmental hazards nano-fertilizers (NFs) could
be a great alternative and used by regulating the release of
nutrients depending on the requirement of crops (Mejias et al.,
2021). Application of NFs enhanced the productivity of crops
through the slow and continuous release of nutrients to the
roots of plants and thereby increasing NUE (Kah et al., 2019).
Application of Zn NFs improved the rice grain yield by increasing
NUE through alteration in physiological characteristics (Jin
et al., 2017). Application of engineered nanomaterials made
up of amorphous pyrogenic hydrophilic SiO2 influenced the
availability of P by increasing its mobility. It also boosted
the NUE by decreasing the demand for P and N fertilizer
for the growth of plants. Foliar application of NFs (chitosan-
NPK) enhanced the productivity and nutritional status of wheat
(Abdel-Aziz et al., 2016). Nano Zn-chitosan in wheat crop
applied as soil application (20 mg g−1 soil) enhanced the
accumulation of Zn in plants grown under Zn deficient soil
(Deshpande et al., 2017). Soil application (6 mg kg−1 soil)
of nano-ZnO in sorghum enhanced the productivity, uptake,
and NUE (Dimkpa et al., 2017). Application of nCeO2 in
barley crop improved the Ce concentration in grain, as well
as uptake of macro- and micro-nutrients (Rico et al., 2015).
Similarly, soil application of nano-titanium oxide (nTiO2) to
tomato plants improved the growth, uptake, and accumulation
of plant nutrients (Raliya et al., 2015).

FIGURE 2 | Represents the advancement in agronomical practices for improving NUE. This figure highlights the advances such as the addition of nano fertilizers,
customized, and bio-fertilizers which improve the NUE. Further, the addition of biochar and zeolites is also helpful in improving NUE through improvement in soil
properties. Together with the advancement in farm practices such as drip fertigation, crop rotation, and best management improve NUE. Also, the application of
advanced technology such as remote sensing has a bright future in improving NUE.
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Bio-Fertilizers
Bio-fertilizers are formulations of beneficial microorganisms
which directly or indirectly enhance microbial activity and
thereby increase movement and solubilization of nutrients in
the soil (Suyal et al., 2016). In the case of direct mechanism,
diazotrophs (Azotobacter, Azospirillum, Acetobacter) and
phosphate solubilizing bacteria (PSB) improve the plant
growth by producing phytohormones, liberating nutrients, and
stimulating induced systemic resistance (Rani et al., 2013). Under
indirect mechanisms, Bacillus, Pseudomonas, and Mycorrhiza
enhance plant growth by legume symbioses by stimulating
symbiotic relationships for root growth (Podile and Kishore,
2006). Diazotrophs have the capacity to reduce N2 to ammonia,
and flora and fauna rely on biologically fixed nitrogen for growth
and development (Kumar et al., 2014). PSB have the capacity to
solubilize the unavailable P into available form up to 50% (Chen
et al., 2006). Mycorrhiza has the potential to go deeper in the soil
and provide the available form of nutrients to the plant roots
thereby increasing the uptake (Mallik, 2000). Bio-fertilizers help
in the mineralization of nutrients through the decomposition of
organic matter and ultimately improve soil fertility. They also
play important role in immobilization by converting atmospheric
N to NH4

+ for plant uptake (Paul, 2014). Bio-fertilizers are an
important component of soil and crop management. They
act as organic amendments by decomposing the crop residue,
managing the deleterious soil insect-paste, and ultimately
improving the soil resilience and sustainability of the agriculture
production system (Sahoo et al., 2013).

Biochar
Biochar is a charcoal-like material produced from partial
pyrolysis of organic material produced from agriculture,
increasing the nutrient availability and organic carbon in the
soil ultimately soil fertility and NUE (Majumder et al., 2019).
Biochar is attributed with a high surface area, pores, and different
functional groups which imparts nutrient holding capacity in soil
(Prommer et al., 2014). Biochar has great potential in improving
the soil pH. Similarly, it also improves the aeration and moisture
retention capacity, porosity, and microbial density of the soil.
The combined use of wheat residue and biochar along with
nutrients at 1 and 2% doses improved the available N and pH
of the soil (Mierzwa Hersztek et al., 2020). The use of biochar
produced from woody components significantly improved the
cation exchange capacity of soil owing to the oxidation of specific
functional groups on the surface of biochar (Cornelissen et al.,
2013). Recalcitrant propriety of biochar prepared from rice husk
improved the soil organic carbon content in soil (Jatav and
Singh, 2019). The application of biochar not only enhanced
the productivity of crops but also the diversity and density of
beneficial micro-organisms in soil (Azeem et al., 2020a). It has
also been observed that the combined application of compost and
biochar enhanced the urease, dehydrogenase, and β-glucosidase
activity in the soil (Azeem et al., 2020b).

Zeolites
Zeolites are a group of naturally occurring minerals
(aluminosilicate) that consist of distinct chemical compositions.

Clinoptilolite is the most widely found zeolite. It is attributed
with high cation exchange capacity, surface area, base saturation,
and porosity which make it a potential candidate for improving
the chemical properties of soil (Gholamhoseini et al., 2012).
Zeolites have a minute void diameter (0.3–0.8 nm) that helps in
the fixation of NH4+ ion and slow release of N which ultimately
minimizes the N losses that occur through volatilization and
denitrification. The main use of zeolites is for N capture,
storage, and slow-release, as they adsorb molecules at relatively
low pressure and are considered as a nano-enhanced green
application (Lavicoli et al., 2014). It has been found that the
application of zeolites in the field improved crop productivity
and NUE (Ramesh and Reddy, 2011). Kavoosi (2007) found that
application of 16 tons zeolite ha−1 increased apparent N recovery
up to 65%, agronomic efficiency up to 22 Kg grain kg−1 N, and
ensured good retention of soil-exchangeable cations, available
P, and NO3− within the soil in maize at Malaysia (Rabai et al.,
2013). The application of zeolites along with rock phosphate
tremendously increased the uptake of P by crop plants through
exchanged induced dissolution (Yuan et al., 2008). Surface
application of zeolite has the potential for mitigating NH3 losses
thereby reducing losses of nitrogen to the environment (Waldrip
et al., 2014). Ammonium-charged zeolites have shown their
ability to increase the solubilization of phosphate minerals,
promote rock phosphate dissolution in all soil types, and reduce
fixation in soils (Shokouhi et al., 2015).

Role of Precision Farming in Improving
Nitrogen Use Efficiency
Precision farming is an information and technology oriented
farm input handling approach that aims to identify, analyze,
and manage spatial and temporal variation present within the
field by performing all practices of crop production in right
place at right time in the right way for optimum profitability,
sustainability, and protection of land resources (McBratney et al.,
2003). Global positioning systems (GPS), geographic information
systems (GIS), remote sensing, and variable rate applicators
(VRA) are the technologies that play important roles in the
efficient application of nutrients. Further, different precision
farming tools like, leaf color chart (LCC), chlorophyll meter, and
green seeker are also playing an instrumental role in increasing
NUE (Dass et al., 2015a).

Remote Sensing Technologies
The GPS provides location information in real-time while it is
moving. After getting specific location details, the collection of
soil and crop location data could be accomplished efficiently.
GPS receivers can be kept along with farm implements, which
permits the users to return to precise locations for managing
those areas. GIS are computer systems that utilize features,
characters, and location data for obtaining maps. They also
store remotely sensed data and soil nutrient levels. Remote
sensors of N are managed in an experienced way for evaluating
the demand for N to be fertilized into the cropping system
(Schmidt et al., 2002). In sensor oriented approach a non-
exhaustive N band is kept within the field which acts as a
control or reference. Sensors have the capacity to assess whether
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a crop requires extra N by postponing the application of some
amount of N normally used (Pathak and Ladha, 2011). Remote
sensing techniques collect data from distance. Remote sensing
data provide a tool for determining moisture, nutrient, and
health stress which are captured in overhead images. It has been
reported that plant N level and normalized difference vegetation
index (NDVI) have a strong correlation. The NDVI increases
with increasing leaf greenness, therefore, remote sensing could
be used a toll for N application (Gandhi et al., 2015). VRAs have
three components namely the computer, locator, and actuator.
The computer utilizes the application map and GPS send a signal
to the input controller which modifies the amount of input to be
applied in the field. The NUE in wheat increased by 15% when
fertilization was accomplished based on optical VRA techniques
(Raun et al., 2002).

Leaf Color Chart
A leaf color chart (LCC) is used for evaluating the leaf N
concentration based on the chlorophyll content of the leaves
(Singh et al., 2010). It is a diagnostic tool that can be used to
optimize the N requirement and nutrient management in the
rice-wheat cropping system (Yadav et al., 2017). The LCC reading
is taken 10 days after sowing or 20 days after transplanting to
heading. An LCC value of 3 and 4 is critical for basmati and
hybrid rice, respectively.

Application of N through an LCC-based approach in hybrid
rice resulted in a 25% saving of N fertilizer without compromising
crop yield (Singh et al., 2012). It has been reported that the
highest NUE and recovery efficiency of applied N was found
with a 120 kg recommended dose of nitrogen in rice at an LCC
value of 4. LCC-based nitrogen application was found to be
effective in improving rice yields with limited nitrogen supply on
a plant-need basis (Bhavana et al., 2020). Similarly, partial factor
productivity (52.9 kg kg−1), NUE (19.2 kg kg−1), and RE (54.3%)
were found higher under N followed the management with LCC
in different rice genotypes in Gujarat. Application of N at LCC4
was found better than LCC5 and LCC3 in terms of yield and
nitrogen saving (Gudadhe and Thanki, 2021).

Chlorophyll Meter
Soil Plant Analysis Development (SPAD) is also called a
chlorophyll meter that measures the chlorophyll concentration
of leaves. It is used to determine the effectiveness of top-dressed
N for improving the productivity and protein concentration in
the crop plants (Singh et al., 2012). The application of N in a
maize crop according to a chlorophyll meter (SPAD value ≤ 37)
approach led to a saving of 55 kg N per hectare without affecting
the yield of the crop. It has been reported that NUE was found
highest with SPAD-based (≤37) N application and the lowest
with soil-based N application (Dass et al., 2015b). Similarly, in
the rainy season maize results showed that, applying N based
on SPAD value < 37.5 recorded the highest grain yield (5.2
t/ha) which was significantly higher than soil-based and SPAD
value < 35 based N application. Water productivity (10.4 kg/ha-
mm) and agronomic efficiency (26.0 kg/kg N) were also the
highest with this treatment (Dass et al., 2014). Precise application
of N in wheat crops based on chlorophyll meter at SPAD value

of ≤ 42 led to increased crop productivity by as well as saving of
20 kg N per hectare (Dass et al., 2012).

Advances in Agronomical Practices
Diversified Crop Rotation
Diversified crop rotation is one of the major components of
conservation farming. It has a tremendous role in optimum
utilization of resources and enhancement of resource use
efficiency. Adoption of diversified crop sequences ensures precise
application of inputs (nutrients and moisture) to crops for
maintaining the sustainability of the agricultural production
system (Singh et al., 2012). Inclusion of summer mungbean
(SMB) in the maize-wheat cropping system after harvesting
of wheat improves the NUE and soil fertility by fixing free
atmospheric N and reduces the N requirement of the succeeding
crop gown in the sequence (Parihar et al., 2017). Growing
aerobic rice instead of transplanted rice leads to saving irrigation
water as well as the N requirement of the crop by curtailing
the denitrification, ammonia volatilization, and leaching of N
as occurs in transplanted rice (Jinger et al., 2020). Further, it
also enhances the NUE of applied nutrients under aerobic rice
(Jinger et al., 2021). Zero-till wheat followed legume with residue
retention has great potential to add organic matter and N into
the soil which eventually increases the water as well as NUE
(Das, 2014).

4R Nutrient Stewardship
The term “4R” refers to the use of the right source, right rate, right
time, and right place in nutrient management (Fixen, 2020). 4R
nutrient stewardship is the key to achieving balance fertilization
and higher NUE in the cropping system. To realize the maximum
benefit of every nutrient management practice the identification
of 4R nutrient stewardship for each nutrient and in every crop
is crucial (Bruulsema et al., 2019). The right source matches the
fertilizer types to crop needs. Yang et al. (2016) has reported
that modification in N source leads to a reduction in N losses.
Application of specially enhanced efficiency compounds like
nitrification or urease inhibitors delayed the N transformations
and minimized its losses. Another method is correctly matching
the amount and delivery rate of fertilizer to crop needs. Sela
and Harold (2018) reported that optimal N rates rely on soil
texture, mineralization rates, losses, and sources of N inputs.
The right time means making nutrients available when the crop
needs them. Under irrigated conditions, N fertilizers should be
applied in two to three equal splits. In medium and heavy soils
two-thirds or half of the dose should be applied at the time of
sowing and the remaining one-third or half-dose should be top-
dressed at first irrigation (Dhar, 2014). The right place means
keeping nutrients where crops can use them efficiently (Flis,
2018). Banding of N in the soil through injectors can also increase
N availability by applying the product closer to the crop roots
(Westerschulte et al., 2017).

Drip Fertigation
The application of nutrients to crops through a drip system
is called drip fertigation. It is the most advanced method in
nutrient as well as in water management. Farmers are practicing
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drip fertigation, particularly for winter wheat, across the globe
owing to significant improvement in WUE and NUE. Drip
fertigation matches the water and N supply with crop demand
which eventually enhances water productivity and NUE (Si
et al., 2020). It has been revealed that drip fertigation improved
the crop yield, WUE, and NUE. Further, drip fertigation led
to a reduction in evapotranspiration significantly as compared
to flood irrigation and broadcasting method of N application
(Li et al., 2021). Sub surface drip fertigation system has an
instrumental role in saving irrigation water, energy and in
increasing NUE (Sidhu et al., 2019). PFPN decreased with the
increase in the N application rate through drip fertigation.
The highest nitrogen production efficiency (264.4 kg/kg) and
partial factor productivity (265.9 kg/kg) of N in cucumber were
recorded under drip fertigation levels of 80 and 100% reference
evapotranspiration, respectively (Wang et al., 2019).

Crop Modeling
Crop models are a collection of mathematical equations that
were developed for predicting plant growth and development
in precise ways (Kephe et al., 2021). Also, they have shown
promising results in the decision support system, and policy
development under climate change scenarios. There are a
number of models developed for the assessment of NUE
in crops. For instance, in northeast China, DeNitrification-
DeComposition (DNDC) and Decision Support System for Agro-
technology Transfer (DSSAT) were developed for exploring
management strategies to stimulate yield and NUE in maize
crops. Further, from 7 years of experimenting they suggested
that the application of these models helps in adjusting the
fertilizer rates and time and planting density and dates, which
are associated with improvement of NUE (Jiang R. et al., 2019).
Likewise, the NDICEA (Nitrogen Dynamics In Crop Rotations
in Ecological Agriculture) crop model describes the soil water,
organic matter, and N dynamics in relation to crop demand
and weather conditions. The implication of this model was that
the application of combined inorganic and organic fertilizers
improve the crop yield, and NUE (Van der Burgt et al., 2006).
The SPACSYS model was used for stimulating crop yield and
NUE in wheat and maize under climate change. This study
results suggested that climate change reduces the NUE by 15%
in north China, which can be compensated by the advanced soil
management practices and higher application of N, P, K, and
manure (Liang et al., 2018). Consequently, numerous studies
conducted in diverse agricultural crops state that the adoption of
effective management strategies combined with the crop models
enhance the NUE and yield attributes.

CROSS TALK OF OTHER MINERAL
NUTRIENTS WITH NITROGEN AND
EFFECT ON NITROGEN USE
EFFICIENCY

Nitrogen is the major essential nutrient required by the plants
and it interacts with almost all the other essential nutrients. N
has synergistic interaction with most of the nutrients that leads

to enhanced NUE. However, the kind of interaction depends
on the number and amount of interacting nutrients present
in the soil and their application rate. If both the interacting
nutrients have an imbalanced amount in the soil it could cause
antagonistic interaction (Datta and Meena, 2015). Jiang J. et al.
(2019) reported that P x N have positive interaction (synergistic)
because the application of P improved the N content in the plant.
Dwivedi et al. (2003) also observed that combined fertilization of
N and P improved the NUE by 28% in wheat crop. Conversely,
Aulakh and Malhi (2005) observed that in P deficient soil, sole
application of N led to a reduction in grain yield and reported
antagonistic interaction. Barker and Pilbeam (2015) found that
fertilization of K enhanced the N uptake and assimilation in
plants, and eventually NUE, by many folds. However, they also
reported that when K is low in the soil, it competes with NH4 for
selective binding sites in the adsorption process and eventually
caused an antagonistic effect. Sulfur is the most important
secondary nutrient, and Jamal et al. (2010) revealed that S
application has an instrumental role in enhancing the recovery
efficiency and NUE of applied N. However, Rietra et al. (2017)
reported that in S deficiency condition, application of N leads
to abundant accumulation of a pernicious level of N metabolites
in plants. Wilkinson et al. (2000) concluded that Ca and Mg
enhanced solubility of fixed N in the acidic soils, and improved
N translocation in plant. However, in Mg deficient soil, sole
application of N fertilizers causes grass tetany in livestock caused
by low Mg concentration in forage. N fertilization improved
the Zn absorption, translocation, and assimilation in crops and
led to increased zinc use efficiency and vice versa. Antagonistic
effect of N fertilization on Zn nutrition either due to dilution
effect (decrease or dilution in plant nutrient concentration due
to increase in biomass yield) effect or poor translocation of Zn-
protein complex in the roots. The application of N fertilizers
enhanced the availability of Fe and Mn by increasing acidity
which further led to the conversion of unavailable forms of
Mn and Fe into available forms (Aulakh and Malhi, 2005). In
optimum conditions, N has a positive interaction with Cu but in
the case of Cu deficient soil application of N resulted in crystal
clear symptoms of Cu deficiency in plants (Barker and Pilbeam,
2015). The interaction effect of B, Cl, Mo, and Ni with N has not
been reported so far. However, some studies reported that these
nutrients are helpful in increasing NUE. In acidic conditions Al
and Ce reduced the uptake and assimilation of N due to reduced
growth of roots ultimately decreased NUE (Hille et al., 2011; Zhao
and Shen, 2020). The cross-talks of different mineral elements
with N are highlighted in Table 1.

ADVANCES IN PHYSIOLOGICAL
APPROACHES FOR IMPROVING
NITROGEN USE EFFICIENCY

Physiological attributes play a pivotal role in improving NUE
in plant species. Among those attributes, the root system is
crucial in the acquisition of water and nutrients through its
ability of soil exploration which is the main determinant of NUE
(Li X. et al., 2016). NUE depends upon the root distribution
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TABLE 1 | Cross talk of N with other essential elements.

Mineral
nutrient

Effect of N
concentration/uptake

Mechanism References

P (Optimum) Enhance N concentration in plant Synergistic Jiang J. et al.,
2019

P (Deficient) Application of N alone could
cause a severe reduction in grain
yield

Antagonistic Aulakh and
Malhi, 2005

K (Optimum) Increase NH4
+ assimilation in

plant
Synergistic Barker and

Pilbeam,
2015

K (Deficient) Competes with NH4 for selective
binding sites in the adsorption
process

Antagonistic

S (Optimum) Increased recovery and NUE Synergistic Jamal et al.,
2010

S (Deficient) Excessive accumulation of toxic
levels of N metabolites in the
plant

Antagonistic Rietra et al.,
2017

Ca (Optimum) Increased water-soluble N and
fixed NH4 in the acidic soils,
leading to increased N uptake

Synergistic Wilkinson
et al., 2000

Mg (Deficient) Application of N fertilizers cause
grass tetany in livestock caused
by low mg concentration in forage

Antagonistic

Zn (Optimum) Nitrogen improved Zn absorption
by plants and vice versa.

Synergistic Datta and
Meena, 2015

Zn (Deficient) Antagonistic effect either due to
dilution effect (decrease or
dilution in plant nutrient
concentration due to increase in
biomass yield) effect or poor
translocation of Zn-protein
complex in the roots.

Antagonistic

Fe Application of N increased acidity
with NH4 may enhance the
availability of Fe2+ by promoting
the reduction of Fe3+.

Synergistic Aulakh and
Malhi, 2005

Mn Application of N leads to
reduction of the unavailable
Mn4+ to available Mn2+ in soil

Synergistic

Cu (Deficient) Cu deficiency symptoms became
more severe when N was applied
to Cu deficient soils.

Antagonistic Barker and
Pilbeam,
2015

Al Al inhibit root growth and uptake
of N

Antagonistic Zhao and
Shen, 2020

Ce Decrease N assimilation Antagonistic Hille et al.,
2011

in soil, root size, and root/shoot (R/S) ratio (Garnett et al.,
2009). These factors maximize the uptake and interception of
nitrogen as well as reduce the nitrogen losses to groundwater and
deeper layers of soil (Lynch, 2013). The important plant attributes
related to N uptake, acquisition, assimilation, remobilization, and
portioning are highlighted in Figure 3. Various research studies
have been conducted to show that root system architect (RSA)
is closely related to the NUE e.g., plants having deeper and
steeper roots can uptake nitrogen effectively from deeper soils
(Zhan and Lynch, 2015). A research study on two varieties of
Chinese (XY335 and ZD958) and one variety of US (P32D79)
maize was conducted to analyze the effect of the root system on

NUE. Root analysis with respect to NUE revealed the positive
correlation of NUE with dry weight (RDW) and root/shoot
(R/S) biomass ratio. While RDW and R/S ratio of western
variety (P32D79) were greater than Chinese varieties (XY335
and ZD958) similarly, it was also observed that P32D79 had
a better root system which leads to higher N-uptake and
removal of more N-minerals than Chinese varieties from the
soil. Thus, it was concluded that maize variety with a better
root system and higher stress resistance underlines higher NUE
(Yu et al., 2015).

Due to the major role of the root system in NUE, its genetic
basis is also subjected to study. A research study was conducted
to understand the genetic association between root traits of maize
seedlings and NUE through QTL analysis. Recombinant inbred
lines of maize were sown under low and high nitrogen conditions
in which 9 traits of RSA and 10 traits of NUE were evaluated
in three hydroponic and four field conditions, respectively.
A significant correlation was observed between uptake efficiency
of nitrogen and RSA (especially in the crown and seminal
roots). Almost 331 QTLs in total were identified including 147
QTLs of RSA and 184 QTLs of NUE. Almost 70% of NUE-
QTLs coincided with the QTL clusters of RSA which indicated
the significant genetic association between traits of NUE and
RSA. This association can aid in the selection of RSA-traits for
improvement of NUE in the maize (Li et al., 2015).

In a research study, recombinant inbred rapeseed “BnaZNRIL”
was studied to investigate traits related to NUE and root
morphology (RM) under high and low nitrogen hydroponic
conditions. Results indicated the significant correlation of root
size (trait related to RM) with N-uptake and dry biomass of plant
while no correlation was observed with the efficiency of nitrogen
utilization (NUtE). Approximately 23 stable QTLs out of a total of
129 were detected in both high and low nitrogen conditions. Most
of the stable QTLs (20/23) were observed to be related to RM
traits under both high and low nitrogen conditions which lead to
the suggestion of regulating the root morphology through NUE
is more feasible than through regulating the nitrogen efficiency in
rapeseed (Wang et al., 2017). Another genome-wide association
study was conducted to understand the effect of low nitrogen
levels on root growth and root traits at seedling emergence level.
A panel of 461 inbred lines of maize was assayed for the root
growth under low nitrogen (0.05 mml−1) and high nitrogen
level (5 mml−1). The panel was further genotyped with an SNP
marker of 542,796 high density. Various root traits were observed
to be increased under low nitrogen conditions such as total
root length, dry weight of root, root-to-shoot ratio, lateral and
axial root length of the primary root. Furthermore, a wider
heritability range of 0.43–0.82 was observed under low nitrogen
conditions than the range of 0.25–0.55 under high nitrogen
conditions. After marker-assisted analysis, it was observed that
under low nitrogen conditions, gene encoding DELLA protein
was in association with the lateral root-zone of primary root and
protoporphyrinogen IX oxidase-2 gene was in association with the
surface area of the root. While under high nitrogen conditions
the histone-deacetylase gene was in association with the plant
height which can be further used to exploit genetic improvement
in root traits through better NUE of maize (Sun et al., 2021). The
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FIGURE 3 | Highlights the crucial plant traits for improvement of NUE in plants. In this figure first process includes the traits which are crucial for increasing N
availability in soil, then most of soil properties and reactions are associated with this. Further, this increased need for N acquisition by the root tissue for this root
architecture traits plays an important role. Later on, the biochemical processes in leaf tissue contributes to N assimilation in root and shoot tissues. Consequently,
the N remobilization from stored tissues is crucial for increasing NUE and the last N portioning is the next crucial process that determines the N availability in
reproductive tissues.

important root traits and associated genes in response to NUE are
highlighted in Table 2.

ADVANCES IN CONVENTIONAL
BREEDING FOR IMPROVING NITROGEN
USE EFFICIENCY

Cereals, such as rice, wheat, and maize, are the most
important sources of calories and nutrition for humans. Modern

varieties differ in key NUE characteristics (Cormier et al.,
2013; Barraclough et al., 2014). However, it is clear that a
broader germplasm base has a much higher potential for
variation (Monostori et al., 2017). The efficient use of resources,
including fertilizers such as nitrogen, is critical to long-
term sustainability. According to Raun and Johnson (1999),
globally only 33% of applied nitrogen fertilizer is recovered in
harvested grain. The main problem with landraces and relatives
is that while biomass may be high, yields and in particular
HI are normally low, making traditional NUE measurements
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TABLE 2 | Major quantitative trait loci (QTL) associated with NUE in cereals crops.

Crop QTLs Chromosome no. References

Rice qNUE2.1 2 Zhou et al., 2017

qNUP3.1 3

qNUE4.1 4

qNUE6.1 6

qNUE6.2 6

qNUP8.1 8

qNUE10.1 10

qNUE10.2 10

Qnr 1 Nguyen et al., 2016

QaNUE 8

qNAA4 4 Dai et al., 2015

qNAA5 5

qNAA10 10

Wheat QNue.151-1D 1D Brasier et al., 2020

QNue.151-4A 4A

QNue.151-6A 6A

QNue.151-7D 7D

NutE2 3A Cormier et al., 2016

NUE8 1A

NUE10 3A

NUE2 3B

NUE2 3B

Barley qNUEg 2H Kindu et al., 2014

qNUEb 3H

less useful. Height, which is influenced by dwarfing genes, is
the most important architectural influence. While Rht genes
may have a negative effect on height, they may also have
other pleiotropic effects, such as decreased root proliferation
(Gooding et al., 2012; Bai et al., 2013). The efficiency of
absorption will be aided by variations in root architecture and
function. Root traits have been deconstructed as quantitative
trait loci (QTL) in a number of studies. The variation in root
proliferation, length, lateral profusion, and spread or angle
of roots has been identified (Gooding et al., 2012; Atkinson
et al., 2015). Wheat has a large number of nitrate transporter
genes that are involved in both initial uptake and internal
translocation mechanisms.

NUE is a polygenic trait with a number of factors.
As a result, identifying individual genetic effects involves
quantitative genetics strategies, and such effects have been
usually characterized as QTL. There are several methods for
identifying genes that control NUE and utilizing them in
breeding. Associations genetics could be based on genetic panels
that are well-suited to the researcher’s test environment, sample
multiple alleles, and provide extremely high genetic resolution.
Furthermore, association genetics requires a good balance of
alleles at each location analyzed, with low-frequency alleles
(usually less than 10%) being excluded from the research.
Segregating populations derived from two diverse parents is
the best-established way of QTL identification. Recombinant
Inbred Lines and Single Seed Descent or the doubled haploids
are statistically strong because only the two parental alleles are

segregating at anyone locus and the population is comprised 50%
of each allelic class.

A number of studies on NUE QTLs have been well known
by this approach for example in rice (Wei et al., 2011). Multi
Parent Advanced Generation Intercross (MAGIC) permits the
concurrent analysis of several alleles and the mapping resolution
afforded by recombination of the population as well as historical
recombination (Mackay et al., 2014). Wingen et al. (2017)
produced a publicly available NAM population that represents
more than 90 landrace parents and over 10,000 recombinant
inbred lines. Preceding studies of cereal crops have searched
for novel NUE traits and alleles in adapted breeding materials
(Fontaine et al., 2009), landraces (Pozzo et al., 2018; Van Deynze
et al., 2018), and wheat wild relatives (Hu et al., 2015). While these
authors have successfully identified QTLs, genes, and genotypes
conferring high NUE, additional sources of genetic variation
likely still exist within the currently unexplored germplasm.

ADVANCE IN MOLECULAR
APPROACHES FOR IMPROVING
NITROGEN USE EFFICIENCY

Recently the development of cultivars with improved NUE is of
utmost essential as after decades of green revolution application
of N fertilizer is increased tremendously to meet grain yield
demands. Simultaneously, its negative impact may be witnessed
in the form of the increased cost of cultivation and hazardous
effect on the ecosystem. The transcription factors, allosteric
control, and post-transcriptional modification all play a vital role
in the expression of a complex trait like NUE (Basu and Jenkins,
2020). Because quantitative traits like NUE are influenced by
a large number of genes with minor effects and environmental
influence, identifying QTLs for such traits necessitates a larger
mapping population with phenotyping at a variety of locations
and environmental conditions, as well as a sufficiently large
coverage of the genome by the markers. Though, major QTLs
with major and minor effects that can easily be incorporated
in the breeding cycle are very limited in number. However,
minor QTLs with minor effects are more in number but they
require proper validation across the population. The molecular
information on genes involved in various stages of the N
metabolic process, from protein to final metabolites can aid in the
identification of QTLs associated with NUE or its components.
The important molecular biology tools for improving NUE are
highlighted in Figure 4.

N-Transporters/Genes/Quantitative Trait
Locis Identified to Enhance Nitrogen Use
Efficiency
Selection of genotypes having root structure association (RSA)
based NUE is recommended in wheat due to a limitation of
full comprehension regarding the genetic background of NUE
and associated G × E interactions. Wheat QTL analyses for all
RSA characteristics are also available. Numerous wheat QTLs for
NUE attributes have been discovered at the physiological and
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FIGURE 4 | Represents the advances in molecular biology in improving NUE. In this, the identification of QTLs (Quantitative trait loci) related to root architecture,
miRNAs (micro RNA), transporters, and metabolism is crucial for improving NUE. In this sequence the application of genomics, proteomics, phenomics, and
metabolomics have great opportunities to enhance NUE. Then the identification and transfer of genes related to NUE and nitrogen metabolism play a crucial role in
the development of high-NUE efficient plants.

agronomic levels (Fan et al., 2019; Brasier et al., 2020). Despite
these considerable advancements in knowledge of NUE and RSA
genetics, only a small percentage of these QTLs and related
markers could be used in practical breeding (Saini et al., 2021).

A meta-QTL (MQTL) study appears to be a viable technique
for overcoming the aforesaid constraints in employing QTLs
for the production of wheat cultivars with greater NUE, as it
permits identification of the most robust and stable MQTLs.
Because MQTLs have lower confidence intervals (CIs) and better
phenotypic variation explained (PVE %) than QTLs, they are
more useful in marker-assisted selection (MAS). MQTLs have
also been demonstrated to be effective in identifying interesting
candidate genes (CGs) linked to the trait of interest. Already,
this approach has been utilized in the identification of MQTLs in
various major crops like wheat, rice (Khahani et al., 2020, 2021;
Kumar and Nadarajah, 2020), barley (Zhang et al., 2017), and
maize (Zhao et al., 2018). The physical position of these MQTLs
was for NUE was confirmed by using the GWAS approach
on durum (4x) and bread wheat (6x), results depicted that 45
MQTLs were confirmed for durum wheat and 81 for bread wheat
while 38 MQTLs verified in both ploidy wheat (Saini et al.,
2021). The agronomic nitrogen−use efficiency of rice can be
increased by driving OsNRT2.1 expression with the OsNAR2.1
promoter (Chen et al., 2016). Moreover, altered expression of
the PTR/NRT1 homolog OsPTR9 affects nitrogen utilization
efficiency, growth, and grain yield in rice (Fang et al., 2013).
Previous research by Zhao et al. (2021) reported that PtoNRT
genes exhibited distinct expression patterns between tissues,
circadian rhythm points, and stress responses. The association
study showed that genotype combinations of allelic variations of

three PtoNRT genes had a strong effect on leaf nitrogen content.
The weighted gene co-expression network analysis (WGCNA)
produced two co-expression modules containing PtoNRT genes.
Moreover, PtoNRT genes defined thousands of eQTL signals.
WGCNA and eQTL provided a comprehensive analysis of
poplar nitrogen-related regulatory factors, including MYB17 and
WRKY21.

Similarly, in maize plants, it has been reported by many
authors that some gene domains/families which are responsible
for other gene regulations were also found to be engaged with
NUE. For example, kinase domain (98 genes), for protein-
containing F-box like domain (79 genes), for cytochrome P450
proteins (40 genes), for glycoside hydrolases (32 genes), for UDP-
glucosyltransferases (13 genes), for NAC TFs (16 genes), for
expansions (14 genes), for early nodulin-93 proteins (13 genes),
for GRAS TFs (10 genes), and ABC transporter proteins (10
genes), respectively, were associated with NUE (Minic, 2008;
Bi et al., 2009; Meijón et al., 2014; He et al., 2015; Jun et al.,
2015; Marowa et al., 2016; Do et al., 2018; Zhang N. et al., 2020;
Zhang Z. et al., 2020; Saini et al., 2021). Previous studies have also
reported that genes governing glutamate synthase (GS) within
QTLs interval are relevant for NUE and remobilization. These
kinds of QTLs which are wider and have minor effects on N
uptake should be verified by identification, isolation cloning, and
genetic transformation.

As a result, breeding efforts should be more focused on
regulatory proteins to get better results in terms of improved
NUE. The majority of studies pertaining to the identification of
markers or genes for NUE have been conducted at one level of
N, however, missing out on information on physiological NUE.
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Another stumbling block to applying such results across an area
and population is the substantial variability in N concentration
of unfertilized soil. Even the validation of QTLs through gene
cloning necessitates highly accurate phenotyping and genetic
resources. The gene like NAC transcription factor in emmer and
durum wheat has been identified as a marker for NUE which
influence grain N content, zinc (Zn), and iron (Fe) concentration
at the time of senescence by delaying the senescence period
(Uauy et al., 2006). The better application of molecular markers
for enhancing NUE genes in breeding methodologies and for
transgenics requires quick, robust, and reliable phenotyping.
Some genomic regions like GS and GOGAT controlling NUE
are conserved across many crops like rice, maize, sorghum,
and stiff broom grass; other than these conserved regions genes
regulating photoperiod, vernalization, and semi-dwarf are also
associated with NUE (Quraishi et al., 2011; Ranjan and Yadav,
2019). The N uptake system of plants uses two types of systems;
one is a low-affinity transport system (LAST) and another a high-
affinity transport system (HATS), these are more dominant when
the plant faces N scarcity under limiting N conditions. NRT1
gene families are responsible for coding LATS and AtNRT1.1
and AtNRT1.2 govern the nitrate uptake. The transcription
factor TaNCA2-5A plays a significant role in the expression of
transporters associated with nitrate uptake and happens to be
a key controller in N supervisory system (He et al., 2015). The
important QTLs related to NUE in cereal crops are highlighted in
Table 3.

Transgenic Development to Enhance
Nitrogen Use Efficiency
Through the transgenic approach defect removal in any
cell is made possible by integrating a single foreign gene
sequence in the host’s genome background via transformation
method is only a quick and time-efficient technique over
the conventional methods. Many insect-pest resistant, disease
resistant, and genetically modified crops have been released
for their cultivation in 28 countries across the world: the
United States, Brazil, Canada, Argentina, China, and India

among them (FAOSTAT, 2016). Researchers have focused on
seven genes namely GS1, GS2, GOGAT, AlaAT, GDHA, Nia1,
and Nia2 to develop genetically engineered NUE cereals mainly
in rice, corn, wheat, and rapeseed-mustard. The major studies
report that the gene used for improved NUE was mainly plant-
based except for some bacterial genes and tested in both model
plant Arabidopsis as well as in other crop plants also. The most
extensively plant-based gene used for NUE was the gene that
is involved in GS biosynthesis which makes GS a major source
for N movement from source to sink. It has also been evident
that over-expression of this gene in cereal crops, improves the
NUE, foliage, and grain yield, however, it has not been reported
in dicots due to mismatch or poor promoter (Ranjan and Yadav,
2019). A previous study reported that post-flowering expression
of a TaNRT2.1 was very well associated with uptake of nitrate,
the gene code for root nitrate transporter, and correlated with
high protein and grain yield in wheat (Taulemesse et al., 2015;
Xing et al., 2019). The gene OsNRT1 is expressed under low N
conditions in rice (Huang et al., 2009). AtNRT2.1 and AtNRT2.1
well correlated with nitrate uptake and showed 75% high affinity
under a scarcity of N content, suggesting that expression of
these two genes related with better performance under low N
conditions in Arabidopsis (Li et al., 2007). In maize expression
of two genes, ZmNRT2.1 and ZmNRT2.2 through sequence
homology approach accounts for increased resistance to low N
concentration (Plett et al., 2010) while the overexpression of
genes Gln1-3 and Gln1-4 through virus promoter, which codes
for GS biosynthesis, results in the 30% increase in maize kernel
yield (Martin et al., 2006). In the rice plant, OsNRT1.1B and
OsNRT2.3b were identified as nitrate transporter genes. By using
this promoter gene, when barley AlaAT gene was transferred in
canola and rice, enhanced the NUE by 40 and 12% in canola
and rice, respectively, recently many private companies are using
OsNRT2.3b in various crops like maize, rice wheat, and soybean
to accelerate grain yield through improved NUE (Good et al.,
2007; Hu et al., 2015; Feng et al., 2017; Wang et al., 2018;
Sisharmini et al., 2019; Shah et al., 2021a,b). The AlaAT approach
is less understood, if this method is used with the proper
understanding of promoter can evolve better results. As discussed

TABLE 3 | Crucial root traits associated with improved nitrogen use efficiency.

Root traits Crop Gene associated Role in improving NUE References

Epidermis, phloem-companion cells,
and xylem parenchyma

Oryza sativa OsNPF2.4 Gene functions in the low acquisition affinity and long-distance
transportation of NO−3

Xia et al., 2015

Lateral root primordia and vascular
tissues of root

Oryza sativa OsATM1.3 NH+4 transporter Ferreira et al., 2015

Parenchyma cells of root Oryza sativa OsNPF2.2 Mutants of OsNPF2.2 were observed to maintain high nitrate level in
roots than control plants

Li et al., 2015

Root sclerenchyma, stele, and cortex Oryza sativa OsNPF7.2 OsNPF7.2 is a low affinity transporter of nitrates and aids in intracellular
transportation of nitrates in the roots

Hu et al., 2016

Root epidermis Oryza sativa OsATM1.1 Dual-affinity transporter of NH+4 as well as root-to-shoot nitrate
transporter

Li C. et al., 2016

Root hairs Arabidopsis
thaliana

TGA1/TGA4 and
NTR1.1

Nitrate increase the density of root hairs which in turn increase the
capacity of nitrate uptake

Canales et al., 2017

Root tissues Brassica
napus

NRT2 Out of 17 NRT2 genes almost all were expressed under nitrogen
starvation to enhance the efficiency of nitrogen uptake.

Tong et al., 2020
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above, very few bacterial genes were used for enhancing NUE, a
bacterial gene from E. Coli, GDHA, expressed in tobacco via plant
virus promoter improved the biomass by 10% under deficient N
concentration (Mungur et al., 2005, 2006). The researchers have
reported that overexpression of TaNAC2-5A aided grain yield and
N movement in wheat plants and suggested that the gene can be
utilized in wheat breeding programs to increase grain production
through the development of high NUE varieties (He et al., 2015).
In tomato plants it is observed that over-expression of LeNRT2.3
leads to enhance nitrate uptake and N movement (Fu et al., 2015).
Genetically engineered Arabidopsis showed improved growth
and vigor through altered N and C metabolism under low N
conditions via over-expression of Dof1 (DNA-binding with one
finger) (Yanagisawa et al., 2004) and also when engineered with
OsATG8b gene of the rice plant, which plays a key role in N
mobilization in rice plant (Zhen et al., 2019). Similar, findings
were observed by Kurai et al. (2011) in rice. Transgenic rice
with modified OsENOD93-1 resulted in improved NUE under
both the conditions low as well as in optimal N conditions
(Bi et al., 2009). Similarly, genetically engineered rice exhibited
improved NUE via over-expression of Rubisco enzyme (ribulose
1, 5- biphosphate carboxylase- oxygenase), which plays a vital role
in photosynthesis (Yoon et al., 2020). The important trans-genes

and transcription factors used for enhancing NUE and their
mechanism are highlighted in Table 4.

The increase in N uptake from the seedling stage to
the pre-flowering stage and increased N-translocation at the
post-flowering stage are the two ways to improve NUE in
any plant. Because there is a link between N uptake and
rhizosphere nitrification, as well as the contribution of nitrate
to N uptake, current high yield-crop breeding initiatives that
modify the expression of nitrate transporters in new crops
will enhance the balance between nitrate-N and ammonium-
N uptake. Anticipating, germplasm-related differences in nitrate
transporter activity will be revealed in the future, and employing
transporters to improve N absorption and translocation, and
therefore increase NUE, will be discovered.

Omics Approaches for Enhancing
Nitrogen Use Efficiency
By virtue of the necessity of precise identification of genes
involved in N uptake, mobilization, and recycling at various plant
growth stages from seedling to maturity, taking the benefits of
many omics data sets that include transcriptomics, proteomics,

TABLE 4 | Transgenes introduced and their role in improving nitrogen use efficiency.

Genes Crop Function Role in improving NUE References

NRT1.7 Arabidopsis
Tobacco
Rice

Loading excess nitrate stored and facilitates nitrate
allocation to sink leaves

Enhancing source-to-sink nitrate
remobilization

Chen et al., 2020

GS 1 Rice Glutamine synthetase (cytosol) Increase in total N and A.A Cai et al., 2009

GS 2 Rice Glutamine synthetase (Plastid) Increased in photorespiration Hoshida et al., 2000

TaNRT2.1 Rice Uptake of nitrate at post-flowering high protein and grain yield Taulemesse et al., 2015

OsNRT2.1 Rice N-uptake and mobilization Expressed during low N condition Chen et al., 2016

ARE1 Rice N-uptake and mobilization increased NUE, delayed senescence,
increased biomass

Zhang J. et al., 2021

GOGAT Tobacco Glutamate synthetase Increased in Biomass Chichkova et al., 2001

AlaAT Mustard
Rice

Alanine amino transferase Increased in biomass and grain yield Good et al., 2007;
Sisharmini et al., 2019

GDHA Tobacco Glutamate dehydrogenase High water potential during drought,
Increased in biomass and dry weight,
Increased in ammonium assimilation.

Ameziane et al., 2000;
Mungur et al., 2005,
2006

Nia1 Lettuce Nitrate reductase Nitrate content Lillo et al., 2003

Nia2 Potato Nitrate reductase Reduced in nitrate level Djennane et al., 2002

AtNRT2.1AtNRT2.2 Arabidopsis Nitrate uptake 75% high affinity under scarcity of N
content

Li et al., 2007

OsATG8b Arabidopsis N remobilization Tolerance to nitrogen starvation Zhen et al., 2019

Gln1-3 and Gln 1-4 Maize Glutamate synthetase 30% more grain yield in Low N uptake Martin et al., 2006

ASN1 Rice Asparagine synthetase 1 Improve N content in grain Lee et al., 2020

DEP1 Rice DENSE AND ERECT PANICLES 1 Ammonium uptake and assimilation Sun et al., 2014

TaVRN1 Wheat VERNALIZATION1 Improve NUE Lei et al., 2018

Transcript factors

ENOD93–1 Rice Early nodulin Increased in biomass and seed yield Bi et al., 2009

TOND1 Rice Tolerance of Nitrogen deficiency Increased the tolerance to N deficiency Zhang Y. et al., 2015

NAC Wheat Influence grain N content, zinc (Zn) and iron (Fe)
concentration

Delaying the senescence period Uauy et al., 2006

MADS25 Rice Promote lateral and primary root development and
improve root attributes

Increase the expression of nitrate
transporter genes

Yu et al., 2015
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and metabolomics which could further be accessed in an
interactive manner by using bioinformatics, computational, and
mathematical techniques. Previous researchers have investigated
rice transcriptome under N deficient conditions by using high
scale data set to identify the specific N responsive genes and
miRNA (Lian et al., 2006; Bi et al., 2009; Jeong et al., 2011; Cai
et al., 2012; Yang et al., 2015).

However, these findings were restricted to single type RNA
like, mRNA or small RNAs, and also have not provided an
overview of transcriptome responses to alter N mobility. Shin
et al. (2018) examined the transcriptomic analysis by using non-
coding RNAs (lncRNAs) under low N conditions and the results
provided the information on transcriptomic wide modification
and response under N scarcity situation. In the future this large-
scale transcriptomic data set will provide important information
for the development of improved NUE- rice varieties.

Tiwari et al. (2018) integrated genomics with physiological
and breeding approaches for improving NUE in potato. Whole
genomic and transcriptomic approaches have identified the
mRNA transcripts and TFs for NO3

− sensing and signaling
in Arabidopsis (Marchive et al., 2013). Amiour et al. (2012)
identified detailed mechanisms of N metabolism by integrating
metabolomics transcriptomic and proteomic approaches in
maize. The first investigation on complete gene-to-metabolite
networks controlling NUE in Arabidopsis was reported by Hirai
et al. (2004). Simons et al. (2014) developed a comprehensive
understanding of N regulation and metabolism in maize by
involving available transcriptome, proteome, and metabolome
datasets. Ichihashi et al. (2020) analyzed a Brassica rapa based
agroecosystem using multi-omics and integrated informatics
approaches and revealed complex interactions among multiple
network modules of NUE. Beatty et al. (2016) elucidated
the whole-plant nitrogen metabolism using metabolomics and
computational approaches in crops. Therefore, integrated omics
is a holistic approach to understanding the N flow and associated
regulation at the cellular, organ, and whole-plant levels.

CONCLUSION AND FUTURE
PROSPECTS

Global food security with nutritional security is the most
crucial task for future generations. However, the efforts of
scientists or agricultural researchers can achieve this task and
somehow they succeed in finding numerous technologies and
ways through which they are trying to complete. Although, in
modern times several new problems such as climate change,
abiotic stresses, and problematic soils cause the loss of natural
resources, and together amplify our food security target. In

this scenario, there is an emergency need to reduce the cost
of cultivation and degradation of natural resources. Therefore,
increasing the NUE in economically important crops is a great
challenge to secure environmental sustainability. However, the
advancement in agronomical approaches has achieved some
milestones in the last decades such as precision farming and
nano-fertilizers. On the other hand, recent advancements in
molecular biology and tools speed up the process and have a
bright future in developing higher NUE efficient crops. However,
still there is a huge gap in targeted NUE and also reduced
during the last decades because of higher use of N fertilizers,
especially urea. Therefore, it is recommended that the new
fertilizer policy is based on the alternatives to urea for N
sources such as customized, bio, and nano-fertilizers, which
might be a breakthrough in enhancing NUE and reducing N
pollution. Also, there might be a decision support system for
best management practices at a local basis, which can directly
benefit to the farmer in enhancing NUE and yield. Therefore, we
combined these two crucial approaches in respect to improving
NUE and might be game-changing for enhancing NUE in
near future. Moreover, future trends and expectations should
be aimed at cracking the current main hurdles to crop plants.
Modern genome-editing tools can provide a permanent solution
by developing varieties with enhanced NUE, although further
studies are needed to reach these goals. The integration of all
these approaches will lead to the sustainable production of crops,
through the effective management of environmental stresses
under the present scenario of changing climate. In addition, plant
epigenetics, which is a conserved gene expression regulatory
mechanism including histone modification, DNA methylation,
non-coding RNA, and chromatin remodeling, represents an
emerging and efficient tool to better understand biological
processes in response to nitrogen enhancement.
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