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The clustered regularly interspaced short palindromic repeat/CRISPR-associated protein 
9 (CRISPR/Cas9) technology is an efficient genome editing tool used in multiple plant 
species. However, it has not been applied to Tartary buckwheat (Fagopyrum tataricum), 
which is an important edible and medicinal crop rich in rutin and other flavonoids. FtMYB45 
is an R2R3-type MYB transcription factor that negatively regulates flavonoid biosynthesis 
in Tartary buckwheat. Here, the CRISPR/Cas9 system polycistronic tRNA-sgRNA (PTG)/
Cas9 was employed to knock out the FtMYB45 gene in Tartary buckwheat. Two single-
guide RNAs (sgRNAs) were designed to target the second exon of the FtMYB45 gene. 
Twelve transgenic hairy roots were obtained using Agrobacterium rhizogenes-mediated 
transformation. Sequencing data revealed that six lines containing six types of mutations 
at the predicted double-stranded break site were generated using sgRNA1. The mutation 
frequency reached 50%. A liquid chromatography coupled with triple quadrupole mass 
spectrometry (LC-QqQ-MS) based metabolomic analysis revealed that the content of 
rutin, catechin, and other flavonoids was increased in hairy root mutants compared with 
that of lines transformed with the empty vector. Thus, CRISPR/Cas9-mediated targeted 
mutagenesis of FtMYB45 effectively increased the flavonoids content of Tartary buckwheat. 
This finding demonstrated that the CRISPR/Cas9 system is an efficient tool for precise 
genome editing in Tartary buckwheat and lays the foundation for gene function research 
and quality improvement in Tartary buckwheat.

Keywords: Fagopyrum tataricum, PTG/Cas9 system, targeted genome editing, FtMYB45 gene, flavonoid 
biosynthesis

INTRODUCTION

Tartary buckwheat [Fagopyrum tataricum (L.) Gaertn], also called bitter buckwheat, is an 
annual dicotyledonous plant belonging to the Polygonaceae family and the Fagopyrum genus. 
It is a diploid species (2n = 2x = 16), originates in the mountains of Western China at 400–3,900m 
of altitude, and is mainly cultivated in the Himalayas, Southeast Asia, Europe, and South 
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America, particularly in China, Afghanistan, Bhutan, Kazakhstan, 
Northern India, and Nepal (Wang and Campbell, 2007; Guo 
et  al., 2011). Tartary buckwheat is an important traditional 
medicinal and edible plant, which is considered a new plant-
based ingredient to enrich corn-based gluten-free formulations 
(Appiani et  al., 2021). It is rich in various flavonoids, high-
quality proteins, amino acids, and dietary fiber (Zhao et  al., 
2012). Flavonoids such as rutin, catechin, and epicatechin are 
the most important biologically active components of Tartary 
buckwheat (Md et al., 2013). Studies have shown that flavonoids 
effectively improve the symptoms of and prevent cardiovascular 
diseases, hypertension, diabetes, retinal hemorrhage, and acute 
hemorrhagic nephritis. They also have positive effects on the 
stomach, promote digestion, and improve immunity (Martínez 
Conesa et  al., 2005; Jiang et  al., 2007; Tomotake et  al., 2007). 
Thus, Tartary buckwheat has become an important functional 
food (Zhou et  al., 2015).

MYB transcription factors play important roles in the 
regulation of flavonoid biosynthesis in plants. In Arabidopsis 
thaliana, AtMYB3, AtMYB4, AtMYB7, and AtMYB32 inhibit 
phenylpropanoid biosynthesis (Jin et  al., 2000; Preston et  al., 
2004; Dubos et  al., 2010; Fornalé et  al., 2014). In Salvia 
miltiorrhiza, SmMYB36 and SmMYB39 prevent the accumulation 
of phenolic acid (Zhang et  al., 2013; Ding et  al., 2017). In 
F. tataricum, several MYB transcription factors were reported 
to activate or repress flavonoid biosynthesis. Overexpressing 
FtMYB1 and FtMYB2 enhances the biosynthesis and 
accumulation of anthocyanins (Bai et  al., 2014). FtMYB116 
can be  induced by red and blue light and promotes the 
accumulation of rutin by directly inducing the expression of 
flavonoid-3′-hydroxylase (F3’H), which is involved in flavonoid 
biosynthesis (Zhang et al., 2018). The R2R3-MYB transcription 
factor FtMYB6 is also induced by light and promotes flavonol 
biosynthesis by activating the expression of FtF3H and FtFLS1 
(Yao et  al., 2020). FtMYB11 represses phenylpropanoid 
biosynthesis (Zhou et al., 2017). FtMYB13, FtMYB14, FtMYB15, 
and FtMYB16 are considered as negative regulators repressing 
rutin biosynthesis (Zhang et  al., 2018).

The clustered regularly interspaced short palindromic repeat/
CRISPR-associated protein 9 (CRISPR/Cas9) system has been 
recently developed from the adaptive immune system of 
Streptococcus pyogenes and is a powerful tool for targeted 
genome editing (Jinek et al., 2012). The CRISPR/Cas9 technology 
usually consists of two parts, an artificial single-guide RNA 
(sgRNA) and Cas9 nuclease. It has been successfully used for 
targeted gene modifications in a wide variety of plants (Feng 
et  al., 2013), such as Arabidopsis (Jiang et  al., 2014), rice 
(Shan et  al., 2015; Srivastava et  al., 2017), potato (Wang et  al., 
2015), maize (Shin et  al., 2017), soybean (Cai et  al., 2018), 
and rapeseed (Wang et  al., 2017). However, the CRISPR/Cas9 
system has been seldom used in F. tataricum. The polycistronic 
tRNA-sgRNA (PTG)/Cas9 system has been reported to be more 
efficient for gene editing in rice (Xie et  al., 2015), kiwifruit 
(Wang et  al., 2018), sweet orange (Tang et  al., 2021), and 
grape (Ren et  al., 2021). This technology uses the endogenous 
tRNA processing system to boost CRISPR/Cas9 gene editing 
capability. It consists of multiple tandemly arrayed tRNA-sgRNA 

units that form the PTG gene. Studies indicated that the start 
and end sites of the tRNA in the tandemly arrayed tRNA-
sgRNA transcripts can be  precisely recognized and cleaved by 
endogenous RNases (RNase P and RNase Z in plants) to 
simultaneously produce multiple functional sgRNAs (Xie 
et  al., 2015).

Here, the PTG/Cas9 system was employed for targeted 
mutagenesis of FtMYB45 in F. tataricum. The FtMYB45 (MYB15) 
gene has been identified as a transcriptional repressor of the 
flavonoid biosynthetic pathway, particularly of rutin (Zhang 
et  al., 2018). In this study, the PTG/Cas9 system effectively 
induce mutations of the target gene FtMYB45 in transgenic 
hairy roots, and the content of flavonoids such as rutin increased 
in mutant lines. Thus, the PTG/Cas9 gene editing system was 
efficacious in F. tataricum. To our knowledge, the present work 
is the first report of the CRISPR/Cas9 technology applied in 
F. tataricum, which provides a good technical foundation for 
molecular genetic studies in Tartary buckwheat.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
The Tartary buckwheat variety Jinqiao No. 2 used in this study 
was provided by Professor Qingfu Chen from Guizhou Normal 
University. The peeled seeds were soaked in distilled water 
for 20 min, then sterilized in 75% ethanol for 45 s and in 
1 g L−1 mercuric chloride for 8 min, and washed 3–4 times 
with sterile water. Afterward, the seeds were blotted on filter 
paper to remove excess water and sown onto Murashige and 
Skoog (MS) medium in a greenhouse with a 16-h light/8-h 
dark photoperiod at 25°C.

For UV-B treatment, the seedlings were grown in full 
darkness for 5 days and then irradiated with UV-B light 
(300 nm, 2.0 × 100 μw/cm2) for 6 h. Seedlings kept in the dark 
were used as controls. The treatment comprised three biological 
replicates. Seedlings were frozen in liquid nitrogen and stored 
at −80°C.

Quantitative Real-Time Reverse 
Transcription-Polymerase Chain Reaction
Total RNA was isolated using an RNA Extraction Kit (Takara, 
Dalian, Liaoning, China). First-strand cDNA synthesis was 
performed using 2 μg of the total RNA and PrimeScript™ RT 
reagent Kit (Takara), and qRT-PCR was conducted in a total 
volume of 20 μl on the qTOWER 3 real-time PCR system 
(ChemStudio SA, Analytik Jena, Germany) using SYBR Premix 
ExTaq Mix (Takara). The primers for qRT-PCR were designed 
using Primer Premier 5 (Premier Biosoft, United  States) and 
are listed in Supplementary Table S1, and the Tartary buckwheat 
Histone 3 (H3) gene (GenBank accession number. JF769134) 
was used as an internal control gene (Gocal et  al., 2001). PCR 
cycling began with a denaturing step at 95°C for 2 min, followed 
by 40 cycles at 95°C for 5 s, 60°C for 10 s, and 72°C for 10 s. 
Finally, the dissolution curve signals were collected from 60°C 
to 95°C. Three biological and three technical replicates were 
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performed. The gene expression levels were analyzed using 
the 2−ΔΔCT method (Livak and Schmittgen, 2001).

sgRNA Design and Vector Construction
Two sgRNAs (sgRNA1 and sgRNA2) targeting FtMYB45 were 
designed and their off-target effects were analyzed based on 
the published genome sequence of F. tataricum (GenBank 
accession number: GCA_002319775.1) and the website 
(Concordet and Haeussler, 2018).1 Secondary structure analysis 
of target-sgRNA sequences was carried out with the program 
RNA Folding Form (Ma et  al., 2015b).2 The specific PCR 
primers C45-F and C45-R spanning sgRNA target sites were 
designed (Supplementary Table S1). A 360-bp fragment was 
amplified by PCR using genomic DNA of Jinqiao No. 2 as 
template, purified using a PCR purification kit (TransGen 
Biotech, Beijing, China), and sequenced to verify the sequences 
of sgRNA1 and sgRNA2.

The CRISPR/Cas9 vector targeting the FtMYB45 gene was 
constructed using PTG/Cas9 method according to method of 
Wang et  al. (2018). The sgRNA intermediate vector pHLW-
sgRNA-tRNA and the Cas9 binary vector pPTG-sgRNA-
Cas9-U6-1 were used. First, the fragment containing the first 
Bsa I  site, sgRNA1, sgRNA scaffold, tRNA, sgRNA2, and the 
second Bsa I  site was amplified from vector pHLW-sgRNA-
tRNA using the target-specific primers 45sg-F and 45sg-R 
(Supplementary Table S1). Then, the PCR fragment was digested 
with restriction enzymes Bsa I  (New England Biolabs, 
United States), and ligated into the BsaI-linearized vector pPTG-
gRNA-Cas9-U6-1 with T4 DNA ligase (New England Biolabs, 
United  States) to generate vector PTG/Cas9-FtMYB45. The 
ligation mixture was transformed into Escherichia coli DH5α 
competent cells and plated on LB-kanamycin agar plate (50 mg/L). 
Positive clones were confirmed by colony PCR using the primers 
SP-F and SP-R primers (Supplementary Table S1). All primers 
were synthesized commercially (Sangon Biotech Co., Ltd., 
Shanghai, China), E. coli competent cells were produced in 
our laboratory.

Agrobacterium rhizogenes-Mediated Hairy 
Root Transformation in Fagopyrum 
tataricum
Hairy roots transformation of Tartary buckwheat mediated by 
A. rhizogenes was performed as previously reported (Mi et  al., 
2020). Briefly, the cotyledons and hypocotyls of 7–10 day-old 
old Tartary buckwheat seedlings were used as explants. The 
cotyledons were cut into small squares and the hypocotyls were 
cut into approximately 0.5-cm segments. All explants were 
precultured on MS solid medium for 1 day. The plasmid PTG/
Cas9-FtMYB45 was introduced into A. rhizogenes ACCC10060 
by electrotransformation. Agrobacterium rhizogenes ACCC10060 
strain harboring PTG/Cas9-FtMYB45 was cultured in a shaker 
at 200 rpm and 28°C until the OD600 value reached 0.2. The 
prepared explants were soaked in the bacteria suspension for 

1 http://crispor.tefor.net/
2 http://mfold.rna.albany.edu/?q=mfold/RNA-Folding-Form2.3

10 min and cocultivated on a cocultivation medium (MS + 100mΜ 
acetosyringone) with filter paper at 25°C for 3 days in the dark. 
Then, the cocultured explants were transferred onto a selection 
medium (MS + 200 mg/L cefadroxil + 50 mg/L kanamycin) and 
cultured under a 16-h light/8-h dark cycle at 25°C for about 
2 weeks until hairy roots were induced. Afterward, hairy roots 
were cut into 2–3 cm pieces and transferred into 100 ml glass 
bottles containing 10 ml of the selection medium and cultured 
in a shaker at 80 rpm at 25°C in the dark until they overspread 
to the bottom of the glass bottles (replace medium every 7 days 
if necessary). After 10–12 days, the hairy roots were collected 
and frozen at −80°C for identification and subsequent analysis.

Determination of Flavonoid Metabolites by 
UPLC-QqQ/MS
Ground fresh hairy roots were accurately weighed and 0.1 g 
were extracted in 500 μl 70% methanol for 2 h at 4°C. The 
extract was sonicated for 30 min and centrifuged at 12,000 rpm 
for 10 min at 4°C, then filtered through a 0.22-μm hydrophilic 
organic nylon microporous membrane (SCAA-104). The extracted 
samples were analyzed by Agilent UPLC 1290II-G6400 QqQ 
MS (Agilent Technologies, Santa Clara, CA, United  States) 
following the method published by Yang et  al. (2020).

Mutant Analysis
Genomic DNA was extracted from T0 transgenic hairy roots 
using the DNAsecure Plant Kit (TianGen Biotech Co., Ltd., 
Beijing, China). Positive transgenic hairy roots were verified by 
PCR, using primers specific from the kanamycin resistance gene 
(Kan-F and Kan-R; Supplementary Table S1). The primers C45-F 
and C45-R were used to amplify the sgRNA region. The PCR 
products were sequenced directly by C45-F and C45-R. The 
sequencing chromatograms were decoded using the Degenerate 
Sequence Decoding method (DSDecode) and predicted the mutant 
types (Liu et  al., 2015; Ma et  al., 2015a). To accurately identify 
the mutation types, the PCR fragment was purified and cloned 
into pEASY-T1 cloning vector (TransGen Biotech, Beijing, China), 
then the ligated product was identified by PCR and sequenced 
by Sanger sequencing. For each mutant line, at least 10 positive 
colonies were randomly selected and sequenced. The sequence 
alignment and mutation analysis were performed using the 
DNAMAN software (Version 4.0; Lynnon Corporation, Canada).

Data Statistical Analysis
Student’s t-test and one-way analysis of the variance (ANOVA) 
were performed using GraphPad Prism8.0.1. p values <0.01 is 
considered statistically significant.

RESULTS

FtMYB45 Is Repressed by UV-B and 
Inhibits Flavonoid Biosynthesis
Ultraviolet-B (UV-B) is an important environmental signal that 
regulates plant growth and development. Previous studies have 
shown that UV-B can induce the key genes in the flavonoid 
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biosynthetic pathway and increased the accumulation of 
flavonoids in Ginkgo biloba (Zhao et  al., 2020), strawberry 
(Warner et  al., 2021), apple (Hu et  al., 2020), blueberry (Li 
et  al., 2021), and other plant species (Suzuki et  al., 2005; 
Huang et  al., 2016). To investigate the effect of UV-B on the 
accumulation of flavonoids in Tartary buckwheat, 5-day-old 
seedlings were treated with UV-B light. Liquid chromatography–
mass spectrometry (LC-MS) analyses showed that the content 
of rutin, epicatechin, and catechin were significantly increased 
after UV-B irradiation (p < 0.01; Figure  1A), indicating that 
UV-B irradiation promoted the accumulation of these flavonoids 
in Tartary buckwheat. Previous study revealed that the FtMYB45 
gene was induced by MeJA and repressed rutin biosynthesis 
(Zhang et  al., 2018). Our qRT-PCR result indicated that the 
FtMYB45 expression in seedlings was significantly downregulated 
(p < 0.01) after UV-B treatment compared with the control 
cultured in the dark (Figure  1B). It implied that FtMYB45 
was also repressed by UV-B treatment and inhibited flavonoid 
biosynthesis in Tartary buckwheat. Based on this result, FtMYB45 
was selected as the target gene for the development of a 
CRISPR/Cas9 workflow in Tartary buckwheat.

SgRNA Design and PTG/Cas9-FtMYB45 
Vector Construction
The FtMYB45 gene is located in chromosome 5 and is 1,145 bp 
in size, with two exons. Two sgRNAs targeting exon 2 of the 
FtMYB45 gene were designed (Figure  2A), the GC content 
of sgRNA1 and sgRNA2 was 52.17 and 47.83%, respectively. 
On-target and off-target the designed sgRNAs were analyzed 
by the CRISPROR tool. The cutting frequency determination 
(CFD) score is widely used to measure sgRNA on-target 
specificity, and a high CFD specificity score indicates high 
sgRNA specificity (Doench et  al., 2016). The result indicated 
the CFD score of sgRNA1 was 99 with 0 off-target within 
four mismatch bases, and the CFD score of sgRNA2 was 98 

with only 1 off-target within four mismatch bases. Thus, both 
sgRNA1 and sgRNA2 were highly specific.

To verify the accuracy of the sgRNA sequences in Jinqiao 
No.2, the sgRNA region was amplified using the specific 
primer  pair C45-F and C45-R and sequenced. The results 
showed that the sequences of sgRNA1 and sgRNA2  in Jinqiao 
No. 2 were 100% matched to the reference sequences 
(Supplementary Text S1). The PTG/Cas9-FtMYB45 vector was 
constructed according to the method published by Wang et  al. 
(2018). In this vector, the spCas9 expression cassette was driven 
by the CaMV 35S promoter, and the polycistronic tRNA-sgRNA 
cassette (PTG) was driven by the AtU6-1 promoter (Figure 2B). 
After validation of the construct sequence by Sanger sequencing, 
the PTG/Cas9-FtMYB45 was introduced into A. rhizogenes 
ACCC10060 cells for the transformation of F. tataricum.

Targeted Mutagenesis of FtMYB45 Gene 
Using the PTG/Cas9 System
Since the plant regeneration and genetic transformation have 
not yet been refined, A. rhizogene-mediated hairy root 
transformation is still the main method for genetic transformation 
in Tartary buckwheat. Our data indicated that FtMYB45 was 
expressed in different organs of Tartary buckwheat, and was 
also expressed in hairy root (Supplementary Figure S1).

Therefore, A. rhizogene strain ACCC10060 harboring the 
PTG/Cas9-FtMYB45 vector was transformed into Tartary 
buckwheat explants to induce hairy roots. Twelve transgenic 
hairy roots were obtained according to the PCR detection of 
the kanamycin resistance gene (neomycin phosphotransferase 
gene, nptII) using the primer pair Kan-F and Kan-R (Figure 2C). 
The sgRNA target region was amplified from the transgenic 
hairy roots using the specific primer pair C45-F and C45-R 
and sequenced to analyze FtMYB45 mutations. The direct 
Sanger sequencing chromatograms were decoded by DSDecode 
(Supplementary Figure S2) and the mutation types were further 

A B

FIGURE 1 | UV-B irradiation enhance the contents of flavonoids and reduce FtMYB45 gene expression in Tartary buckwheat seedlings. (A) Content changes of 
rutin, epicatechin, and catechin in Tartary buckwheat seedlings after 6 h of UV-B treatment. (B) Changes of FtMYB45 gene expression after 6 h of UV-B treatment. 
The values represent the means ± standard deviations (SDs) of three biological replicates. Asterisks indicate statistically significant differences compared with control 
seedlings under dark (*p < 0.01, Student’s t-test).
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genotyped by cloning and Sanger sequencing. The results showed 
that six hairy root lines (45–12, 45–13, 45–14, 45–17, 45–18, 
and 45–19) presented mutations at the target sites of sgRNA1 
(Table  1; Supplementary Table S2), and the editing efficiency 
reached 50%. Sequence alignment revealed that there were six 
types of mutations (named M1–M6; Figure  2D), including 
insertion and deletion (Figure  2E). Among them, line 45–12 
was a chimeric mutant, line 45–13, 45–14, 45–17, and 45–18 
were biallelic mutants and line 45–19 was heterozygous mutant 
(Table  1). Unfortunately, no mutations were detected at the 
target sites of sgRNA2.

Changes in Flavonoids Content in 
FtMYB45 Mutants
UPLC-QqQ-MS metabolomics analysis (Yang et  al., 2020) was 
used to determine the changes in flavonoids content in FtMYB45 
mutant hairy roots compared with that in the control line. 

The main 10 flavonoids in hairy roots including naringenin-
7-O-glucoside, kaempferol-3-O-rutinoside, kaempferol-3-O-β-
D-glucoside, methylquercetin-O-hexose, methylquercetin-O-
rutinoside, rutin, epicatechin, catechin, epicatechin-3-O-
glucoside, and catechin-3-O-glucoside were detected (The 
chromatograms are shown in Supplementary Figure S3). The 
content of six flavonoids (kaempferol-3-O-β-D-glucoside, 
methylquercetin-O-hexose, rutin, catechin, epicatechin-3-O-
glucoside, and catechin-3-O-glucoside) were increased in all 
FtMYB45 mutant lines, and most of these increases were 
significant. However, the content changes of naringenin-7-O-
glucoside, kaempferol-3-O-rutinoside, and methylquercetin-O-
rutinoside in mutant lines were variable, for example, kaempferol-
3-O-rutinoside in 45–12 line, naringenin-7-O-glucoside and 
methylquercetin-O-rutinoside in 45–13 and 45–14 lines, and 
methylquercetin-O-rutinoside in 45–17 line were significantly 
decreased, while they were increased in other mutant lines. 
Moreover, epicatechin levels were slightly diminished in the 

A

B

C

E

D

FIGURE 2 | Construction of the PTG/Cas9-FtMYB45 vector and targeted modification of the FtMYB45 gene. (A) Schematic illustration of the two sgRNAs target 
sites in the FtMYB45 gene. The black rectangles represent exons, the black line represents the intron, and the numbers below represent the number of bases. The 
red vertical bars represent the locations of the sgRNA1 and sgRNA2. The red letters represent the protospacer adjacent motif (PAM) of each sgRNA. (B) Schematic 
diagram of the PTG/Cas9-FtMYB45 vector. The spCas9 expression cassette was driven by the CaMV 35S promoter, and the polycistronic tRNA-sgRNA cassette 
(PTG) was driven by the AtU6-1 promoter. The yellow rectangles represent the sgRNA scaffold. (C) Identification of the transgenic hairy root line by PCR 
amplification of the kanamycin resistance gene. The length of the PCR product was 563 bp. M represents the DNA marker DL2000. Lines 1–12 are individual hairy 
root lines, WT, wild type; P, positive control. (D) Mutation types induced by sgRNA1 in FtMYB45. The blue letters represent the sgRNA1 target sequence. The red 
letters represent the PAM sequence. The green letter represents the nucleotide insertion and the green dashes represent the nucleotide deletions. M1–M6 on the left 
side represent the mutation types. WT, wild type; +, insertion; −, deletion. (E) The sequencing chromatograms of mutation types of FtMYB45. The black arrowheads 
represent the locations of mutations. The red rectangles represent the PAM sequence.
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45–17 and 45–19 (Figure  3). Altogether, the data indicated 
that FtMYB45 mutation caused an increase of the amount of 
most flavonoids in hairy roots of Tartary buckwheat, suggesting 
that FtMYB45 negatively regulated flavonoid biosynthesis.

DISCUSSION

Tartary buckwheat contains a large amount and variety 
of  flavonoids, making it a popular health food. MYB 
transcription factors are key regulators of flavonoid 
biosynthesis in plants (Cao et  al., 2020). Here, we  focused 
on the flavonoids present in Tartary buckwheat, which, 
despite their importance, have not been thoroughly 
investigated. Previous studies demonstrated that FtMYB45 
was a JA responsive factor that repressed rutin biosynthesis 
(Zhang et al., 2018). Our study showed that UV-B irradiation 

significantly decreased the expression level of FtMYB45 and 
significantly increased the content of rutin, epicatechin, and 
catechin in Tartary buckwheat (Figure  1), indicating that 
FtMYB45 also inhibits flavonoid biosynthesis through UV-B 
signal transduction. Therefore, FtMYB45 may be  involved 
in the crosstalk between UV-B and JA signaling pathways, 
and regulate flavonoid biosynthesis in Tartary buckwheat. 
This finding provides new insight into the function of 
FtMYB45 in Tartary buckwheat and might be of importance 
for the culture of Tartary buckwheat with high content in 
flavonoid metabolites.

The CRISPR/Cas9 gene editing is a fast, simple, efficient, 
and flexible technique for gene function analysis and crop 
improvement (Gupta et  al., 2019; Triozzi et  al., 2021). It has 
been widely used in a variety of plants (Jinek et  al., 2012; 
Feng et  al., 2013), and has also been applied in medicinal 
plants (Li et  al., 2017; Feng et  al., 2018, 2021). However, the 

TABLE 1 | Mutant genotypes and mutant type by Sanger sequencing analysis.

Mutant line No. of clone 
sequenced

WT Mutant type Genotype

M1 (−4 bp) M2 (−1 bp) M3 (−6 bp) M4 (+1 bp) M5 (−5 bp) M6 (−3 bp)

45–12 18 4 9 2 3 Chimeric
45–13 11 8 3 Biallele
45–14 11 9 2 Biallele
45–17 11 5 6 Biallele
45–18 11 6 5 Biallele
45–19 11 7 4 Heterozygote

+, insertion; −, deletion; WT, wild type: reference sequences of sgRNA1 in the FtMYB45 gene.

FIGURE 3 | UPLC-QqQ-MS analysis of the changes of flavonoids content in mutant hairy root lines. CK represents hairy root transformed with the empty vector, 
45–12, 45–13, 45–14, 45–17, 45–18, and 45–19 are individual mutant hairy root lines. The values represent the means ± standard deviations (SDs) of three 
biological replicates. Asterisks represent statistically significant differences compared with CK. The red asterisks represent significant increase, and the green 
asterisks represent significant decrease (*p < 0.01, one-way ANOVA).
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application of CRISPR/Cas9 technology in Tartary buckwheat 
has not been reported yet. In this study, the FtMYB45 was 
selected as the target gene to test the CRISPR/Cas9 system 
in Tartary buckwheat. Two sgRNAs of FtMYB45 were designed 
to ensure efficient knockout of FtMYB45, and the off-target 
analysis indicated that sgRNA1 and sgRNA2 were highly specific. 
The PTG/Cas9-FtMYB45 vector was transformed into Tartary 
buckwheat using A. rhizogenes to induce transgenic hairy roots. 
Twelve transgenic hairy roots were obtained. Sequencing analyses 
showed successful gene editing in the region targeted by 
sgRNA1  in six hairy root lines, with the editing efficiency 
reaching 50%. A total of six types of mutations, including 
base insertions and deletions, were detected at the target site 
(Figure 2). Therefore, we successfully knocked out the FtMYB45 
gene in Tartary buckwheat using the PTG/Cas9 system, and 
consequently provide a new tool for gene function research 
and genetic improvement in Tartary buckwheat.

Unfortunately, no mutation was observed at the target sites 
of sgRNA2. The GC content of sgRNA has been considered 
as one of the key factors affecting sgRNA editing efficiency. 
Previous reports have shown that 97% of sgRNAs which have 
been experimentally validated in plants have a GC content 
between 30 and 80% (Liang et  al., 2016). In our study, the 
GC content of sgRNA1 and sgRNA2 was 52.17 and 47.83%, 
respectively. Thus, GC content may not be  the reason why 
sgRNA2 does not edit. Another main reason affecting sgRNA 
activity is the secondary structure of sgRNAs (Makarova et  al., 
2011). Assessment of the secondary structures of the studied 
sgRNA1 and sgRNA2 (Supplementary Figure S4) found that 
sgRNA2 formed an 8 bp typical stem-loop structure. Ma et  al. 
(2015b) also reported an inactive sgRNA formed a stem-loop 
structure with a pairing of continuous 14 and 4 bp of the 
target, and suggested the sgRNA selection should avoid those 
with pairing to the sgRNA by more than continuous 6 bp. 
Thus, the continuous 8 bp stem-loop structure might inhibit 
the binding of the sgRNA2 to the target strand, leading to 
the failure of gene editing.

Hairy root cultures established by transforming plants with 
A. rhizogenes have been utilized to produce transgenic plants, 
investigate plant metabolic processes, and increase secondary 
metabolites. They are genetically and biochemically stable during 
rapid growth (Guillon et  al., 2006a,b). Recently, the hairy root 
transformation has been widely utilized to validate and optimize 
induced mutagenesis by the CRISPR/Cas9 system (Li et  al., 
2019; Le et  al., 2020). In addition, biotechnological approaches 
which used hairy root culture have greatly enhanced the 
production of rutin by common buckwheat (Lee et  al., 2007; 
Kim et  al., 2010). Therefore, hairy root cultures have been 
used as a useful model system to study the production of 
flavonoids and a variety of other secondary metabolites. Now, 
the flavonoid biosynthesis pathway is relatively clear 
(Supplementary Figure S5; Falcone Ferreyra et al., 2012; Dong 
and Lin, 2021). Dihydroflavonols are precursors used for flavonoid 
biosynthesis. Flavonol synthase (FLS) links flavonoids and 
flavonols synthesis pathways and is involved in dihydroflavonol 
desaturation to form flavonols (Forkmann and Martens, 2001). 
Dihydroflavonol reductase (DFR) is a key enzyme and an 

important branch point in the synthesis pathway of anthocyanins 
and catechins (Landry et  al., 1995). In this study, we  detected 
10 flavonoids including flavonols, flavanols, and their 
glycosides  in the obtained FtMYB45 mutant hairy root lines. 
The UPLC-QqQ-MS result showed that the content of most 
of these flavonoids was significantly increased in mutant lines. 
In particular, the content of methylquercetin-O-hexose, 
proanthocyanidins, including catechin, epicatechin-3-O-glucoside, 
and catechin-3-O-glucoside, were greatly increased in all six 
mutant lines. Thus, our data demonstrated that FtMYB45 is 
a negative regulator of flavonoid biosynthesis. This is consistent 
with the previous report showing that FtMYB45 directly represses 
phenylalanine ammonia-lyase (FtPAL) gene expression, and 
thus affecting the entire flavonoid metabolic pathway (Zhang 
et al., 2018). Moreover, flavonoids content among the six mutant 
lines showed different change levels, which may be  due to 
different mutations types of FtMYB45. The mutant lines with 
the same genotype showed similar content changes in detected 
flavonoids, for example, line 45–13 and 45–14, line 45–17, 
and 45–18 (Figure 3). However, the increase of some flavonoids 
in heterozygote mutant line 45–19 was greater than that of 
biallelic or chimeric mutant lines, which does not meet our 
expectations. The possible reason we suppose is that the Transfer 
DNA (T-DNA) insertion in line 45–19 may affect the related 
genes in flavonoid biosynthesis. We also noticed that the content 
of some flavonoids showed decreased in few mutant lines, for 
example, kaempferol-3-O-rutinoside in line 45–12, and 
naringenin-7-O-glucoside in line 45–13 and 45–14. The reason 
is still not clear and needs to be  further studied.

Taken together, our results indicated that the application of 
the PTG/Cas9 gene editing system effectively knocked out FtMYB45 
and increased the content of flavonoids in mutant hairy roots 
in Tartary buckwheat. These FtMYB45 mutant hairy root lines 
will be good candidate biomaterials for the production of flavonoids.

CONCLUSION

In this study, the PTG/Cas9 genome editing system was 
successfully utilized for genome editing in Tartary buckwheat, 
which lays a valuable foundation for the application of CRISPR/
Cas9 technology in gene function study and molecular breeding 
in Tartary buckwheat. Additionally, we  performed targeted 
mutagenesis of the FtMYB45 gene, which resulted in an increased 
content of flavonoids in mutant hairy roots of Tartary buckwheat. 
This finding provides further evidence to support the negative 
regulatory role of the FtMYB45 gene in the flavonoid biosynthetic 
pathway, and the obtained mutant hairy root lines with increased 
amounts of flavonoids will provide good sources for the 
production of flavonoids.
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