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Potentially toxic elements (PTEs) such as cadmium (Cd), lead (Pb), chromium (Cr), and 
arsenic (As), polluting the environment, pose a significant risk and cause a wide array of 
adverse changes in plant physiology. Above threshold accumulation of PTEs is alarming 
which makes them prone to ascend along the food chain, making their environmental 
prevention a critical intervention. On a global scale, current initiatives to remove the PTEs 
are costly and might lead to more pollution. An emerging technology that may help in the 
removal of PTEs is phytoremediation. Compared to traditional methods, phytoremediation 
is eco-friendly and less expensive. While many studies have reported several plants with 
high PTEs tolerance, uptake, and then storage capacity in their roots, stem, and leaves. 
However, the wide application of such a promising strategy still needs to be achieved, 
partly due to a poor understanding of the molecular mechanism at the proteome level 
controlling the phytoremediation process to optimize the plant’s performance. The present 
study aims to discuss the detailed mechanism and proteomic response, which play pivotal 
roles in the uptake of PTEs from the environment into the plant’s body, then scavenge/
detoxify, and finally bioaccumulate the PTEs in different plant organs. In this review, the 
following aspects are highlighted as: (i) PTE’s stress and phytoremediation strategies 
adopted by plants and (ii) PTEs induced expressional changes in the plant proteome more 
specifically with arsenic, cadmium, copper, chromium, mercury, and lead with models 
describing the metal uptake and plant proteome response. Recently, interest in the 
comparative proteomics study of plants exposed to PTEs toxicity results in appreciable 
progress in this area. This article overviews the proteomics approach to elucidate the 
mechanisms underlying plant’s PTEs tolerance and bioaccumulation for optimized 
phytoremediation of polluted environments.
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INTRODUCTION

The continued accumulation of potentially toxic elements (PTEs), 
including cadmium (Cd), lead (Pb), chromium (Cr) and arsenic 
(As), copper (Cu), mercury (Hg), nickel (Ni), and selenium 
(Se) in the environment poses a significant danger to human 
health and undermines global environmental sustainability 
efforts (Habiba et  al., 2019; Rizvi et  al., 2019, 2020; 
Alsafran et  al., 2021). Anthropogenic activities due to rapid 
industrialization, especially from oil and gas producing industries, 
infrastructural development, mining, foundries, smelters, coal-
burning power plants, and agricultural activities, are significant 
contributors that enhance the elements of hazardous pollutants 
in the soil (Al-Thani and Yasseen, 2020; Yan et  al., 2020; 
Usman et  al., 2020b). While this is the case, bioaccumulation 
strategies and tolerance to higher concentrations of PTEs, thus 
sequestering of PTEs can be  varied among different plant 
species as they faced diverse pollutant sources and other 
environmental conditions. Generally, PTEs sequestration 
mechanisms in plant tissues include exclusion, stabilization, 
removal, and transfer to the various parts such as roots, shoots, 
and stems. Of these, the removal and translocation of the 
elements to plant’s aerial parts, the process also known as 
“phytoextraction,” are known as the most efficient remediation 
strategy (Saleem et  al., 2020a). Phytoextraction is inexpensive, 
the amount of waste material that must be  disposed of is 
substantially decreased (up to 95%), and the disposal of hazardous 
material or biomass is not required (Usman et  al., 2020b). 
Plant species demonstrating the capacity to remove and transfer 
PTEs to their aerials parts are categorized as metal 
hyperaccumulators (De Bellis and Aprile, 2020; Zhang et  al., 
2020; Usman et  al., 2020b).

The PTEs are non-biodegradable and prone to ascend along 
food chains, making their environmental prevention a critical 
intervention (Wuana and Okieimen, 2011; Sharma and Pandey, 
2014). Given the potential adverse effects of many remediation 
strategies, alternative technologies, including phytoremediation—
the use of plants to remove PTEs from contaminated 
environments, are being explored for large-scale applications 
(Usman et  al., 2019b). Phytoremediation is the direct use of 
living green plants and is an effective, cheap, non-invasive, 
and environmentally friendly technique used to transfer or 
stabilize all the toxic metals and environmental pollutants in 
polluted soil or ground water (Mosa et  al., 2016). 
Phytoremediation is widely applicable for metal contaminated 
areas, with some long-term esthetic merits and it is famous 
due to its low cost and eco-friendly nature, so it is used on 
large-scale areas with high contents of toxics metals (Rascio 
and Navari-Izzo, 2011). Plants are sessile organisms, and therefore, 
could not escape from exposure to high concentrations of 
PTEs (Wiszniewska, 2021). However, several plant species (⁓450) 
are known to accumulate high concentrations of various PTEs 
(Rascio and Navari-Izzo, 2011). PTEs mainly enter plant systems 
from soil or water via passive or active transport. Following 
uptake that is facilitated by membrane-embedded ion channels, 
elemental ions translocate to aerial parts of plants (i.e., the 
stem and leaves) via xylem channels. In general, plants capable 

of accumulating PTEs in their tissues majorly bio-concentrate 
the elements in the root, followed by the stem, leaves, and 
in some species, even the seeds (Shamim, 2018; Dinu et al., 2020).

Biotechnologically, three main strategies are embarked upon 
to improve PTEs phytoextraction using different plants species: 
(i) utilizing the metal/metalloid transporters, (ii) enhancing 
metal/metalloid ligand production, and (iii) conversion of metal/
metalloid into volatile and less detrimental forms (Mosa et  al., 
2016). The toxicity of PTEs primarily depends on various 
factors such as concentrations and chemical properties of toxic 
elements, their bioavailability, and plants’ developmental stage. 
When exposed to PTEs, plant’s basal tolerance mechanism 
becomes activated and enables them to cope with the stress 
(Gill et  al., 2021). However, at elevated concentrations, these 
elements suppress the plant defense machinery and cause 
harmful effects to physiological processes, including 
photosynthesis, transpiration, and energy metabolism, thus 
reducing overall plant growth and development (Kumar et  al., 
2018; Gautam et  al., 2020; Ahmad et  al., 2020a; Usman et  al., 
2020a). Generally, PTEs stress symptoms on plants can 
be  measured as it is similar to that of deficiency in essential 
nutrients that may be  appeared in the forms of leaf necrosis, 
poor root development, and decreased fresh biomass (Usman 
et  al., 2019a; Singh and Fulzele, 2021).

Recently, the “Omics” approaches emerge as valuable tools 
for understanding the changes in molecular mechanisms of 
plant’s response to the PTEs during phytoremediation (Meena 
et  al., 2017; Raza et  al., 2021). The traditional characterization 
methods relating to physiological and biochemical assays seem 
insufficient, and therefore, further investigation especially on 
the response of whole-genome proteome to PTE can be  a 
promising approach to coping with the potential threats posed 
by PTEs (Xie et  al., 2019; Kosakivska et  al., 2021). These 
changes are not only limited to the expression pattern but 
also protein quality and quantity. Transcriptomic approaches 
are used to target transcriptional changes at the mRNA level 
(i.e., changes in gene expression), which may differ from changes 
at the protein level (i.e., translational modifications). In a true 
sense, the mRNA/protein ratio is a factor of mRNA transcription 
rate and protein stability (Reimegård et  al., 2021).

To alleviate PTEs stress and restore cellular homeostasis, 
plants develop antioxidative capacity, sophisticated and highly 
efficient regulatory mechanisms to help tolerate the uptake, 
accumulation, translocation, and eventual detoxification (El-
Amier et  al., 2019; Alsahli et  al., 2020; Ahmad et  al., 2020b; 
Bhat et al., 2021). To achieve this, the living system’s functional 
molecules, the proteins, particularly metal chelators, transporters, 
and chaperones, play crucial roles in alleviating the negative 
impact of PTEs stress (Saleem et  al., 2020b). Together, these 
proteins enable plants to tolerate PTEs, detoxify PTEs polluted 
environments and their system through binding, transport, and 
vacuolar sequestration (Peco et  al., 2020; Dhir, 2021; Jogawat 
et  al., 2021).

Proteins are crucial to regulating the cellular processes of 
plants; proteomics, comprising cellular protein roles, quantification, 
identification, the pattern of expression, modification, and 
interactions, all together provides an excellent strategy to assess 
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stress impact on them. Because of the central roles of proteins, 
researchers in this area need to prioritize studies focusing on 
proteomics to gain further insights into the mechanisms of PTEs 
tolerance and detoxification in plants to improve the efficiency 
of PT Es removal from contaminated soil or medium.

Recent progress in plant proteomics could be  possible due 
to new technological advancements in protein separation, 
quantification, mass spectrometry (MS), and bioinformatics. 
Mass spectroscopy is central to large-scale proteome analysis 
that enhances the resolution, sensitivity, and accuracy of proteins 
mass prediction (Cassidy et  al., 2021). Due to these and the 
speed of analysis for large protein samples through released 
peptides after proteolytic digestion (bottom-up), shotgun 
proteomics is used to describe the process (Gutsch et  al., 
2019b). On the other hand, protein is partially digested to 
characterize co-existing post-translational modifications (PTMs; 
Sidoli et  al., 2017). Following fractionation and tandem mass 
spectrometry (MS/MS) analysis, the bottom-up process indirectly 
measures proteins through tryptic digested peptides having 
amino acids approximately between 8 and 30 (8 > aa>30). 
Proteins are inferred through identified peptides compared to 
MS/MS spectra previously generated from in-silico fragmented 
peptides in a protein database. Figure  1 shows a schematic 
representation of typical steps in PTEs phytoremediation studies 
involving the use of shotgun proteomics.

In contrast to the bottom-up approach (analysis of digested 
proteins), the proteomics of characterizing intact proteins is 
another strategy termed “top-down” (Figure  2). Proteomic 
research has made significant progress, especially on model 

plants, Oryza sativa, and Arabidopsis thaliana. Essential proteins, 
such as metal ion transporters, binding proteins, phytochelatins 
(PCs), and metallothioneins (MTs), are notable in aiding PTEs 
sequestration in plants. PCs are induced by phytochelatins 
synthase (PCS), which is triggered when metal ions are present. 
PCs (oligomers of glutathione) bind to toxic metals to form 
a significant part of the detoxification mechanism, while MTs 
are gene-encoded, small, and cysteine-rich proteins (Jorrin-
Novo et  al., 2019; Usman et  al., 2020b).

Due to the exponential increase in the number of studies 
and publications in the proteomics of plant abiotic stress, 
including PTEs, it is almost impossible to provide an extensive 
summary in one review. For further references within the last 
decade, readers are referred to some of the recent reviews 
(Ahsan et al., 2009; Hossain and Komatsu, 2013; Cvjetko et al., 
2014; Kosová et  al., 2018; Raza et  al., 2020; Kosakivska et  al., 
2021; Sytar et  al., 2021). This review aims to provide a 
non-exhaustive overview of plant proteomics and highlights 
its importance in understanding PTEs tolerance, uptake, and 
detoxification mechanisms in plants during phytoremediation 
when grown in metal contaminated soil. To the best of our 
knowledge, this review is among the few articles focused on 
the plant proteomics of trace and heavy metals.

PHYTOREMEDIATION

A combinatorial strategy involved the physiological and chemical 
properties, and biological processes adopted by plant species 

FIGURE 1 | A workflow illustrating the comparative proteomic methods that have been used to investigate the phytoremediation of potentially toxic elements. 
Classical in-gel proteomic methods include 1-D and 2-D polyacrylamide gel electrophoresis (PAGE) sometimes further developed by differential in-gel 
electrophoresis (DIGE) using fluorescent tags like cyanine 2 or 3 or 5 (Cy2, Cy3, and Cy5). Gel-free methods are advanced and used to overcome limitations in-gel 
proteomics and to study the heavy metal detoxification and phytoremediation mechanisms. These include novel gel-free methods with protein labeling such as 
Stable Isotope Labeling with Amino acids in Cell culture (SILAC) and Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) techniques followed by multi-
dimensional chromatography (MupPit).
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to clean up environmental pollutants (Baldwin et  al., 2015; 
Hasegawa et  al., 2016). Physical and chemical methods have 
several limitations such as non-economical, alterations in native 
soil flora, changes in the physicochemical properties of the 
soil, and need intensive labor (Shankar, 2017). PTEs are 
essentially immutable by any chemical or physical process 
short of nuclear fission and fusion, and thus, their remediation 
presents special scientific and technical problems. Because of 
this, new approaches for better treatment of PTEs polluted 
environment are essential. In this regard, the use of biological 
treatment strategies could be  adopted that are cheaper and 
environmentally friendly. The promising one is phytoremediation 
which has gained increased attention in recent years since it 
is the most viable alternative. Phytoremediation takes advantage 
of plant ability to tolerate, accumulate, and translocate PTEs 
across their aerial tissues (Ludvíková and Griga, 2019). 
Phytoremediation is often referred to as “green remediation” 
or “botanical bioremediation” involving the use of plants to 
remove, transfer, or stabilize the PTEs (Figure  3) to clean 
up the environment and render the pollutants harmless (Suman 
et  al., 2018; Adiloğlu et  al., 2021). Moreover, this mechanism 
is a species-specific, effective, economical, eco-friendly, and 
scientifically accepted method. Generally, when there is an 

encounter with PTEs, plants activate their defense machinery 
by adopting one or several mechanisms simultaneously to 
safeguard themselves from unwanted physiological or molecular 
alterations induced by PTEs. Some of the most studied and 
common strategies are presented in Table  1.

Phytoremediation has a great potential for providing 
much-needed green technology. During phytoremediation, 
the plant’s selection for the remediation strategy to neutralize 
PTEs may differ; the strategies used could be  removal, 
transfer, degradation, immobilization, etc. (Hasanuzzaman 
et  al., 2018). While hundreds of plant species have been 
identified as potential phytoremediators, identifying suitable 
hyperaccumulators is still a challenge (de Castro Ribeiro 
et  al., 2018). Previously, Yıldız and Terzi (2016) studied 
Brassica napus under Cr stress and noticed through 58 
proteins spots in two-dimensional electrophoresis (2-DE) 
that 58 proteins were differentially regulated by Cr (VI) 
stress (+S/+Cr), S-deficiency (−S/−Cr), and combined stress 
(−S/+Cr). The translocation capacity of plants (the ability 
to take up and accumulate toxic metal from the root to 
shoot parts) is a critical parameter considered in evaluating 
phytoremediation potential in plants (Meng et  al., 2017). 
A translocation factor of 1 or more suggests a plant’s ability 

FIGURE 2 | A proposed workflow for protein digestion and MS analysis for the investigation of large (intact proteins), medium (peptides >30 aa), and small size 
(8–30 aa) protein molecules.
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to transfer metals to its aerial parts adequately. Various 
methods covered under phytoremediation strategies are 
discussed briefly in the following sections.

Phytoremediation Strategies
Plants employ different strategies during phytoremediation. 
The type of elements, their chemical properties, and 
bioavailability plays a crucial role in achieving PTEs 
remediation success (Usman et  al., 2020b). The different 
phytoremediation strategies include phytoextraction, 
phytofiltration or Rhizofiltration, phytovolatilization, 
phytostabilization, and phytodegradation (Figure  3; Usman 

et  al., 2018; Wei et  al., 2021). Phytoextraction involves the 
use of plants to remove PTEs or organics from the soil by 
concentrating them in the harvestable parts (Kumar et  al., 
2017; Ali et  al., 2018). PTEs accumulating plants are utilized 
to transport and concentrate contaminants (metals or organics) 
from the soil into the above-ground plant parts as shown 
in the example by Viana et al. (2021). Phytoextraction involves 
PTEs removal, accumulation, and translocation to plant’s 
aerial parts (Viana et  al., 2021). Often, phytosequestration, 
photoabsorption, and phytoaccumulation are used to refer 
to the same process. Several studies have reported plants 
demonstrating PTEs phytoextraction capacity. Phytoextraction 

FIGURE 3 | An illustration on the phytoremediation strategies and general response of plants to potentially toxic elements stress.

TABLE 1 | Phytoremediation strategies adopted in response to PTEs.

S. No. Strategies Description Crop Family References

1. Phytoextraction A low-cost technique by which PTEs are removed or 
concentrated by plants in different parts. This process 
produces plant biomass having PTEs that can be transported 
for disposal or recycling

Calotropis procera Dogbanes Singh and Fulzele, 2021

2. Phytodegradation or 
Rhizodegradation

PTEs are degraded by proteins or enzymes produced by 
plants and associated microbes

Phragmites australis Grasses He et al., 2017

3. Rhizofiltration PTEs are absorbed by plant roots Carex pendula Sedges Yadav et al., 2011
4. Phytostabilization PTEs are immobilized, and thus their bioavailability is reduced Juncus effusus Rushes Najeeb et al., 2017
5. Phytovolatization Volatilization of PTEs by plants extracted from soils into the 

atmosphere
Pteris vittata Brake Sakakibara et al., 2010
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is preferred over other techniques because toxic elements 
can be  harvested from plant shoots in an extractable form 
(Jeyasundar et al., 2021). Several studies have reported different 
plants with varying capacities in the phytoextraction of PTEs. 
Examples are the Indian mustard, rapeseed, and sunflower 
plants (Shaheen and Rinklebe, 2015; Chowdhary et  al., 2018; 
Surucu et  al., 2020).

Phytofiltration or Rhizofiltration
Phytofiltration or Rhizofiltration involves the adsorption of 
PTEs via the root. It is a process most seen in aquatic plants 
(Meitei and Prasad, 2021). In rhizofiltration, plant roots are 
used to absorb and adsorb pollutants, mainly metals, from 
contaminated soils and aqueous waste streams. It is the removal 
of pollutants from metal-polluted soil/waters by precipitation, 
absorption, and accumulation into plant biomass (Mahajan and 
Kaushal, 2018). Phytofiltration is essential because it prevents 
toxic elements transmission to different environmental 
components, including underground water (da Conceição Gomes 
et  al., 2016; Meitei and Prasad, 2021). However, phytofiltration 
is also demonstrated by terrestrial species, where metals are 
remediated with microbial bio-filter aid in the rhizosphere 
region (Wei et  al., 2020). Previously, studies conducted on 
rhizofiltration by Yadav et  al. (2011) in Carex pendula in Pb 
contaminated wastewater soil noticed that C. pendula accumulate 
a large amount of Pb in their roots and can be  used to clean 
up the Pb contaminated environment in combination with 
proper biomass disposal alternatives.

Phytostabilization
Plants can reduce PTEs toxicity by converting them to a 
different form or changing their bioavailability. Thus, the 
bioavailability of PTEs in the environment is reduced using 
plant systems. Plants stabilize PTEs in soils, thus rendering 
them harmless, thereby reducing the risk of further environmental 
degradation by leaching of PTEs into the groundwater or by 
airborne spread. This is achieved by preventing surface runoff, 
erosion, and leaching (Yan et  al., 2020). Phytostabilization is 
vital because it helps prevent PTEs transmission into the food 
chain. The element’s chemical properties are some of the most 
critical determinants of whether potential plants can stabilize 
them (Hamidpour et  al., 2020; Usman et  al., 2020b). Although 
phytostabilization offers some advantages, it has limited use 
because metals are only temporarily immobilized and restricted, 
and therefore, unpopular compared to phytoextraction 
(Radziemska, 2018). It is commonly employed in emergencies 
for quick metal immobilization in plants’ rhizosphere (Meng 
et  al., 2017).

Phytotransformation or Phytodegradation
It is like phytostabilization, but pollutants are metabolically 
transformed into inactive forms (Bezie et  al., 2021). The plant 
metabolic system employs the surrounding enzyme activities 
with the assistance of rhizosphere bacteria to reduce metal 
elements toxicity. Compared to other forms, phytotransformation 
is labor-intensive, often requires soil amendments, and is less 

reliable (Mishra et al., 2020; Bezie et al., 2021). Phytodegradation 
is commonly applicable against organic pollutants. However, 
it is less effective and rarely used, especially against inorganic 
contaminants, including PTEs.

Phytovolatilization
It involves converting metal contaminants into a gaseous 
form that is eventually released into the atmosphere (Aweng 
et  al., 2018). In this process, PTEs are only transferred to 
other parts of the environment and could still be redeposited 
into the soil following precipitation. For this reason, 
phytovolatilization is less popular, especially compared to 
phytoextraction and phytofiltration (Nikolić and Stevović, 
2015; Bisht et  al., 2020).

THE MECHANISMS OF PTEs 
TOLERANCE AND BIOACCUMULATION

Plants with the enhanced potential of taking up PTEs and 
translocating them to their aerial parts are identified as 
metal hyperaccumulators, while those with limited metal 
translocation are known as non-hyperaccumulators (Maestri 
et  al., 2010). Recently, the interest in proteomics studies of 
plant hyperaccumulators and their metal sequestration and 
detoxification mechanisms has increased (Visioli and 
Marmiroli, 2013; Kumar and Prasad, 2018; Raza et al., 2020). 
Proteomic studies of PTEs accumulators can make comparisons 
of differentially expressed proteins (DEPs) between different 
plant parts (Table  2). Many studies suggest that the 
hyperaccumulators including transporters and chelators 
showed enhanced DEPs compared to non-accumulating plants 
(Visioli and Marmiroli, 2013; Paape et  al., 2016; Domka 
et  al., 2020). During PTEs phytoremediation, plant tissues 
play essential roles.

The root is the first tissue to encounter metal stress, and 
therefore often witnesses dramatic proteomic changes. When 
comparing the root protein of two accessions, glycosyl hydrolase 
family 18 differed in abundance, affecting the plant’s capacity 
to uptake metal; the variant that had a higher protein abundance 
had higher Ni and Cd accumulation (Lai et  al., 2020; Raza 
et  al., 2020). The proteome of a variety of plant species was 
studied, and several proteins that protect plants against various 
stresses, including oxidative, biotic, and abiotic stress conditions 
were identified (Fan et  al., 2016; Goodin, 2018; Kumar et  al., 
2018). When comparing Thlaspi caerulescens proteomes that 
had variable tolerance to Cd and Zn, it was determined that 
the element’s higher accumulation was due to the protein 
photosystem II (Paunov et  al., 2018). Proteomic analysis of 
Sorghum bicolor has also shown that a total of 33 DEPs were 
found when plants were (Table  2) exposed to cadmium (Cd) 
stress (Roy et al., 2016). Examples of such proteins are glutathione 
S-transferase, ribulose bisphosphate carboxylase small chain, 
carbonic anhydrase, glyceraldehyde-3-phosphate dehydrogenase, 
and cytochrome P450, which are well characterized this far 
in historical literature. The less characterized contenders that 
were upregulated in S. bicolor include pentatricopeptide 
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TABLE 2 | Examples of PTEs phytoremediation studies involving the use of comparative proteomics from 2015 to date.

PTEs Plant species Plant 
parts

PTEs concentration/
exposure time/media

Technology used Key findings References

As Artemisia annua 
L.

Shoot

Root

100 μm 
Na2HAsO4.7H2O/3 days 
Hoagland nutrient’s solution

2-DE PAGE, 
MALDI-TOF-MS

Upregulation of secondary metabolites-related genes 
enhances as tolerance. Biomass, carotenoid, flavonoids 
were enhanced, whereas total chlorophyll pigment was 
reduced under As treatment.

Kumari and 
Pandey-Rai, 
2018

Brassica napus Leaves 200 μmoll−1 NaAsO2/ 
7 days/ 50% Hoagland 
solution

LC–MS/MS, SEM, 
TOF-MS, qRT-PCR

Photosystem II (PSII) and photosystem I (PSI) proteins 
were upregulated. Secondary metabolites biosynthesis 
increased.

Farooq et al., 
2021

Oryza sativa L. Leaves

Root

NaAsO2; 25 μM /7 d/ 
modified Hewitt’s media

2-DE, MALDI-TOF-
TOF

The sulfur treatment alleviates As stress by 
forming disulfide linkage in proteins involved in 
glycolysis, TCA cycle, energy metabolism, and 
photosynthesis.

Dixit et al., 
2015

Populus 
(deltoides cv. 
“zhonglin 2025” 
and euramericana 
cv. ‘I-45/51’)

Leaves

Root

Na3AsO4·12H2O 50, 
100 μM/21 days/Hoagland’s 
nutrient solution

MALDI-TOF/TOF 
MS, 2-DE, RT-PCR

Overexpression of photosynthetic and antioxidative 
responsive proteins in As tolerant cultivar

Liu et al., 2017

Cd Arabidopsis 
thaliana L.

Leaves, 
Root

100 μm CdCl2/7-days/1/2 
MS solid media

2D-GE, MALDI-
TOF/TOF-MS

The natural accession Chernobyl-07 (Che) has a higher 
Cd tolerance than normal accessions. This accession 
particularly changed the expression related to ROS 
protection and energy modulation proteins for obtaining 
tolerance.

Klimenko et al., 
2019

Brassica 
campestris

Root 50 μm CdCl2/1-day/ 
hydroponic

2D-GE, MALDI-
TOF/TOF-MS

Hydrogen gas (H2) and nitric oxide (NO) enhance the 
antioxidant capabilities of B. campestris seedlings in 
response to Cd toxicity.

Su et al., 2019

Brassica napus Xylem sap 10 μm CdCl2/3-days/
hydroponic

LC–MS/MS Cd stress-induced the overexpression of stress 
response-related proteins.

Luo and 
Zhang, 2019

Medicago sativa Stem 88.9 μm CdSO4/4-months/
potted soil

2D-GE, MALDI-
TOF/TOF-MS

Cd stress caused the differential expression of proteins 
involved in cell wall remodeling, defense response, 
carbohydrate metabolism, and promotion of the 
lignification process.

Gutsch et al., 
2019a

Microsorum 
pteropus

Leaves, 
Root

100, 250 and 500 μm 
CdCl2/7-days/hydroponic

2D-GE, MALDI-
TOF/TOF-MS

Different protein expression patterns were 
observed involving related functions of energy 
metabolism and antioxidant activity in the root, cellular 
metabolism, protein metabolism, and photosynthesis in 
leaves.

Lan et al., 2018

Sorghum bicolor Shoot 100 and 150 μm CdCl2/5-
days/semi hydroponic

2D-GE, MALDI-
TOF/TOF-MS

Cd stress inhibits carbon fixation, ATP production, and 
the regulation of protein synthesis.

Roy et al., 
2016

Cr Brassica napus L. Leaves 100 μm K2Cr2O7/3-days/
hydroponics

2-DE, MALDI-TOF/
TOF MS

Increased abundance of defense-related proteins such 
as antioxidant enzymes, molecular chaperones involved 
in scavenging the excess ROS, and refolding of 
misfolded proteins under Cr stress.

Yıldız and Terzi, 
2016

Callitriche 
cophocarpa

Shoot 1 mm K2CrO4/3-days/liquid 
MS medium

SDS-PAGE, 2DE, 
MS/MS

Quinone dehydrogenase, FQR1 (NAD(P)H) newly 
identified to act as a detoxification protein by protecting 
the cells against oxidative damage.

Kaszycki et al., 
2018

Nicotiana 
tabacum

Shoot 100 μm K2Cr2O7/5-days/
hydroponic

2D-GE, MALDI-
TOF/TOF-MS

Twelve Cr-tolerance-associated proteins were 
identified. These include mitochondrial processing 
peptidase, dehydrin, superoxide dismutase, adenine 
phosphoribosyltransferase, and mitochondrial malate 
dehydrogenase proteins.

Bukhari et al., 
2016

Pteris alba Leaves 
Root

146.7 ~ 261.5 mm Cr/4-
years/waste landfill field

2D-GE, Nano 
HPLC MS/MS

ROS scavenging proteins assist poplar threes long-term 
adaptation to Cr polluted environments.

Szuba and 
Lorenc-
Plucińska, 
2018

Cu Agrostis capillaris 
L.

Shoot 1–50 μm CuSO4/90-days/
semi hydroponic

2D-GE, LC–MS/
MS

Overexpression of a Heat shock protein 70 (HSP70) 
may be pivotal for Cu tolerance by protecting protein 
metabolism.

Hego et al., 
2016

Hyoscyamus 
albus L.

Root 0, 0.1, 1, 20, and 200 μm 
CuSO4/7-days/cell culture

MALDI-QIT-TOF-
MS

High Cu levels enhanced respiration activity and 
propagated H. albus roots through the activation of the 
energy supply and anabolism. Increased abundance of 
proteins involved in carbohydrate metabolism, de novo 
protein synthesis, cell division, and ATP synthesis, and 
decreased proteasome.

Sako et al., 
2016

(Continued)
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repeat-containing protein, Zn finger CCCH domain-containing 
protein 14, flavonoid 3′,-5′ hydroxylase, aspartate 
aminotransferase 3 (chloroplastic), protein Brevis radix-like 1, 

bergaptol O-methyltranferase, and probable F-actin-capping 
protein subunit beta proteins under Cd stress (Roy et al., 2016). 
Physiologically, in S. bicolor plants, there is the suppression 

TABLE 2 | Continued

PTEs Plant species Plant 
parts

PTEs concentration/
exposure time/media

Technology used Key findings References

Triticum aestivum 
L.

Root

Leaves

100 μm CuSO4/3-days/
hydroponic

2D-GE, HPLC-Chip Cu responsive network of 36 key proteins, most of 
which may be regulated by abscisic acid (ABA), 
ethylene, and jasmonic acid (JA). Exogenous JA 
application showed a protective effect against Cu stress 
and significantly increased glutathione S-transferase 
(GST) gene transcripts.

Li et al., 2013

Hg Paspalum 
distichum L.

Root 1,115 μm Hg/ 60days/
contaminated soil in glass 
box

LC–MS/MS Observed changes in the expression patterns of metal 
binding and transport protein. Increased accumulation 
of photosynthesis and energy metabolism, related 
proteins.

Ding et al., 
2019

Triticum aestivum 
L.

Root

Shoot

25, 50, 100, 200 and 
400 μm HgCl2/3-days /
hydroponic

2D-GE, LC–MS/
MS

49 abscisic acid (ABA) potentially regulated Hg-
responsive proteins identified. Exogenous ABA 
application conferred protection against Hg stress and 
increased peroxidase enzyme activities, suggesting that 
it may be an important factor in the Hg signaling 
pathway.

Kang et al., 
2015

Pb Cannabis sativa 
L.

Leaves Pb(NO3)2 3 g/kg soil /40-
days/Potted soil

LC-ESI-MS/MS. 
SWATH-MS

Adaptation to Pb stress by accelerating adenosine 
triphosphate (ATP) metabolism; enhancing respiration, 
light absorption, and light energy transfer; and 
eliminating reactive oxygen species.

Xia et al., 2019

Chrysopogon 
zizanioides

Root

Shoot

Pb(NO3)2 400 mg/l, 
800 mg/l and 
1,200 mg/l/10-days/
hydroponic (half strength 
Hoagland solution)

LC–MS/MS Increased levels of key metabolites including amino 
acids, organic acids, and coenzymes in response to Pb.

Pidatala et al., 
2018

Raphanus sativus 
L.

Root 1,000 mg/ L Pb(NO3)2/3-
days/modified half-strength 
Hoagland nutrient solution

GC–MS Pb exposure altered metabolites and divergent 
expression of enzymes which are responsible for 
profound biochemical changes, including carbohydrate 
metabolism, energy metabolism, and glutathione 
metabolism.

Pang et al., 
2015

Glycine max L. Nodules 107.8 μm PbCl2 or 1.84 μm 
HgCl2/

60-days /potted peat, 
perlite, and vermiculite 
(1:1:1)

2D-GE, MALDI-
TOF MS/MS

Pb stress increased the abundance of defense, 
development, and repair-related proteins.

Baig et al., 
2018

Zea mays Root 18,000 μm Pb (NO3)2/12, 
24 and 48 h/semi 
hydroponic

Nano-LC–MS/MS Upregulation of stress, redox, signaling, and transport 
proteins, while proteins related to nucleotide 
metabolism, amino acid metabolism, RNA, and protein 
metabolism were down-regulated.

Li et al., 2016

Se Allium cepa L. Root 10 mg/l Se Na2SeO3/10-
days/Hoagland’s nutrient 
solution

Cap HPLC-ESI-
QTOF-MS and MS/
MS, nano LC-
ESI-Q Orbitrap-MS 
and MS/MS

Different abundances of proteins involved in 
transcriptional regulation, protein folding/ assembly, cell 
cycle, energy/carbohydrate metabolism, stress 
response, and antioxidant defense were identified in 
response to Se stress.

Karasinski 
et al., 2017

Brassica oleracea 
L.

Florets

Leaves

25 μm Na2SeO4/14-days/
Hoagland solution

UPLC–MS/MS, 
qRT-PCR, LC–MS/
MS

Glucosinolate reduction in broccoli leaves and florets is 
associated with negative effects on precursor amino 
acids (methionine and phenylalanine), biosynthesis, and 
glucosinolate-biosynthetic-gene expression in response 
to Se supplementation.

Tian et al., 
2018

Capsicum 
annuum L.

Shoot 100 ppm Na2SeO4/1-day LC–MS/MS Overexpression of heat shock and metabolism proteins. 
Others are involved in post-translational modification, 
protein turnover, chaperones, and protein processing in 
the endoplasmic reticulum.

Zhang et al., 
2019

Oryza sativa L. Shoot

Root

25 μM, NaAsO2 and 25 μm 
Na2SeO3/15-days/Hewitt 
nutrient medium

MALDI-TOF/TOF, 
qRT-PCR, Western 
blot,

Differentially expressed proteins altered the gene 
expression related to abiotic and biotic stresses and 
defense responses such as ROS homeostasis, 
photosynthesis, energy metabolism, and transport and 
signaling.

Chauhan et al., 
2020
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of carbon fixation, ATP production, and protein synthesis 
regulation in Cd-stressed plants (Roy et  al., 2016). In fact, 
under 500 μm Cd stress, the fern Microsorum pteropus is capable 
of sequestering high amounts of cadmium in roots and dry 
matter of leaves (up to 4,000 mg/kg), while the water fern 
Azolla, widely seen in Asian rice fields, does not have the 
same capacity to phytoaccumulate Cd.

In a study performed on hemp cultivars (Xia et  al., 2019), 
it was found that phytoremediation of Pb impacts the following 
key pathways: protein synthesis, transcription, transport, signal 
transduction, photosynthesis, energy metabolism, and protein 
storage, among other systems. Examples of proteins that are 
upregulated in Y1 cultivars of hemp include ones that optimize 
ATP generation using ATP synthase subunit a (P56758 and 
P56757), ATP synthase protein MI25 (Q04613), ATP synthase 
protein YMF19 (P93303), nucleoside diphosphate kinase III 
(O49203), pyruvate kinase (PKE; Q94KE3, Q9FNN1, and 
Q9FM97), and adenylate kinase 5 (ADK; Q8VYL1; Xia et  al., 
2019). Therefore, making more chemical energy appears to 
be  a favorable development when exposed to high Pb stress. 
In particular, the pyruvate kinase that mediates pyruvate 
production for the Kreb’s Cycle is a key protein that is 
upregulated. In the same cultivar (Y1) under Pb stress, the 
following proteins were upregulated for signal transduction 
and transport: Five water transport-related aquaporins (e.g., 
Q06611, P25818, and others), patellin (Q56ZI2 and Q56Z59), 
mitochondrial dicarboxylate/tricarboxylate transporter DTC 
(Q9C5M0), mitochondrial phosphate carrier protein 3 
(Q9FMU6), mitochondrial carnitine/acylcarnitine carrier-like 
protein (Q93XM7), MD-2-related lipid recognition domain-
containing protein/ML domain-containing protein (F4J7G5), 
and ras-related protein RABA2a (O04486; Xia et  al., 2019).

Aquaporins on the contemporary are not seen solely as 
water transporters but can transport ammonia, boron, carbon 
dioxide, silicon, urea, and even PTEs such as As (Mosa 
et al., 2016). An Aqua1 gene from Populus trichocarpa, which 
has a very high number of aquaporins in its proteome, when 
expressed in a Zn-sensitive strain of yeast, was able to confer 
Zn-resistance. Furthermore, Aqua1 protein product was 
observed to co-localize with AtTIP1, a well-known Arabidopsis 
vacuolar marker (Ariani et  al., 2019). The contenders for 
phytoremediation that are DEPs come in large datasets that 
it is difficult to describe in detail covering all proteins in 
one review article. There were 63 and 372 differently expressed 
proteins (≥1.5) in the tolerant (BM) and susceptible (Y1) 
cultivars of industrial hemp (Xia et  al., 2019). A collection 
of 5,838 proteins were quantified in Poplar plants to check 
up- or down-regulation of proteins that play a role in 
phytoremediation in solely “Cd stressed” and “Cd stress 
remediated with nitrogen” groups (Huang et  al., 2020). In 
the study, the differentially expressed proteins were in the 
high double digits and hundreds. The following pathways 
were also upregulated (in the process category) in Cd + N 
(nitrogen) plants compared to the Cd only group; inositol 
metabolic process, polyol biosynthetic process, polyol metabolic 
process, alcohol biosynthetic process, monosaccharide 
metabolic process, hexose metabolic process, and phospholipid 

biosynthetic process showcasing that nitrogen has the potential 
to recover phyto-destructive events (Huang et  al., 2020). 
Furthermore, in the same study, there was upregulation of 
the following candidate proteins at both the proteome and 
phosphoproteome levels: heat shock protein 70 (HSP70), 
14–3–3 protein, peroxidase (POD), zinc finger protein (ZFP), 
ABC transporter protein, eukaryotic translation initiation 
factor (elF), and splicing factor 3 B subunit 1-like (SF3BI). 
In fact, plant transport and absorption were optimized, with 
11 binding proteins, seven transporter proteins, and five-
storage proteins upregulated in the Cd + N treatment. The 
main transporters that were upregulated were ABC transporters, 
which represented 57.1% of total transporters that were 
upregulated in the Cd + N treatment (Huang et  al., 2020).

Biotechnologically, three main strategies are embarked upon 
to improve the clean-up of PTEs (i) manipulating metal/
metalloid transporters, (ii) enhancing metal/metalloid ligand 
production, and (iii) conversion of metal/metalloid into volatile 
and less detrimental forms (Mosa et  al., 2016). For the first 
strategy, tinkering with aquaporins that are capable of As 
transport, as well as other metalloids, antimonite (SbIII), silicon 
(Si), and boron (B) can be  one way forward. The As is known 
to be  present in rice grains and contributes to As in the 
human body (Chowdhury et al., 2020). For the second strategy, 
cysteine-rich proteins such as metallothionein and glutathione 
S-transferase take precedence, and this is a well-researched 
area in phytoremediation (Mosa et  al., 2016). For the third 
one, Se, which is an essential micronutrient that can have 
negative repercussions when consumed in excess, is seen as 
a contender for intervention to turn excess Se into volatile 
products, such as dimethyl selenide, that can be  released into 
the air (Mosa et  al., 2016).

Studies available to date report either the up- or down-
regulation of a considerable number of proteins related to 
several cellular essential processes. A general observation cannot 
be  made from these studies since the change in proteome 
profile may depend on many factors, including the type of 
metal, the concentration of metal, exposure duration, growth 
environment, and other biological or non-biological entities 
associated with the plant system. However, it can be  suggested 
that the toxic outcome of PTEs lies in the profile of functional 
proteins subject to change by various parameters being major 
among them is the metal type/concentration. Some of the 
essential proteins/enzymes and their expression altered by PTEs 
in leaves and roots are presented in Figures  4, 5, respectively. 
Since there can be  hundreds of proteins in a single type of 
plant tissue whose expression is changed by PTEs when 
comparative proteomics is performed, therefore, combining all 
under one umbrella is cumbersome. To understand the impact 
of specific PTE on a specific plant species, proteomic toxicity 
profiling of PTEs with respect to plant organs or tissue needs 
to be  performed in future studies. Many hyperaccumulator 
species of Brassicaceae and Caryophyllaceae do not possess 
mycorrhizal networks in their roots. However, hyperaccumulator 
plants (for example, the genus Thlaspi) have been documented 
to possess mycorrhizae, although sparsely under field and 
experimental conditions (Ferrol et  al., 2016). The 
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inverse—mycorrhizae as determined by spore counts or root 
colonization has been significantly lower in soils rich in PTEs 
than non-metal rich soils—appears to claim that PTEs can 
have a detrimental effect on mycorrhizal survival (Ferrol 
et  al., 2016).

However, mycorrhizal fungi never disappear from the ambient 
soil, suggesting that they can reform symbioses with plant 
roots under opportunistic conditions. AM  fungi are capable 
of resisting PTEs by collective means that include cell wall 
binding to metals, chelation by glomalin, increased efflux to 
the exterior while diminishing uptake, cytosolic chelation, 
compartmentalization in the vacuoles, and upregulating 
antioxidant responses (Ferrol et  al., 2016).

The success of exogenous nitrogen application suggests that 
the application of nitrogen-fixers (diazotrophs such as Rhizobium 
and Azotobacter) as biofertilizers can be an option to remediate 
polluted soils as well promote the capacity of plants to remediate 
PTEs such as Cd. In fact, metal-resisting Rhizobia can alleviate 
PTEs stress by production of phytohormones, nitrogen fixation, 
phosphorus solubilization, ACC deaminase synthesis, and 

siderophores (Brígido and Glick, 2015). The opulence in 
phenotypic and genotypic Rhizobial diversity makes it essential 
to choose the correct elite strains which can remediate soils 
that are not conducive to plant growth, such as N-deficient 
degraded lands.

CONCLUSION

The PTEs accumulation in the environment above threshold 
levels poses a high risk to biota health and significantly 
undermines global environmental sustainability efforts. 
Phytoremediation has proven to be  one of the most efficient 
strategies to remediate PTEs polluted sites. However, the 
large-scale application and commercial success of 
phytoremediation are still to be  demonstrated, partly due 
to the limited understanding of the PTEs sequestration 
mechanisms. Although several successes were recorded, the 
evolution of plant proteomics provides further opportunity 
to sufficiently elucidate PTEs phytoremediation mechanisms, 

FIGURE 4 | An illustration of the uptake of potentially toxic elements and plant response in the leaves. Uptake of PTEs in plant leaf resulting in significant up- or 
down-regulation of several proteins as represented by up and down arrows, respectively. The fold change may vary with the metal species, exposure duration, and 
intercellular concentration. Up and down red arrows are for as, blue for Cd, pink for Cr(VI), yellow for Cu, and violet for Pb. Membrane-embedded channels show 
the metal transport inside the leaf cell. Abbreviations: RUBISCO, Ribulose bisphosphate carboxylase/oxygenase; FBA, Ructose-bisphosphate aldolase; GAPDH, 
Glyceraldehyde 3-phosphate dehydrogenase; PAM, Phenylalanine aminomutase; C-Hsp, Chloroplast heat shock proteins; ZIPs, zinc-iron permease; MTP1, Metal 
transport protein1; CDF, Cation diffusion facilitator; and NRAMP, Natural resistant associated macrophage protein.
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particularly in known high metal accumulating plants. This 
comprehensive review has demonstrated the potential of 
several PTEs accumulating plants and the active involvement 
of their proteome specific to the internal and/or external 
stimuli of applied PTEs. Various advanced tools and techniques 
both gel dependent and gel-free methods including qRT-PCR, 
western blotting, 2D-GE, LC-MS/MS, and MALDI TOF MS/
MS have recognized the association of specific PTE with 
the enhanced expression of resulting proteome. The alteration 
of proteome expression (up- or down-regulation) in response 
to applied PTEs such as Cd, Cr, or Hg depends on the 
intracellular concentration of accumulated PTE, plant species, 
and the phytoremediation strategy being deployed by the 
plant. However, the PTE’s concentration effectively mitigated 
by the plant species in a defined or local environment without 
reducing crop production still needs further investigation. 
The species-specific (both plant and PTE’s species) knowledge 
of plant proteome changes under different growth conditions 
and growth phases such as from vegetation to flowering to 
fruiting stage indeed requires further investigation. A better 
understanding of PTEs-proteome relation will provide obvious 
benefits like (i) sustainable and effective decontamination of 
PTEs polluted sites while maintaining the plant growth and 

crop production and (ii) protection of soil biodiversity and 
quality. With an enhanced mechanistic understanding of the 
process, studies focusing on the engineering of the existing 
mechanisms of a plant’s PTEs sequestration should 
be prioritized. This will enable the development of an increased 
number of transgenic plant species with enhanced PTEs 
tolerance, uptake, and detoxification capabilities.

AUTHOR CONTRIBUTIONS

KU and MA: conceptualization. KU and BA: software. KU, 
MA, and BA: formal analysis. MA and HA: resources and 
funding acquisition. KU: writing—original draft preparation. 
KU, MA, HA, MR, MS, and BA: writing—review and editing. 
MA, KU, and HA: project administration. All authors contributed 
to the article and approved the submitted version.

FUNDING

Qatar University’s Agricultural Research Station (ARS) supported 
this manuscript preparation and funded the APC.

FIGURE 5 | A proposed model on the uptake of potentially toxic elements and plant response in the roots. Uptake of PTEs by plant roots causing significant up- or 
down-regulation of essential proteins or enzymes as represented by up and down arrows, respectively. Up and down blue arrows are for Cd, yellow for Cu, violet for 
Pb, red for Se, and pink for Hg. Abbreviations: GAPDH, Glyceraldehyde 3-phosphate dehydrogenase, and ATP, Adenosine triphosphate.
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