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Arbuscular mycorrhizal fungi (AMF) infect plant roots and are hypothesized to improve

plant growth. Recently, AMF is now available for axenic culture. Therefore, AMF is

expected to be used as a microbial fertilizer. To evaluate the usefulness of AMF as

a microbial fertilizer, we need to investigate the relationship between the degree of

root colonization of AMF and plant growth. The method popularly used for calculation

of the degree of root colonization, termed the magnified intersections method, is

performed manually and is too labor-intensive to enable an extensive survey to be

undertaken. Therefore, we automated the magnified intersections method by developing

an application named “Tool for Analyzing root images to calculate the Infection rate of

arbuscular Mycorrhizal fungi: TAIM.” TAIM is a web-based application that calculates the

degree of AMF colonization from images using automated computer vision and pattern

recognition techniques. Experimental results showed that TAIM correctly detected

sampling areas for calculation of the degree of infection and classified the sampling areas

with 87.4% accuracy. TAIM is publicly accessible at http://taim.imlab.jp/.

Keywords: arbuscular mycorrhizal fungi, magnified intersections method, computer vision, pattern recognition,

deep convolutional neural networks, system development

1. INTRODUCTION

Arbuscular mycorrhizal fungi (AMF) infect plant roots and are considered to improve plant
growth (Treseder, 2013). Recent research (Kameoka et al., 2019) has succeeded in the axenic
culture of AMF. Therefore, AMF may be mass-produced in the future and are predicted to be
used as a microbial fertilizer. To evaluate the usefulness of AMF as a microbial fertilizer, we need to
investigate the relationship between the degree of root colonization of AMF and plant growth.

The most commonly studied effect of AMF infections on plant roots is the absorption of
phosphorus. However, some studies have shown that injecting mycorrhizal fungi was one of the
causes of promoting phosphorus absorption (Van Der Heijden et al., 1998; Smith and Read,
2010; Richardson et al., 2011; Yang et al., 2012), while others have ruled it out (Smith et al.,
2004). Therefore, as the results are still controversial, further research on the relationship between
phosphorus and AMF is needed. To promote the research, objective evaluation of experiments
conducted by different observers under different conditions is indispensable. Therefore, calculating
a reliable AMF colonization degree is essential for the research.
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In general, the degree of AMF colonization is calculated
using the magnified intersections (MI) method (McGonigle et al.,
1990). All steps of the MI method are performed manually and
thus the method is extremely labor-intensive. Moreover, given
that the colonization degree is assessed manually, the decision
criterion and results will vary among observers. For these
reasons, conducting a comprehensive survey with this method
is difficult, and the relationship between AMF colonization and
plant growth remains unclear. Clarification of this relationship
requires a fixed criterion for estimation of AMF colonization and
automation of estimation of colonization degree.

In this article we propose a method for automation of the
MI method for estimation of AMF infection degree. Based
on the proposed method, we developed an application system
named “Tool for Analyzing root images to calculate the Infection
rate of arbuscular Mycorrhizal fungi” (TAIM) (Muta et al.,
2020). TAIM is a web-based application that automatically
calculates the AMF colonization degree frommicroscopic images
with 40x magnification prepared for an AMF infection rate
measurement method. Using a machine-learning-based classifier,
TAIM calculates the AMF infection rate objectively, unlike
manual calculation. Moreover, TAIM has two functions that
allow the user to be incorporated to boost its estimation accuracy.
One is to upload their own data, which increases training data
for TAIM. The other is to correct wrong estimation results,
which improves the quality of training data. By retraining TAIM
using the updated training data, the estimation accuracy of TAIM
can be boosted. Experiments to evaluate the performance of
the proposed method demonstrated that the sampling areas for
calculation of the infection rate were detected correctly and the
degree of infection was determined with 87.7% accuracy.

2. RELATED WORK

As microscopic images are captured under stable lighting, the
images are especially suitable for image processing. Therefore,
many processing methods have been proposed.

The most popular target for processing of microscopic images
is a cell. In many cases, images include too many cells for
manual observation. Therefore, image processing methods for
cell image analysis have been proposed as an alternative to human
observation. To date, procedures for detection (Al-Kofahi et al.,
2010; Buggenthin et al., 2013; Schmidt et al., 2018; Weigert
et al., 2020), tracking (Debeir et al., 2005; Chen et al., 2006;
Dzyubachyk et al., 2010), and cell counting (Lempitsky and
Zisserman, 2010) have been proposed. Given the stable lighting
used for observation of microscopic images, many methods
previously proved to be relatively accurate even before the
emergence of deep neural networks (DNNs). Subsequent to the
advent of DNNs, the accuracy of detection and tracking has
drastically improved (Xie et al., 2018; Korfhage et al., 2020;
Kushwaha et al., 2020; Nishimura et al., 2020; Liu et al., 2021). In
addition, methods for performing more challenging tasks, such
as detection of mitosis (Su et al., 2017), three-dimensional cell
segmentation (Weigert et al., 2020), nuclei (Xing et al., 2019), and
chromosomes (Sharma et al., 2017) have been published.

Image processing is also used for microscopic medical images.
It is practical to use microscopic images to diagnose a disease
caused by abnormal cell growth, such as cancer. Many methods
have been developed to detect cancer (Yu et al., 2016; Vu et al.,
2019) and diagnose cancer from microscopic images (Song et al.,
2017; Huttunen et al., 2018; Kurmi et al., 2020). Microscopic
images are also helpful to detect infectious diseases. Malaria
is an infectious disease for which image processing is the
most widely used detection method, and various methods have
been proposed for its detection and diagnosis (Ave et al.,
2017; Muthu and Angeline Kirubha, 2020). In addition, virus
detection methods (Devan et al., 2019; Xiao et al., 2021) have
been proposed. For medical applications other than disease
diagnosis, methods such as blood cell identification have been
developed (Razzak and Naz, 2017).

A typical example of microscopic image analysis in
plants is the analysis of pollen. As pollen grains are small,
microscopic observation is essential. For example, pollen
detection and recognition methods from air samples have
been proposed (Rodrìuez-Damián et al., 2006; Landsmeer
et al., 2009). Recently, a method applying DNNs has been
developed (Gallardo-Caballero et al., 2019). Pollen is also an
object of study in paleontology as well as in botany. Pollen
analysis, or palynology, involves the study of pollen grains in
fossil-bearing matrices or sediments for consideration of the
history of plants and climatic changes, for example. As pollen
classification requires a broad range of knowledge and is labor-
intensive, methods for automated pollen classification (Battiato
et al., 2020; Bourel et al., 2020; Romero et al., 2020) have been
proposed to replace manual observation.

Recently, Evangelisti et al. (2021) developed AMFinder to
analyze plant roots using deep learning-based image processing.
This tool can detect AMF and visualize the degree of AMF
colonization. These authors’ motivation and methodology were
similar to our own. The main differences between AMFinder
and TAIM are as follows. TAIM is based on the MI
method (McGonigle et al., 1990), which uses the intersections
of grid lines to quantify AMF colonization of roots, whereas
AMFinder divides an image into squares of a user-defined size.
TAIM is designed to be a web-based application accessible to
all users who can use a web browser, whereas AMFinder is a
standalone application consisting of a command-line tool and
a graphical interface that requires installation on a computer
equipped with graphics processing units (GPUs) and users must
set up the environment themselves.

3. MATERIALS AND METHODS

3.1. Materials
The roots used for the dataset were from soybean. The
soybean plants were grown in a glasshouse under an average
temperature of 30.9◦C in the experimental field of Osaka
Prefecture University. Each plant was grown in a pot in sterilized
soil and was subsequently inoculated with AMF (Rhizophagus
irregularis MAFF520059). Therefore, AMF were the only fungi
present in the soil of the pots. Table 1 lists the cultivar, place of
origin, and number of days growth for the soybeans.

Frontiers in Plant Science | www.frontiersin.org 2 May 2022 | Volume 13 | Article 881382

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Muta et al. TAIM

TABLE 1 | Details of the soybean root dataset used in the experiment.

Genotypes Place of origin Growing days

M 581 India 48

OUDU Korea 36

JAVA 7 Indonesia 52

U 1290-1 Nepal 54

KARASUMAME Taiwan 44

KADI BHATTO Nepal 59

The plants were removed from the pots and the roots
were washed with water. The roots were softened using 10%
potassium hydroxide to aid decolorization. We used 0.5%
hydrogen peroxide aqueous solution to clear the softened roots
and hydrochloric acid to neutralize. The roots were stained using
0.05% trypan blue to stain the AMF blue. The stained root sample
is placed on a glass microscope slide with 0.25-mm-wide grid
lines at 1.00 mm intervals. We use the glass microscope slide to
make observation more efficient.

The prepared slides were observed under a 40x objective
with an optical microscope (OLYMPUS BH-2) and images were
captured with a digital camera (OLYMPUS PEN E-PLI). The
resolution of the images was 4,032× 3,024 pixels.

3.2. AMF Infection Rate Measurement
Method
We automate a method to measure the infection rate of AMF
based on the MI method (McGonigle et al., 1990), which is a
popular and accuratemethod for estimation of AMF colonization
degree (Sun and Tang, 2012). The MI method is an improved
version of the grid-line intersect (GLI) method (Giovannetti and
Mosse, 1980). The GLI method uses a dissecting microscope
and measures the colonization degree as the ratio of colonized
sampling areas. The MI method uses a light microscope, which
provides higher resolution and therefore MI can measure the
colonization degree more accurately.

The method we automated uses roots prepared as described in
Section 3.1. An observer categorizes the roots at the intersections
of the grid lines into four categories. In the MI method
categorizes the sampling areas into four categories: negative,
arbuscules, vesicles, and hyphae only. While the proposed
method and MI method essentially perform the same procedure,
there is one difference in the categorization of sampling areas
between the methods: the MI method excludes the sampling
areas that do not include roots in advance, whereas the proposed
method does not. Therefore, we added a new class, “no root,” for
the intersections that do not include roots, to enable the proposed
method to classify the root-less sampling areas.

In addition, in our experiments, we integrated the “hyphae
only” class into the “arbuscules” class to reflect the experimental
environment. In our experiments, we sterilized the soil and
then inoculated it with AMF. To avoid mixing the other
microorganisms with the unsterilized soils in the pots, the plants
were placed in a separate area from the unsterilized potted

plants and treated to prevent soil contamination by watering.
Hence, all the hyphae in the soil originate from AMF. In
summary, we added a new class named “no root” and treated
“hyphae only” as “arbuscules.” Therefore, in our experiments,
we classified the sampling area into four categories: “vesicles,”
“arbuscules,” “no root,” and “negative.” The original MI method
uses a magnification of 200x, but this paper uses a 40x image.
The reason for this is that 40x was sufficient for classifying in this
study. Figure 1 shows a sample of each class.

After classifying the intersections, the proportions of
arbuscular colonization (AC), vesicular colonization (VC) are
calculated as

AC =

Na

Ns − Nnr
, VC =

Nv

Ns − Nnr
, (1)

where Na, Nv, Nn, and Nnr are the numbers of intersections
categorized into arbuscules, vesicles, and no root, respectively,
and Ns is the total number of intersections.

3.3. Software Design
We propose TAIM, a web-based application system to automate
calculation of the degree of AMF colonization. In this section,
we explain the system architecture of TAIM in Section 3.3.1, the
method by which TAIM automatically calculates the infection
rate of AMF in Section 3.3.2. We also explain a dataset we used
for constructing TAIM in Section 3.3.3, and functions of TAIM
in Section 3.3.4.

3.3.1. Overview of TAIM
Figure 2 presents an overview of TAIM. TAIM consists of client
and server systems. The client system runs on a web platform,
receives images from users, and shows the calculation results.
We use a web platform because it is independent of an OS
environment and thus users can use TAIM on any device that
can run a web browser. The server receives images from the
client, calculates the AMF colonization degree, and transmits the
results to the user. The server calculates the AMF colonization
degree by detecting the sampling area using computer vision
techniques and categorizing the sampling areas as colonized
or not using machine-learning techniques. We use HTML5,
CSS3, and JavaScript for client development and Django, which
is a web application framework implemented by Python, for
server development.

3.3.2. Calculation of the AMF Colonization Degree
In this section, we explain the method for calculating the AMF
colonization degree in detail. TAIM automates the method
described in Section 3.2. Server part of Figure 2 shows an
overview of the procedure for calculating the AMF colonization
degree. The inputs are images captured from a microscope
slide prepared for the MI method (Figure 2A). TAIM detects
intersections of the grid lines as sampling areas for calculating
the colonization degree. Examples of the intersections are shown
as green rectangles in Figure 2B. TAIM then categorizes the
sampling areas into four categories (Figure 1). Finally, TAIM
calculates the AMF colonization degrees using Equation (1).
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FIGURE 1 | Target classes for the categorization. TAIM categorizes the sampling areas into four classes: (A) vesicles (class 0), (B) arbuscules (class 1), (C) negative

(class 2), and (D) no root (class 3). Note that the four classes are not identical to those used in the MI method and the magnification of the slide images was 40x.

FIGURE 2 | A system overview of TAIM. The system consists of a client and a server. The client, implemented on a web browser, receives the microscope slide

images with the grid filter from users and shows the calculation results of the AMF colonization degree. The server receives images, calculates the AMF colonization

degree, and returns the calculation results to the web client. The process for calculating the AMF colonization degree by the server are following; (A) The input image is

a microscope slide image with a grid filter for calculating AMF colonization. (B) The intersections denoted by green rectangles are detected. They are used as sampling

areas for calculating the AMF colonization degree. (C) Categorization results are visualized with different colors. The magnification of the slide images was 40x.

Note that these four categories recognized by TAIM differ from
the four categories of the MI method. Details are provided in
Section 3.3.2.2.

3.3.2.1. Intersection Detection
For intersection detection, we use a simple computer vision
technique, namely edge detection using projection profile. The
overall intersection detection process is shown in Figure 4A. The
orange grid lines in the image are almost orthogonal (Figure 4A)
If the lines are oriented in the horizontal or vertical direction
of the image, the horizontal and vertical lines are expressed
as the horizontal and vertical lines and are easily detected.
Therefore, before intersection detection, we rotate the image
so that the orange lines are oriented in the horizontal and
vertical directions of the image. We term this process image
rotation normalization.

Figure 3 shows the process of image rotation normalization.
To execute image normalization, we estimate the angle of
rotation. We use a histogram of the gradient directions of
an input image to determine the angles. First, we apply a
derivative filter, i.e., Sobel filter, horizontally and vertically to
the input image to calculate the image gradients. We then
calculate the gradient direction in each pixel and make a

histogram of the gradient directions. As the orange lines are
orthogonal, the histogram ideally has four peaks in every 90◦.
Therefore, the image should be rotated around the image center
by the minimum angle that ensures the peaks are oriented
in the horizontal and vertical directions. The image rotation
normalization is applied to all input images.

As shown in Figure 4, the intersections of the grid lines are
detected on the normalized images in the following manner.
We begin by applying the Sobel filter horizontally and vertically
to the normalized image to calculate the gradient of each pixel
(Figure 4B). We then detect the edges of the grid lines by
detecting the peaks of the projection profiles of the gradients
shown in Figure 4C. A projection profile is a sum of pixel values
along an axis. Given that the grid lines in the normalized image
are oriented in the horizontal and vertical directions, the edges of
the lines appear as peaks of the horizontal and vertical projection
profiles. As a result of the projection profile, we detect the edges
of the grid lines, denoted in green in Figure 4D. The width of
the grid lines is narrower than the distance between the lines
(Figure 4A). Therefore, we regard a pair of green lines as a grid
line if two green lines are at a close distance. Finally, we detect
the intersections; the crossings of the grid lines are detected as
intersections (Figure 4E).
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FIGURE 3 | Image rotation normalization. First, the dominant angles in the original image are calculated to estimate the directions of the grid lines. The input image is

then rotated. The magnification of the slide images was 40x. The blue arrow mark and blue circle dot are rotation direction of image normalization and image center,

respectively.

FIGURE 4 | An overview of the intersection detection process. (A) Input image. The normalized image generated in Figure 3 is used as the input. (B) Edge detection.

The x- and y-gradients are calculated by applying the Sobel filters horizontally and vertically, respectively. (C) Peak detection using projection profiles. The detected

edges in (B) are projected horizontally and vertically, and the peaks are detected. (D) Grid line detection. Based on the peaks obtained in (C), the horizontal and

vertical grid lines, denoted in green and yellow, respectively, are detected. (E) Intersection detection. The intersections, denoted by green rectangles, are finally

detected. The magnification of the slide images was 40x.

3.3.2.2. Categorization of the Sampling Areas
We categorize the sampling areas (i.e., the intersections of grid
lines) according to the degree of colonization using a pattern
recognition technique. An overview of the categorization process
is shown in Figure 5. We extract a feature vector from the
input image (i.e., sampling area) and categorize it into four
classes. In the feature extraction, we use convolutional neural
networks (CNNs) because classifiers using CNNs have previously
performed well in image classification tasks (Russakovsky et al.,
2015; Krizhevsky et al., 2017). As good classification accuracy
is expected when the feature is extracted by CNNs, we employ
CNNs for feature extraction. We used CNN models pretrained
on ImageNet (Deng et al., 2009), which consisted of more than
10 million images of 1,000 categories. After connecting a fully

FIGURE 5 | An overview of the classification process of the TAIM method. The

magnification of the slide images was 40x.

connected (FC) layer to the end of the pretrained CNN model,
we fine-tuned the model in the task of categorizing the training
images into four classes.
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We used two kinds of classifiers in the categorization process:
FC layer and support vector machine (SVM). In the former case,
we used the FC layer that was used for pretraining. In the latter
case, we used the SVM. To be more precise, we used the SVM
for classification and the CNN model (without the FC layer)
for feature extraction. In the training, the SVM was trained on
the features extracted by the CNN model. Note that the SVM
is a supervised learning model that shows good classification
accuracy in biological image recognition (Noble, 2006). By
using maximum-margin classifiers, the SVM achieves high
recognition accuracy. Moreover, the SVM can cope with non-
linear classification problems by introducing non-linear kernels.

The colonization degree is calculated as AC and VC in
Equation (1) with at least 200 sampling areas.

3.3.3. Dataset
We constructed an original dataset to construct TAIM and
conduct experiments. The dataset consisted of 896 microscopic
slide images prepared for as described in Section 3.1 (Figure 2A).
We reduced the images to 1, 008 × 756 pixels for efficient
detection and categorization of intersections. One of the
authors manually classified the 5,002 intersection areas into four
classes, which were mentioned in Section 3.2. We regarded the
classification results as the ground truth (correct answers) of the
data and used them to train and evaluate deep neural networks
and SVM classifiers. Each intersection area was about 150 ×

150 pixels.

3.3.4. Functions
In addition to calculating AMF colonization degree, TAIM
has two other functions: modifying the classification results
by users and adding new data to improve the classification
accuracy. These two functions are implemented to improve the
classification accuracy and the objectivity of AMF colonization.

When viewing the classification results, as shown in
Figure 2C), the modification function allows users to correct
erroneous classification results. In pattern recognition, classifiers
sometimes makemistakes depending on the lighting and changes
in appearance because of the limitations of the training data. It is
also true for the classifiers of TAIM. Therefore, we implemented
the modification function to fix incorrect classification results.

TAIM also has a function to register new data, which is
expected to improve the classification accuracy. Currently, the
classifiers of TAIM are trained on only our dataset, which consists
of soybean roots grown in the field and labeled by us. Therefore,
the classifiers are expected to perform well on our data and on
data with similar properties, but are under-learned for those with
different properties. For the classifiers to be robust, a diverse
dataset is essential. This is because root data grown in diverse
locations are expected to help the classifiers of TAIM to acquire a
strongly robust recognition capability. Hence, we implemented
the function of TAIM that allows users to register new data
that are used for additional training. Adding new data through
the functions of TAIM, which stores the data and modifies the
categorization results, is also expected to improve the objectivity
of the categorization of colonization degree by TAIM. The
initial TAIM classifiers for the colonization categorization are

trained with the data labeled by one of the authors. That is,
the trained classifiers of TAIM reflect the criteria of a single
observer. The modified categorization results can reflect the
criteria of other observers. Therefore, if the number of users
involved in the labeling process increases, the classifiers reflect the
criteria of multiple observers, leading to the classifiers becoming
more objective.

4. RESULTS

We conducted experiments to evaluate the detection and
classification performance of TAIM using the dataset we created.
This section presents details on the dataset as well as the detection
and classification results.

4.1. Evaluation of Intersection Detection
We evaluated the intersection detection performance using the
soybean root dataset. An overview of the proposed intersection
detection method is presented in Section 3.3.2.1; here, we
describe its implementation in more detail. We used the 3 × 3
Sobel filter as a derivative filter to calculate the gradient and
direction of an image. From the image gradient direction, we
estimated the rotation angle for normalization and normalized
the image as described in Section 3.3.2.1. The projection profile
used for line edge detection was calculated based on the gradient
images. In the peak detection, we adopted a public domain code
written in Python1. We set the distance parameter to 50 and used
the default values for the other parameters to execute the code.

For evaluation of detection performance, we adopted the
intersection over union (IoU) score. The IoU is a criterion of
how accurately a method detects the areas of target objects.
The IoU is calculated as the ratio of the overlapping area
(intersection) between the ground truth and predicted area over
their union (Figure 6A). Therefore, the larger the IoU score,
the more accurately the sampling areas are detected. We used
896 images of the soybean root dataset for the experiment to
calculate the IoU scores. The mean IoU score of TAIM was 0.86.
If we considered successful detection in the IoU score as more
than 0.75, the detection precision of TAIM was 0.95. Therefore,
TAIM achieved a satisfactory detection performance. Based on
the distribution of the IoU scores (Figure 6B), most sampling
areas were detected correctly; the IoU score of most sampling
areas was >0.75. However, detection of a few sampling areas
failed, as indicated by an IoU score close to zero.

To clarify the reason for the failure in detection, we
compared examples of successful and failed detection.
Supplementary Figure 1 shows examples of the detection
experiments. The left column is an example of successful
detection, and the central and right columns are examples of
failed detection. In the detection results (the second row of
Supplementary Figure 1), blue rectangles represent the ground
truth and green rectangles the detection results. The IoU score of
each detected area is shown in white text. In the peak detection
results (the fifth and sixth rows of Supplementary Figure 1),
detected peaks are indicated by red and green circles. In the left

1https://gist.github.com/endolith/250860
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FIGURE 6 | (A) Definition of the IoU. The IoU is calculated as the ratio of the intersection between the ground truth and predicted area, denoted in orange, over their

union, denoted in gray. (B) Distribution of IoU scores in intersection detection.

column, as the edges of the orange lines were clear, the edges
were easily detected by peak detection. In contrast, in the central
column, the edges of the orange lines were jagged. As a result,
some sampling areas failed to be detected. In the right column,
the input image contained bubbles, whereas the edges were clear.
The bubble edges were incorrectly detected as a peak because the
intensity of the gradient of the bubble edges was large.

4.2. Evaluation of Classification Accuracy
We conducted experiments to evaluate the classification accuracy
of the proposed method. We used the cropped sampling areas
from the soybean root dataset. We applied intersection detection,
as described in Section 3.3.2.1, to the dataset and used the
areas for which the IoU score was >0.5. The number of
cropped sampling images was 5,002 and annotated manually.
The images were cropped to be squares and normalized to
224 × 224 pixels using bilinear interpolation. The CNN models
used for feature extraction were AlexNet (Krizhevsky et al.,
2012), VGG-19 (Simonyan and Zisserman, 2015), and ResNet-
18 (He et al., 2016). These models were pretrained on ImageNet
and fine-tuned on the cropped sampling areas. The number
of epochs, batch size, and initial learning coefficient were set
to 20, 32, and 10e-4, respectively, and the learning rate was
reduced by half every five epochs. For optimization, we used
Adam with weight decay of 1e-5. For classification, we used
the SVM with a radial basis function (RBF) kernel. The cost
parameters of the SVM and RBF kernels were set to 1.0 and 0.25,
respectively. The output from the network was compared with
the annotation, and if they matched, the output was considered
correct, and if they did not match, the output was considered
incorrect. The percentage of correct outputs was considered
to be the classification accuracy. We used five-fold cross-
validation to evaluate the classification accuracy. We divided
the cropped image samples into five subsamples. We fine-tuned
the CNN models and trained classifiers with four subsamples
and evaluated the remaining subsamples. We repeated the
procedure five times so that all subsamples were evaluated, and
the overall accuracy was averaged. Regardless of the combination
of feature extractor and classifier, the classification accuracy was

TABLE 2 | Results of the classification experiment.

Feature extractor (CNN) Classifier Accuracy (%)

AlexNet FC 84.1

VGG-19 FC 87.7

ResNet-18 FC 84.6

AlexNet SVM 84.0

VGG-19 SVM 86.9

ResNet-18 SVM 84.9

>84% (Table 2). The hightest classification accuracy (87.7%) was
achieved when using VGG-19 as the feature extractor and FC as
the classifier.

To clarify which class was misrecognized, a confusion matrix
when VGG-19 and FC were used for feature extraction and
classification was generated. TAIM tended to confuse class
0 (vesicles) with class 1 (arbuscules) and class 2 (negative)
with class 1 (Figure 7). There are two possible reasons for
misclassification. First, the appearance of the respective classes
was similar. Classes 0 (vesicles) and 1 (arbuscules) were similar,
and classes 2 (negative) and 1 were also similar (Figure 1).
Therefore, such similarity in appearance may have caused
misclassification. The second possible reason is the imbalance
of the training data. The number of training data for the four
classes was 423, 1,351, 628, and 2,600, respectively. As classes with
fewer training data tend to be treated as less important, samples
belonging to classes 0 and 2 were more frequently misclassified
compared with the other classes.

We generated a class activationmap (CAM) (Zhou et al., 2016)
of the fine-tuned ResNet-18 to visualize how the CNN classified
the sample. The CAM visualizes as a heat map the importance of
regions for classification of the sample. In other words, important
regions for classification of a class are considered to contain
class-specific features for the class. Figure 8 shows three original
images and the corresponding CAM; blue regions are more
important and red are less important. Figure 8A is an example
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of an image that was classified as class 1 correctly. The CAM of
this image showed that classification was based on the hyphae in
the lower right corner. Figures 8B,C are examples of images that
weremisclassified; B was class 1 but classified as class 0, and Cwas
class 1 but classified as class 2. The CAM of Figure 8B revealed
that the only hyphae were located in the class-specific region.
Therefore, the appearance of the original image in the region was
similar to that of class 1. This appearance similarity led to the
misclassification as the arbuscules class. In the original image of
Figure 8C, hyphae were located at the top but only close to the
edge of the image. Hence, this is a difficult sample to correctly
classify. In the CAM, a class-specific area existed in the top right
corner, which may exacerbate the misclassification.

As TAIM has a function that collects data from users, it is
possible to increase the training data while TAIM is running. To
clarify the effect of increasing the training data, we increased the
number of images using augmentation techniques and observed
the change in accuracy. We reflected images horizontally and
vertically, cropped them randomly, and resized them to 224×224
pixels. The total dataset was increased to 300,012 images. The

FIGURE 7 | Confusion matrix when using VGG-19 as the convolutional neural

network and the fully connected layer as the classifier.

images were divided into training, validation, and test samples
in the ratio of 3:1:1. We used the same feature extractors and
classifiers as in Figure 2. We trained the networks while changing
the training data from 1% of the total training data to 100%.
We used the same hyperparameter setting for the networks
as the previous classification experiment. We used validation
data to evaluate the training accuracy of the networks and
choose the parameter of the SVM. The training data were used
for evaluation of the classification accuracy. Figure 9 shows
the relation between the number of training data and the
classification accuracy. The figure shows that all combinations
between the networks and classifiers tended to increase the
accuracy. In addition, the accuracy is expected to be further
improved using more training data because the accuracy still
showed an increasing trend when 100% data were used for
training. Therefore, it is expected that the classification accuracy
of TAIM will improve with increase in the amount of data used
for training.

5. DISCUSSION

In the experiments, we evaluated TAIM on soybean and one
AMF. Further evaluation with other plants and AMFs should be
conducted to demonstrate the usefulness of the proposed system.

FIGURE 9 | Classification accuracy with increase in percentage of training

data.

FIGURE 8 | Original sampling area (left) and importance of sampling areas indicated by CAM (right). CAM visualizes the importance for classifying images. The more

red the pixel values are, the more important for classification, and the more blue, the less important. The magnification of the slide images was 40x. (A) Classified an

image of class 1 correctly. (B) Misclassified an image of class 1 as class 0. (C) Misclassified an image of class 1 as class 2.
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AMFinder (Evangelisti et al., 2021), introduced in Section
2, is a method that shares a similar motivation with TAIM.
The most significant difference of AMFinder from TAIM is the
presence or absence of grids in the input microscope images.
TAIM used microscope slide images with the grids, whereas
AMFinder used those without the grids. Regarding the difference,
we mention two points from the technical perspective. The
first is that the classification algorithm for TAM and AMFinder
is not inseparable but can be plug in. It means that when a
better algorithm is developed in the future, we can improve the
classification performance by plugging in to the methods. The
second is that it is even easier to use slide images without grids
than with grids. The images with grids can be treated as follows.
Training data can be created by randomly cropping original
slide images from images without grids and annotating them.
Using the training data, the network can be trained to classify
the cropped images without grids into the categories of AMF
infection. Moreover, it is possible to identify which part of the
image is infected even without grids using a sliding window
approach, which crops images by sliding a rectangle of a fixed size
on an image and classifying each cropped image. In our future
work, we would like to extend TAIM so that infection rates can
be calculated regardless of the presence or absence of grids in
slide images.

Although TAIM can potentially distinguish hyphae and
arbuscles following the MI method, due to the annotation effort
and data limitations, we were unable to perform an experiment
that distinguishes hyphae and arbuscles. In the future, when
we obtain the appropriate data, we would be able to perform
such an experiment. Similarly, the difference in the number
of classes classified in TAIM and AMFinder comes from the
difference in the data used in the experiments. TAIM classified
infected roots into two classes (Arbuscules and Vesicles) in
our experiments, whereas AMFinder did into four classes
(Arbuscules, Vesicles, Hyphopodia, and Intraradical hyphae).
This difference does not mean superiority or inferiority of the
classifiers themselves but the difference in the data used in
the experiments. Therefore, if we can collect the appropriate
training data, of which class labels are the same as those of
AMFinder, TAIM would be able to identify infected roots in the
same detail.

Since annotation is done manually, errors are inevitable, and
the error affects the classification accuracy. For example, apart
from plat science, there is a well-used handwritten digit image
dataset in the computer vision field, called MNIST dataset2.
The test data of the MNIST dataset, which consists of 10,000
handwritten digit images, has 0.15% of labels that are expected
to be wrong (Northcutt et al., 2021). Our dataset consists of
a smaller number of images and fewer classes than MNIST.
However, the annotation task of our dataset is harder than that
of the MNIST dataset. Hence, it is difficult to expect the number
of annotation errors in our dataset. However, even if there are
errors, it would not seriously affect the classification accuracy
insofar as the errors occur randomly. Actually, there are two types

2http://yann.lecun.com/exdb/mnist/

of errors that should be considered. One is annotation errors
that occur randomly due to human error, which is argued above.
The other is a bias that occurs depending on annotators, which
is caused by having different criteria. The effect of the latter is
more critical when fewer annotators are involved. Since TAIM
is currently trained on data annotated by one of the authors,
it is expected that the dataset is biased. However, when the
number of annotators increases, it is expected that the bias will
decrease. TAIM proves the function that decreases bias because
TAIM can be used by multiple users and the users can upload
their own data, as described in Section 3.3.4. Therefore, when
the number of users increases, TAIM is expected to provide
better classification results than those manually annotated by a
single person.

6. CONCLUSION

This article describes a web-based application called TAIM,
which calculates the colonization degree of AMF automatically
from microscopic images. As AMF is now available for axenic
culture, AMF is expected to be used a microbial fertilizer. To
evaluate of the effectiveness of the AMF as a microbial fertilizer,
colonization degree of AMF is required. One impediment to
such research is that estimation of the colonization degree
of AMF is still presently conducted manually. Therefore, we
developed TAIM to automate calculation of the extent of AMF
colonization. Because TAIM is a web-based application, it can
be used via a web browser and does not require users to set
up a calculation environment. TAIM also has a function to
collect new training data from users and retrains the classifier
of colonization. This function will contribute to reduction in
variation of the decision criteria by observers by combining data
annotated by multiple observers. We evaluated the detection and
classification accuracy of TAIM with an experimental soybean
root dataset comprising cropped 5,002 intersection areas. The
experimental results showed that TAIM detected the intersection
regions with a mean IoU score of 0.86. If an area with an IoU
score of 0.75 is considered to represent successful detection,
TAIM can detect the intersection regions with 95% accuracy.
TAIM classified the detected regions into four classes with 87.7%
accuracy. The classification accuracy improved with increase
in number of training data. Therefore, the estimation accuracy
of AMF colonization degree is predicted to improve by using
the data collection function. TAIM is expected to contribute
to an improved understanding of the effect of AMF as a
microbial fertilizer.
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