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High-throughput, field-based characterization of root systems for hundreds of
genotypes in thousands of plots is necessary for breeding and identifying loci underlying
variation in root traits and their plasticity. We designed a large-scale sampling of root
pulling force, the vertical force required to extract the root system from the soil, in
a maize diversity panel under differing irrigation levels for two growing seasons. We
then characterized the root system architecture of the extracted root crowns. We
found consistent patterns of phenotypic plasticity for root pulling force for a subset of
genotypes under differential irrigation, suggesting that root plasticity is predictable. Using
genome-wide association analysis, we identified 54 SNPs as statistically significant for
six independent root pulling force measurements across two irrigation levels and four
developmental timepoints. For every significant GWAS SNP for any trait in any treatment
and timepoint we conducted post hoc tests for genotype-by-environment interaction,
using a mixed model ANOVA. We found that 8 of the 54 SNPs showed significant GxE.
Candidate genes underlying variation in root pulling force included those involved in
nutrient transport. Although they are often treated separately, variation in the ability of
plant roots to sense and respond to variation in environmental resources including water
and nutrients may be linked by the genes and pathways underlying this variation. While
functional validation of the identified genes is needed, our results expand the current
knowledge of root phenotypic plasticity at the whole plant and gene levels, and further
elucidate the complex genetic architecture of maize root systems.

Keywords: maize (Zea mays L.), root systems, candidate genes, phenotypic plasticity, drought stress, genome
wide association studies (GWAS)

INTRODUCTION

Originating approximately 400 million years ago, roots evolved at least twice in early plant lineages
and provided anchorage (Raven and Edwards, 2001). Following these origins, roots continued to
evolve structural complexity and functions and serve many critical roles in the biology of plants.
In addition to water and nutrient uptake, roots are responsible for anchorage in soil. Roots are
also the site of rhizosphere biotic interactions, spanning a range of outcomes from pathogenic to
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beneficial, and involving microbes, insects, and other plants
(Johnson and Rasmann, 2015; Lareen et al., 2016; Clarke et al.,
2019). Despite these important roles, understanding the genetics
and physiology of root systems in soils has been challenging,
leading to the description of roots as the “Hidden Half” of
the plant (Eshel and Beeckman, 2013). Overall, root systems
have complex structures. Root System Architecture (RSA) is
a term used to describe the spatial arrangement of multiple
individual roots of several distinct root types of an individual
plant, each at a different stage along its developmental trajectory
(Smith and de Smet, 2012). RSA traits, then, are the result of
the cumulative effects of development of many individual roots
within an individual of a single genotype in a given environment.

In addition to their fundamental biological importance and
intrinsic structural complexity, roots and root systems vary
among species, genotypes, and environments. Within a given
species, RSA is highly plastic, responding to variation in
nutrient status and soil composition (Karlova et al., 2021).
RSA traits have been shown to respond to levels of nutrients
such as phosphorus and nitrogen by regulating root growth
and branching (Gaudin et al, 2011; de Jong et al, 2019).
Differences in particle texture within a growth substrate have
also been shown to affect RSA phenotypes (Rogers et al., 2016).
Water availability regulates both timing of root development
and directional patterns of root branching (Bao et al., 2014;
Sebastian et al., 2016). These examples highlight our growing
understanding of the robust and diverse responses of root growth
to environmental stimuli.

Phenotypic plasticity in the form of altered rates of growth
and timing of development of organs and traits are common
adaptive responses for both RSA and above ground traits in
plants (White and Castillo, 1992; Strock et al., 2018). While
phenotypic plasticity is a property of an individual, the degree
to which individuals sense and respond to the environment
can be represented as a genetic component (Falconer, 1990).
This variation in how genotypes sense and respond to the
environment is described statistically in an ANOVA as a genotype
by environment interaction (GxE). GxE is a common property
of quantitative traits (Lynch and Walsh, 1998), affecting both
the range of phenotypic values and the rank of genotypes
in different environments. Multi-environment genetic mapping
studies have shown that this GxE is polygenic and can be
resolved to individual genome regions and loci, where the effect
size of quantitative trait loci (QTL) changes across different
environments (Paterson et al., 2003; El-Soda et al., 2014; Lowry
etal., 2019).

Phenotypic plasticity for agriculturally important traits, has
been proposed as a breeding target for optimizing response
to environmental stress (Nicotra and Davidson, 2010; Kusmec
et al., 2017; Kusmec et al, 2018). Implementing this strategy
will require a deeper understanding of the extent and the
genetic underpinning of GxE for the key traits. The core
function of roots in obtaining water and nutrients highlights
the potential for utilizing RSA in crops to buffer against
environmental volatility due to climate change (Voss-Fels et al.,
2018). Root phenotypic plasticity has an unclear, and potentially
complicating, role in RSA under variable water and nutrient

conditions (Schneider and Lynch, 2020). Future breeding efforts
for RSA will be aided by a fuller understanding of GxE
interactions affecting roots.

Like many traits, our understanding of the fundamental
genetic control of RSA has largely been driven by studies in
the model dicot Arabidopsis thaliana (Petricka et al., 2012).
In addition to elucidating the core conserved pathway of root
development and signaling, genetic loci associated with GxE
responses of Arabidopsis roots to nutrient stress have been
identified (Rosas et al., 2013). In contrast with the relatively
simple roots of Arabidopsis, root systems of important monocot
cereal crops such as maize, wheat, and rice have fundamentally
different and more complex structures (Smith and de Smet,
2012). Accordingly, our understanding of the genetic architecture
of RSA in these crop species is poor in comparison to Arabidopsis
and related dicots. Most studies examining the genetics of RSA in
cereal crops have been done on young plants grown in controlled
conditions (Tracy et al., 2020).

Relatively few studies have attempted to characterize the
genetic architecture and phenotypic plasticity of RSA in mature
field grown cereal crops due to the challenges of measuring
these traits. Destructive phenotyping of roots using excavation
followed by image-based techniques have been effective in
mapping RSA traits across different crop species (Trachsel et al.,
2011; Schneider et al., 2020; Zheng et al., 2020). Analysis
tools to extract phenotypic data from images of excavated root
systems have been developed (Das et al., 2015; Zheng et al,
2020). Loci associated with variation in maize RSA traits have
been identified in two recent genome wide association studies
(GWAS), both of which used shovelomics (Trachsel et al., 2011)
based techniques for root system excavation (Schneider et al.,
2020; Zheng et al,, 2020). Schneider et al. (2020) used two
different diversity panels across 3 years in two locations including
two levels of irrigation at one of these locations and measured
image-based RSA traits such as lateral root length and root angle.
Their multi-year and multi environment phenotyping efforts
were followed by GWAS analysis in FARMCPU which identified
candidate genes associated with variation in both the plasticity
and mean trait values within each environment. Zheng et al.
(2020) used the shoot apical meristem (SAM) diversity panel in
a single environment and growing season. While their efforts
did identify candidate genes associated with numerous image-
based RSA traits, the lack of multiple environments and growing
seasons in Zheng et al. (2020) motivates further use of the
SAM population to investigate the plasticity and genetic control
of RSA. Overall, the consensus from these shovelomics based
GWAS studies is that maize RSA is highly polygenic, controlled
by multiple low to moderate effect loci, and that GxE is a strong
component of RSA genetics because of the inconsistent set of
identified candidate genes.

We focus on root pulling force (RPF) which is an alternative
and a higher throughput technique compared to shovelomics
based excavation for removing root systems from a field. RPF
is quantified through the process of attaching the base of the
shoot with a rope to a digital force gauge and applying manual,
vertical force until the root system is extracted from the soil.
The force required to pull the root system out of the ground is
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measured by the force gauge and recorded as RPF. This method
provides a simple, instantaneous and quantitative measurement
of the roots system during extraction. We have successfully used
the RPF technique to identify QTL for root system size in Brassica
napus (Fletcher et al., 2015), and QTL for it have been found in
maize (Lebreton et al.,, 1995). While RPF can serve as a simple
measure for root architecture traits, the extracted root systems
remain amenable to image-based measurements as in excavation-
based root extraction. Imaging of pulled root systems has shown
RPF to be highly indicative of root system volume and surface
area (Shao et al., 2021). Due to the simplicity and individual plant
sampling of the RPF method, it is also amenable to automation
to increase the throughput of RSA measurements in the field for
improved mapping studies.

Here we used RPE, along with subsequent imaging of pulled
root systems, to examine means and plasticity of RSA traits in
the SAM diversity maize panel. We phenotyped this population
at multiple developmental stages across two field seasons and
differential irrigation treatments to investigate GXE in RSA
traits. We then performed GWAS on these measurements, which
identified a number of candidate genes potentially underlying
the variation in root traits. Important questions addressed in this
work are: (1) What proportion of trait variance in RPF and RSA
in maize is explained by genetics, the environment and GxE? (2)
What is the genetic architecture of RPF and RSA in maize across
development and irrigation treatments? (3) Is there evidence for
GxE at the individual gene level?

MATERIALS AND METHODS

Field Experiments

In a survey, three hundred and sixty-seven lines from the
SAM diversity panel (Leiboff et al.,, 2015) and 4 inbred check
lines were grown at the Colorado State University Agricultural
Research Development and Education Center in Fort Collins,
CO, United States (40.649 N, —105.000 W) in 2018 and 2019.
In 2018 seeds were planted on 22-25 May and in 2019 on
14 May using a split-plot design with full irrigation (FI) or
limited irrigation (LI) treatments, with three field replicates
per treatment. Prior to planting, the fields were fertilized to
recommendations for 200 bu/ac yield, amounting to 190 Ib/ac
N and 25 Ib/ac P,Os5 in 2018 and 190 Ib/ac N, 60 Ib/ac P,0Os,
and 4 Ib/ac Zn in 2019. Each plot consisted of two 12-foot
rows with 30-inch spacing between rows and 9-inch spacing
between plants within rows. The irrigated treatments received
approximately 1 inch of water per week, while the drought
treatments were irrigated until well-established ("5 weeks after
planting) and then received only natural precipitation, except at
the root harvesting when it also received irrigation to homogenize
the root harvesting process (Supplementary Table 1). This
irrigation differential began 500-600 growing degree days after
planting, a time in which the average developmental stage
was approximately V4. The timing of the root harvests was
categorized developmentally relative to the timing of anthesis
in the population (Figure 1), pre-flowering for the pulling at
71-73 days after planting, prior to any lines reaching anthesis,

early flowering at 61-66 days after planting when roughly 5%
of lines had reached anthesis, mid-flowering at 91-93 days from
planting when roughly 30% had reached anthesis, and post-
flowering at 109-119 days from planting when 98% of lines had
reached anthesis. The variation in RPF timepoints allowed us to
assess how the various developmental stages might affect root
system excavation in this diverse population. This information
will improve the efficiency of future root-pulling events. Days
to anthesis was measured for each plot as the date at which
50% of the plants in the plot had begun to shed pollen and was
determined approximately 3 times per week.

For root phenotyping, a rope was attached to the stalk above
the root crown with a slip knot, and a digital force gauge (DS2,
Imada Inc., Northbrook, IL, United States) was used to pull the
root crown vertically from the soil. Root crowns were cleaned
with water and imaged to obtain additional RSA measurements
using the DIRT image analysis software (Das et al., 2015) before
being air-dried to constant weight for measurement of mass.

Genetic Correlations

Spearman’s rank correlation coeflicients were calculated using
the “chart.Correlation” function in the “Performance Analytics”
package in R.!

Quantitative Genetic Analyses

We estimated broad-sense heritability of traits using a random
effect one-way ANOVA model. We split phenotypic data by trait,
timepoint, and treatment and used the Imer function in the R
package “lme4” v1.1-21 (Bates et al., 2015), treating genotype
as a random effect. Additionally, we estimated phenotypic
variance due to genotype, the environment and GxE by using
a random effect two-way ANOVA model with interaction
using the lmer function from the R package “lme4” v1.1-21.
Genotype, the environment and GxE were all treated as random
effects in the model.

Genome Wide Association Analysis

To analyze phenotype data via GWAS, the best linear unbiased
predictors (BLUPs) were calculated from genotype simple means
by treating genotype as a random effect using the R package
“lme4” v1.1-21 (Bates et al., 2015) (see Supplementary Data
Sheet 1 with BLUP values used for GWAS). A genotype matrix
in HapMap format containing 1.2 million single nucleotide
polymorphism (SNP) calls for the SAM diversity panel was then
obtained from Leiboff et al. (2015). To reduce the impact of
rare erroneous SNP calls, we imposed a minor allele frequency
filter of 5% on the genotype matrix. After filtering for minor
allele frequency, the genotype matrix contained approximately
860,000 SNPs. GWAS was conducted using an R implementation
of FarmCPU (Liu et al,, 2016) via GAPIT (Lipka et al., 2012) by
following the guidelines at https://www.zzlab.net/GAPIT/. The
first three principal components as well as a kinship matrix
calculated using GAPIT were used as covariates to control
for population structure. Normality of p-value distributions
were assessed by inspecting each traits Q-Q plot output by

'https://github.com/braverock/PerformanceAnalytics
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FIGURE 1 | Histogram of days to anthesis for the field experiments. The timing of the root pulling events are highlighted and assigned developmental stages relative
to flowering: pre-flowering for the pulling at 71-73 days after planting, prior to any lines reaching anthesis, early flowering at 61-66 days after planting when roughly
5% of lines had reached anthesis, mid-flowering at 91-93 days from planting when roughly 30% had reached anthesis, and post-flowering at 109-119 days from

GAPIT (Supplementary Figure 1). Because each traits Q-Q
plot displayed p-value distributions that followed approximate
normality, we proceeded with the FarmCPU results. SNPs whose
significance passed the Benjamini—Hochberg false discovery rate
threshold (0.05) were further investigated to identify the gene or
genes within a 10-kb window with which they may be associated.

Statistical Tests for Significant Genome

Wide Association Studies Hits

To identify QTLxTreatment effects among significant GWAS
hits, we performed ANOVA on each of these SNPs. We
constructed models using the Im function in R. We estimated
the effects of SNP, treatment, and SNP-by-treatment interactions.
We performed PCA analysis using our SNP genotype data. We
included values from the first three principal components in each
ANOVA to account for population structure among genotypes.
Using the Anova() function from the R package "Car" (Fox and
Weisberg, 2018) we performed a type 3 ANOVA.

Gene expression data are from Sekhon et al. (2011). We
compared mean normalized expression for root tissue and pooled
leaves from the V1-stage plants.

RESULTS

Root Pulling Force Measures Root

System Size and Is Correlated With Root
System Architecture Traits in the Field
Across Multiple Developmental

Timepoints

We performed a field experiment during Summer 2018 and
2019 in Fort Collins, Colorado using 367 diverse lines from
the SAM maize panel (Leiboff et al., 2015) with full irrigation
(FI) and limited irrigation (LI) treatments. We measured RPF
at four different timepoints across 2018 and 2019, roughly
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FIGURE 2 | Changes in RPF over the field growing seasons. Measurements
for the two field seasons are given (mean + SE) for the full (FI) and limited (LI)
irrigation treatments.

corresponding to pre-flowering, early flowering, mid-flowering,
and post-flowering (see Section “Materials and Methods”). RPF
measurements for the SAM population predictably increased
with time with a mean of 47 kg pre-flowering to a mean of 120 kg
at the end of season, slowing after flowering (Figure 2). Plants
in the LI treatment had lower RPF measurements, averaging 70—
80% of the full-irrigation (FI) RPF values. Above-ground biomass
was also reduced in LI, 60-90% of FI across the four stages.
We estimated the broad-sense heritability of RPF as H2 = 0.49-
0.59 in the FI treatment, and generally lower estimates for
the LI treatment (H? = 0.36-0.50, Figure 3), but sufficient for
mapping experiments.

To quantify covariance between RPF measurements and RSA
traits, We conducted Spearman’s correlation analysis, which
showed that RPF measurements were highly positively correlated
with RSA traits at all timepoints and treatments (Figure 4 and
Supplementary Tables 2, 3). RPF showed the greatest positive
correlation with root mass and area. This is consistent with our
previous study of 3D X-ray tomography measurements from
the root crowns of a subset of SAM lines, where RPF was
highly associated with root volume and surface area (Shao et al.,
2021). As further evidence for the utility of RPF as a sampling
method, estimates of heritability for RPF were greater than or
equal to those for RSA traits (Figure 3). In addition to root
traits, we measured the shoot mass of pulled plants and recorded
flowering time as growing degree days to anthesis (GDDTA)
of the SAM panel. Shoot mass was highly positively correlated
with RPF and other RSA traits (Figure 4 and Supplementary
Tables 2, 3). Flowering time has a more variable and overall
weaker correlation with RSA and plant biomass traits across
timepoints and treatments (Supplementary Tables 2, 3).

To assess the relative utility of the root systems that we
extracted by RPE we extracted root systems from a subset of
45 plots using both RPF and shovel-based excavation methods
(Trachsel et al., 2011). The mass of root systems extracted from
the two techniques was similar (Supplementary Figure 2A), and

genotypes varying in RSA showed consistent differences in plant
form with both techniques (Supplementary Figure 2B).

There Is a Wide Range of Plasticity in
Root Pulling Force in Response to Water
Limitation Across the Shoot Apical

Meristem Panel
For RPE, we found a moderate genotypic correlation between
irrigation treatments and field seasons (Figure 5), suggesting
that there may be differences among genotypes in the SAM
population for plasticity to water limitation. For RPF, there was
a high average plasticity response across the population, with
an overall reduction in RPF under LI treatments (Figure 6).
Among individual genotypes, however, there was a large range
of plasticity of RPF in response to water limitation. As examples,
we highlight six genotypes with consistent responses to irrigation
in RPF across field seasons (Figure 6). These groups of genotypes
showed large differences in plasticity. One group exhibited a large
reduction in root system size under limited irrigation, while the
other had increased root size under water limited conditions.
Across treatments and growing seasons, variance component
analysis indicated that GxE accounted for a range of 1.2-9.8%
of the phenotypic variation in RPF (Supplementary Figure 3).
Overall, across years we found a significant correlation in
plasticity in RPF to water limitation, on a percent of wet treatment
basis (r = 0.2, P < 0.01). This plasticity in RPF is positively
associated with plasticity in shoot mass, even on a percent of wet
treatment basis (r = 0.4-0.6, P < 0.001).

Genome Wide Association Analysis
Identifies Numerous Single Nucleotide
Polymorphisms Associated With Root
Pulling Force and Root System

Architecture Traits

The FarmCPU GWAS model controls for false discoveries by
accounting for kinship and population structure while still
providing high statistical power for candidate gene identification
(Liu et al., 2016). Additionally, the relatively rapid LD decay in
maize results in good resolution in mapping through GWAS (Yan
etal., 2009). We performed GWAS using an R implementation of
FarmCPU through GAPIT (Lipka et al., 2012) to identify SNPs
associated with RPE, RSA, biomass traits, and flowering time.
We identified 54 significant GWAS SNPs for RPF across years,
developmental timepoints, and treatments, along with 6 for root
mass, 3 for shoot mass, and 21 for RSA traits (Supplementary
Table 4). For RPE the significant GWAS SNPs varied between
treatments with more SNPs identified in FI than LI. None of the
RPF significant GWAS SNPs overlapped between the treatments,
which may be due to GxE, but is also expected given the way
that FarmCPU selects SNPs to include in the model. In addition,
we also found 48 significant GWAS SNPs for days to anthesis
(Supplementary Table 5); however, we saw no overlap in hits
between our root traits and flowering, consistent with the lack
of correlation in Figure 4.

Frontiers in Plant Science | www.frontiersin.org

April 2022 | Volume 13 | Article 883209


https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

Woods et al.

Genetics Controlling Maize Root Architecture

1.00
0.75
0.50 8
—_
o2¢]
0.25
2
=
S 0.00
= Root Root Root Root Root Root Shoot  Flowering
% Pulling Pulling ~ System  System  System  System  Mass Time
Force Force Area Depth  Width Mass (GDDTA)
g (Early Flowering) (Postflowering)  p—————————————————— .Full—lrrigation
= Postflowerin,
% ¢ @ Limited-Irrigation
i 1.00
=l
<
o
=
m 0.75
0.50 8
—_
O
0.25
0.00
Root Root Root Root Root Root Shoot  Flowering
Pulling Pulling System  System  System  System  Mass Time
Force Force Area Depth  Width Mass (GDDTA)
(Preflowering) (Midflowering) ——
Midflowering
FIGURE 3 | Broad-sense heritability of RPF and other root traits in the field.

The quantitative genetic analysis of RPF revealed GxE for
drought (Supplementary Figure 3). In addition, we saw lack of
overlap of QTL between FI and LI treatments within a timepoint
for RPF and other root traits. This is in contrast to flowering time
where GXE effects appear minimal (Supplementary Figure 3)
and GWAS analysis identified hits in common between FI and LI
treatments (Supplementary Table 5). To test for QTLxTreatment
effects for the quantitative traits we measured, we performed
a post hoc ANOVA on each of the 54 significant GWAS SNPs
for RPF that we identified. We tested effects of SNP, treatment,
and SNP-by-treatment interaction. To account for potentially
confounding effects of population structure, we included PCA
scores generated from SNP data in the ANOVA model. Through
this analysis, we found that eight of the significant GWAS
SNPs for RPF showed a significant QTLxTreatment effect
(Supplementary Table 4). In contrast, none of the GWAS
SNPs for flowering time had a significant QTLxTreatment effect
(Supplementary Table 5).

The most significant GWAS hit for root traits was on
chromosome 10 and identified from GWAS of the full-irrigation
RPF measurement in 2018 (Figure 7A). The candidate gene
Zm00001eb427000 is the only gene model within a 10-kb window
of the significant GWAS SNP and characterized as the low-
affinity ammonium transporter AMT5 (Dechorgnat et al., 2019)

which shows a prominent root specific expression profile
(Figure 8). The alternate allele was associated with lower RPF not
only in the FI treatment but also in the LI treatment (Figure 7B).
However, the effect size of this polymorphism on RPF was
smaller in the dry treatment, with significant GXE at this trait
associated SNP. Although this SNP was only reported significant
in FarmCPU at a single developmental stage, we found that allele-
specific differences in RPF began to emerge at early flowering,
but it may be that the effect sizes of this polymorphism varies
across development (Figure 7C). The differences in RPF that we
observed captured differences in other RSA traits such as root
area and depth (Figures 7D,E).

Another significant GWAS SNP showing significant GxE
during early flowering was within an exon of the gene
Zm00001eb159490, a SLAH2 nitrate channel (Figures 9A,B).
Although the significant GWAS SNP was found at the
early-flowering stage, the alternate allele was associated with
significantly higher (p < 0.05) RPF at all developmental stages
sampled (Figure 9C). Image analysis of root systems indicated
that there were significant differences in root system depth
and area between the alleles at the significant GWAS SNP
(Figures 9D,E). SLAH2 also has a prominent root specific
expression profile (Figure 8), in line with the root phenotypes we
observe. This is consistent with localization in Arabidopsis where
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the homologs are found predominantly in the root stele (Zheng a nutrient carrier. It shows a similar root specificity with the
etal., 2015). two root candidates mentioned above (Figure 8). Similar to

Another notable candidate genes for RPF was phosphate ~SLAH2, PHOI;2A shares a similar localization to the root stele
transporter 1;2A, PHOIL;2A (Supplementary Table 4), is also (Hamburger et al., 2002). Additionally, like AMT5 and SLAH2,
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the significant GWAS SNP in PHOI;2A was also associated with
differences in basic RSA traits such as root system depth and
width (Figure 10). The allele effects in PHO1;2A had a significant
effect (p < 0.05) on root system width. This is consistent with
the role of PHOI;2A in phosphorus transport, given phosphorus
signaling’s role in regulating shallow root angles (Liao et al.,
2001). These candidates highlight the important role of nutrient
signaling in the shaping of RSA.

DISCUSSION

Trait Correlations and Plasticity of Maize

Root System Architecture

Correlated phenotypes often indicate the presence of co-located
QTL with pleiotropic effects (Otto, 2004). While we did identify
numerous significant correlations between RSA phenotypes, only
the irrigated post-flowering RPF and root area traits shared a
candidate gene (flz35, Zm00001eb428170). The consistent lack
of co-located candidate genes across all the RSA traits suggests
that despite being correlated, independent phenotypic variation
was present which allowed our analyses to identify candidate
genes uniquely associated with these trait'’s measurable variation.
We note however that GWAS models such as FarmCPU are not
optimal for explicitly testing whether the same loci are affecting
traits across developmental stages, environments or growing
seasons and thus may be one reason our GWA efforts did not

identify overlap in RSA candidate genes. Schneider et al. (2020)
and Zheng et al. (2020), who also used FarmCPU for their
GWAS analyses, identified a similar phenomenon of few co-
localization of root phenotype candidate genes. The lack of shared
candidate genes across years could also be due to differences in
the developmental stages at which the plants were phenotyped,
and we did observe differences in allelic effect sizes at different
developmental stages (Figures 7, 9C). Despite this, our analyses
focused on identifying GxE across irrigation treatments that
could be affecting our candidate gene list. Thus, we implemented
post hoc tests for GxE for all significant GWAS SNPs and
identified 12 SNPs that showed significant GxE: 8 for RPF, 2 for
shoot mass, and 1 each for root mass and area. Although we
identified 48 candidate genes for flowering time, none showed
significant GXE which is reflective of this trait’s overall lower
phenotypic plasticity (Supplementary Figure 3).

Understanding the genetic basis of how crops produce
alternative  phenotypes in response to heterogenous
environments can provide an immense source for crop
improvement through breeding (Kusmec et al., 2018). Through
our analyses, we found extensive evidence for root phenotypic
plasticity among maize lines across growing seasons. While
the majority of genotypes (>50%) exhibited lower RPF under
drought conditions, a subset of genotypes displayed consistent
increases or decreases in their RPF from irrigated to drought
conditions across growing seasons (Figure 6). The consistent
pattern of RPF plasticity we find suggests that root plasticity
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is predictable for some maize genotypes across growing breeding programs can breed for genetics that reliably enhance
seasons and thus heritable, as also found by Schneider et al. the adaptive value of RSA to a specific target population
(2020). This finding lends credence to the notion that maize of environments.
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Additionally, our analyses were also able to identify more fine-
scale evidence for phenotypic plasticity at the individual gene
level (Figures 7, 9 and Supplementary Table 4). Interestingly,
of the four candidate genes for RPF exhibiting significant
GxE that also had functional annotation, two were genes
involved in nitrogen signaling (AMT5, Zm00001eb427000 and
SLAH2, Zm00001eb159490). Our finding of nitrogen signaling
genes exhibiting GxE in response to drought is supportive of
previous reports showing differential expression of homologous
nitrogen signaling genes in response to water stress in other
plant species (Bielsa et al., 2018; Araus et al., 2020; Filiz and
Akbudak, 2020). We hypothesize that the alternate SNP alleles
in these nitrogen signaling genes may be linked to additional
polymorphisms that differentially affect transcriptional responses
of these genes to water availability which underlie their gene
level GXE. Furthermore, the evidence for GXE we identified could
indicate that these candidate genes are involved in regulating
a synergistic response to nitrogen and water availability, which
can affect the capture of both as suggested by Araus et al.
(2020).

Candidate Genes Underlying Maize Root
Pulling Force Variation

Two recent field-based studies quantified variation, covariation
and the genetic architecture underlying variation in maize
RSA using GWAS (Schneider et al, 2020; Zheng et al,
2020). Schneider et al. (2020) utilized a diversity panel
consisting of different genotypes coupled with differential
irrigation treatments at different environments. Their results
generate a number of mechanistic hypotheses on the adaptive
value of specific root traits in particular target environments.
For example, they hypothesize that phenotypic plasticity
for root angle is potentially more advantageous for plants
in environments that experience prolonged stress such as
nitrogen deprivation. Schneider et al. (2020) also present a
GWAS analyses which highlighted auxin related genes as
being responsible for phenotypic variation in resource rich
environments. They also found candidate genes related to

cytokinin and phosphorus metabolism that were associated with
variation in root plasticity that differed from loci controlling
variation in a given environment. Zheng et al. (2020) performed
their analyses using the same genotypes used in our study
but in a single environment and growing season. They
also presented GWAS analysis in FarmCPU that identified a
candidate gene encoding a MATE transporter with a known
function in shaping maize RSA. Key differences between
these prior studies and ours include the testing environments,
developmental stages, and method of acquiring root systems
(shovelomics vs. RPF). Our RPF sampling study was performed
in two growing seasons in Colorado which is located in the
high plains region of the U.S. which frequently experiences
drought and thus serves as an ideal location to study genetics
related to drought stress in crops. Additionally, using RPF to
acquire root systems as opposed to shovelomics techniques
(Trachsel et al., 2011) is advantageous because this method
is less prone to missing data and provides an additional
quantitative measure of RSA that is generally more heritable
than image-based root traits (Figure 3) and has been used
previously to identify QTL for drought responses in maize
(Lebreton et al., 1995).

Our GWAS efforts identified a total of 54 SNPs associated
with measurable variation in RPF across developmental stages,
irrigation treatments, and growing seasons (Supplementary
Table 4). Most of these 54 SNPs were located within gene
models whose annotation spanned a diversity of functions
such as monosaccharide transport (Zm00001eb166700),
insect resistance (Zm00001eb273440), and auxin biosynthesis
(Zm00001eb060250). Interestingly, our GWA efforts found
no overlap of candidate genes across developmental stages,
irrigation treatments, or growing seasons for RPF despite
their similar allelic effects identified from post hoc analyses
(Figures 7C, 9C). The lack of overlap and quantity of
functionally diverse RPF candidate genes we find suggest
a highly complex genetic architecture for this trait that is
determined by numerous factors including developmental stage,
environment, and growing season. We hypothesize that the
pathway controlling root development may be conserved, but
genotypes may vary in pathways that provide environmental
signals and at different times of development to the core
development pathway. Future studies should design experiments
to mechanistically understand when and why these candidate
genes affect RPF dynamics at specific developmental stages
and environments.

Our GWAS analysis identified candidate genes related by
their: (1) roles in nutrient signaling from roots to shoots and
(2) greater expression in root tissue such as AMT5, SLAH2,
and PHOI;2A, Zm00001eb191650 (Maierhofer et al, 2014;
Salazar-Vidal et al., 2016; Filiz and Akbudak, 2020). This is
interesting because despite our experiment being conducted
in a field that was fully fertilized, SNPs in genes involved in
the transfer of the supplemented nutrients were significantly
associated with measurable variation in RPF. As previously
indicated by Schneider et al. (2020), this phenomenon suggests
the presence of allelic variation in these candidate genes that
significantly affects their ability to respond to soil nutrients.
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We hypothesize that these candidate genes possess alleles that
result in alternate signals of nutrient starvation/supplementation
which causes root systems to grow differentially in response—
underlying the heritable variation we observed in RPF. Previous
studies have shown that in A. thaliana and maize, root systems
grew significantly more in response to nitrogen and phosphorus
starved conditions respectively using split pot experiments
(Ruffel et al., 2011; Wang et al., 2020). Additionally, PHOI has
been identified in GWAS for RSA traits in A. thaliana (Rosas
et al., 2013), and AMT5 has been identified in maize for striga
resistance, which is likely root-based (Adewale et al, 2020).
Future studies should utilize functional genetics to validate the
effect of these candidate genes on maize RPF through both
characterization of mutants and evaluation of natural alleles of
the loci we identified in this study using near-isogenic lines.

Although AMTS5, SLAH2, and PHOI;2A were not identified
as candidate genes for RSA traits other than RPF via GWA, our
post hoc analyses with the alternate SNP alleles at these genes
identified significant differences in other traits such as root area,
depth, and width that were consistent with their differences in
RPF (Figures 7, 9, 10). This suggests that despite the independent
variation among the RSA traits we measured, RPF exhibits a
strong enough association with other RSA traits to identify
candidate genes that significantly affect their variation as well.
This connection between RPF and other RSA traits potentially
helps to ameliorate the difficulty of studying the genetic basis of
RSA in maize. RPF provides a relatively high throughput method
for quantifying RSA and discovering candidate genes that affect
multiple RSA traits in mature, field grown plants.

CONCLUSION

Understanding the phenotypic plasticity and genetic control
that shapes RSA in maize remains a formidable challenge. This
is because of the difficulty of obtaining root phenotype data
across development for mature field grown plants. To evaluate
the phenotypic plasticity and genetic control of RSA in maize,
we used a maize diversity panel coupled with environments of
contrasting irrigation levels as well as publicly available genotype
matrices from next generation sequencing data. Our results
implicate that: (1) root phenotypic plasticity is predictable for
some maize genotypes, (2) RSA in maize is a highly complex
trait controlled by many functionally diverse genes, and (3)
RPF is an efficient phenotype capable of identifying candidate
genes associated with variation in additional root architectural
traits. Future studies using functional genetic techniques such
as mutant screens and QTL mapping in RIL populations are
needed to validate the candidate genes identified in this study
and accurately quantify effect sizes of alleles across developmental
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