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Aglaonema commutatum is one of the most popular foliage plants with abundant leaf
phenotypes; therefore, anthocyanin coloration is a vital economic trait in A. commutatum.
However, the molecular mechanisms underlying anthocyanin biosynthesis and its
regulation remain unclear. In this study, AcMYB7 and AcbHLH1, transcription factor
genes related to an R2R3-myeloblast (MYB) and a basic helix-loop-helix (bHLH),
respectively, were isolated from A. commutatum “Red Valentine” and functionally
characterized. AcMYB1 and AcbHLH1 were found to interact by Y2H and BiFC assay.
AcMYB1 was grouped into the AN2 subgroup and shared high homology with the
known regulators of anthocyanin biosynthesis. Gene expression analysis showed that
both AcMYB1 and AcbHLH1 have similar expression patterns to anthocyanin structural
genes and correlate with anthocyanin distribution in different tissues of A. commutatum.
Light strongly promoted anthocyanin accumulation by upregulating the expression of
anthocyanin-related genes in A. commutatum leaves. Ectopic expression of AcMYB1
in tobacco remarkably increased anthocyanin accumulation in both vegetative and
reproductive tissues at various developmental stages. These results provide insights into
the regulation of anthocyanin biosynthesis in A. commutatum and are useful for breeding
new A. commutatum cultivars with enhanced ornamental value.

Keywords: Aglaonema commutatum “Red Valentine”, anthocyanin pathway, R2R3-MYB, transcriptional
regulation, transgenic tobacco

INTRODUCTION

Anthocyanins are broadly located in plant species and are responsible for a wide range of
coloration, such as purple, blue, and pink, in plant flowers, fruits, and leaves (Winkel-Shirley, 2001).
Anthocyanins are vital secondary metabolites that attract insect pollinators and help defend plants
against biotic and abiotic stresses (Schaefer et al., 2004). In vegetative organs, anthocyanins act as a
barrier to protect photosynthetic cells from intense light (Hughes et al., 2005). More importantly,
there is growing evidence that anthocyanins are beneficial to human health by reducing the rates of
cardiovascular disease, obesity, diabetes, lung disease, and cancer (Hou, 2003; Martin et al., 2011;
Ha et al, 2015).

The biochemistry and enzymology of the anthocyanin pathway are among the most widely
studied pathways in plant secondary metabolites, and almost all encoding enzymes have been
isolated and characterized (Mol et al, 1998; Koes et al, 2005). Chalcone synthase (CHS),
chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonoid 3’-hydroxylase (F3'H),
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and flavonol synthase are the early biosynthetic genes, which
result in the production of flavonols and different flavonoid
compounds. The late biosynthetic genes include dihydroflavonol
4-reductase (DFR), anthocyanidin synthase (ANS), and UDP-
glucose-flavonoid-3-O-glucosyltransferase (UFGT), which lead
to the production of anthocyanins (Lepiniec et al., 2006).
After glycosylation, methylation, and acylation, water-soluble
anthocyanin compounds are transported to vacuoles for stable
storage (Zhao and Dixon, 2010). At the transcriptional level,
anthocyanin structural genes are usually conservatively regulated
by the MBW protein complex containing R2R3-myeloblast
(MYB), basic helix-loop-helix (bHLH), and WD40 proteins
(Feller et al., 2011; Hichri et al., 2011; Xu et al., 2015). In
particular, MYBs play vital roles in anthocyanin biosynthesis,
and their expression levels influence anthocyanin accumulation
(Chen et al., 2017; Feng et al., 2020). MYBs often interact with
bHLHs to co-regulate anthocyanin biosynthesis (Patra et al.,
2013; Xu et al., 2015). In the model plant Arabidopsis thaliana, the
R2R3-MYB genes PAP1, PAP2, MYBI113, and MYB114, and the
bHLH genes TT8, GL3, and EGL3 were identified as critical genes
that participate in the regulation of anthocyanin biosynthesis
(Nesi et al., 2000; Payne et al., 2000; Gonzalez et al., 2008). In
Nicotiana tabacum, the MYB transcription factor (TF), NtAn2,
can regulate anthocyanin accumulation in tobacco flowers by
interacting with NtAnla and NtAnlb to activate the promoter
of DFR and CHS (Pattanaik et al., 2010; Bai et al., 2011).

Anthocyanin accumulation in leaves, usually showing a red
leaf color, can greatly increase horticultural value and stress
resistance. Additionally, plant materials rich in anthocyanin
are important germplasm resources for genetic breeding and
pigment bioengineering (Tian et al., 2015). PAMYBI118, identified
in a red leaf mutant of Populus deltoids, acts as a key
transcriptional regulator of leaf anthocyanin accumulation
(Wang et al,, 2019). In peaches, a novel branch of the MYB
genes, PpPMYBI0.4, can activate leaf anthocyanin accumulation
and form red leaf coloration (Zhou et al., 2014). In purple kale,
BoPAPI responds to low temperatures to induce anthocyanin
biosynthesis in the leaves (Zhang et al., 2012). Similar studies
have also been reported on crabapples (Tian et al., 2015), potatoes
(D’Amelia et al., 2014), and Gynura bicolor (Shimizu et al., 2011).

Aglaonema commutatum is a well-known foliage plant native
to tropical Asian countries such as India, Thailand, and Vietnam
(Du et al., 2013). A. commutatum have leaves with abundant
colors and mosaic points, are shade tolerant and moisture
resistant, and have few pests and diseases, which makes them
ideal indoor ornamental and leaf-cutting plants (Gao, 2018). Leaf
color is a considerable economic trait of A. commutatum sought
by breeders, but little is known about the molecular mechanisms
of anthocyanin biosynthesis regulation in A. commutatum.

In this study, an R2R3-MYB and a bHLH TF were identified
as potential anthocyanin biosynthesis regulators from the A.
commutatum “Red Valentine” leaf RNA-seq database, and further
analyzed. Expression trend analysis showed that the mRNA
expression levels of anthocyanin structural genes correlated
with those of AcMYBI and AcbHLHI. Overexpression analyses
of AcMYBI in tobacco further demonstrated its vital role in
anthocyanin regulation. Our study may lay the foundation for
further genetic studies on the diversity of leaf color and can

be applied to breeding plants with desirable color traits in
A. commutatum.

MATERIALS AND METHODS

Plant Materials and Treatment

Seedlings of A. commutatum “Red Valentine” that were 2-year-
old were potted in the greenhouse of the South China Botanical
Garden, Chinese Academy of Sciences (Guangzhou, China) and
received natural light with a 60% shade cloth. The temperature
and relative humidity of the greenhouse range from 15 to 34°C
and 75-99%, respectively. Three stages for leaf development were
defined as follows: stage 1, curly and white (S1, 7 days), stage 2,
unfolded and light pink (S2, 28 days), and stage 3, mature and
dark red (S3, 35 days). The leaves of three developmental stages,
roots, stems, and flowers samples were frozen in liquid nitrogen
immediately after collection before being stored at —80°C in
November 2019 for analysis of anthocyanin content and gene
expression levels.

To study the effect of light on anthocyanin biosynthesis and
related gene expression, the A. commutatum seedlings at stage
S2 were grown under 12h light/dark cycle or dark conditions
for 5 days in a phytotron (DGXM-508, Jiangnan Instrument
Factory, Ningbo, China) at 28°C with 8,000 Lux light intensity.
Subsequently, leaf samples were collected for analysis of gene
expression and anthocyanin content. Following growth for 5
days, samples were immediately stored at —80°C for further
study. Each sample contained three biological replicates.

Anthocyanins Content Analysis

The pH difference method was used to measure the total
anthocyanin content in A. commutatum and transgenic
Nicotiana tabacum cv. NC89 (tobacco) tissues (Wrolstad et al.,
1982). Briefly, fresh samples (0.1 g) were extracted with 2ml
methanol (with 0.05% hydrochloric acid) overnight at 0°C. The
absorbance at 510 and 700 nm was measured using a microplate
reader (Tecan Infinite, Mdnnedorf, Switzerland). The following
equation was used to calculate the total anthocyanin content:
Ap x DF x M x 1,000/(e x W). where Ax = (As19 — A700)pH
1.0 -(As;o — Az00)pH 4.5, DF is the dilution factor, M is the
molecular weight of cyanidin-3-glucoside (449.2¢g mol™}), ¢ is
the molar absorptivity (26,900, molar extinction coefficient (L
mol~!- cm™1) for cyanidin-3-glucoside), and W is the sample
weight (g).

Transcript Isolation and Sequence Analysis
The leaf transcriptome data of A. commutatum (Accession
number: PRJINA793608) were used to screen for R2R3-MYB-
like and bHLH-like genes by BLASTx searching from Nr and
Swiss-Prot protein databases based on (i) similarity scores with
the known anthocyanin-related TF genes in other species and
(ii) correlations with anthocyanin structural gene expression. The
transcripts were obtained from transcriptome assembly data, and
the coding sequences were cloned using the SMARTer RACE
cDNA Amplification Kit (Takara Biomedical Technology Co.,
Ltd.; Beijing, China), and amplified via PCR with 2x Super
Pfx DNA Polymerase (Cowin Biotech Co., Ltd.; Taizhou, China)
and the pClone007 Versatile Simple Vector Kit (TSINGKE
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Biotech Co., Ltd.; Beijing, China) for Sanger sequencing and
subsequent analyses. DNAMAN (v8.0.8.789) was used to analyze
the amino acid sequence alignment and MEGA (v7.0.26)
was used to construct phylogenetic trees using the neighbor-
joining method with 1,000 bootstrap replicates. The GenBank
accession numbers of the MYB and bHLH proteins are listed in
Supplementary Table S1.

RNA Extraction, cDNA Synthesis, and

Gene Expression Analysis

Total RNA was isolated from tobacco as well as the roots,
stems, flowers, and leaves of A. commutatum using a plant
RNA kit (Polysaccharides and Polyphenolics-rich, Hua Yueyang,
Beijing, China) with RNase-free DNase I (Takara Biomedical
Technology Co., Ltd.; Beijing, China) to remove genomic DNA
contamination. RNA (1 pg) was used for cDNA synthesis using
the TransScript II One-Step gDNA Removal and cDNA Synthesis
kit (TransGen Biotech Co., Ltd.; Beijing, China).

Key genes related to anthocyanin biosynthesis were screened
from the A. commutatum “Red Valentine” leaf RNA-Seq database
(BioProject ID: PRJNA793608). We identified 10 anthocyanin
biosynthetic genes: AcCHS, AcCHS2, AcCHI, AcF3H, AcF3’H,
AcDFR1, AcDFR3, AcANS, AcUFGTI, and AcUFGT2. The
expression levels of AcMYBI and AcbHLHI as well as these
10 genes were analyzed in the root, stem, flower, and three
developmental leaf stages of A. commutatum. The expression
levels of AcMYBI in transgenic tobacco leaves and flowers
were also determined. The expression levels of nine structural
genes and two bHLH TF genes (NtPAL, NtCHS, NtCHI, NtF3H,
NtF3’H, NtF3’5’H, NtIDFR, NtANS, NtUFGT, NtAnla, and
NtAnlb, respectively) involved in anthocyanin biosynthesis were
compared in the transgenic and control tobacco leaves and
corollas. Finally, the mRNA abundance of six anthocyanin
structural genes (NbCHS, NbCHI, NbF3H, NbDFR, NbANS,
NbUFGT) in Nicotiana benthamiana leaves were examined 8
days after infiltration. Gene expression levels were determined
using real-time quantitative PCR (qQRT-PCR) with PerfectStart
Green qPCR SuperMix (TransGen Biotech Co., Ltd., Beijing,
China) with a LightCycler 480 II (Roche, Mannheim, Germany)
according to the following conditions: 94°C for 30s, 45 cycles
at 94°C for 55, 60°C for 30s. Elongation factor 1-alpha (AcEF-
la, Accession number: OM688333), NtActin (Accession number:
X69885), and NbActin (Accession number: JQ256516) were used
as reference genes. The Ct value of each sample was calculated
via LightCycler 480 software (Roche, version: 1.5.1.62) and the
relative expression was determined using the 2722¢T method
(Livak and Schmittgen, 2001), where ACt = Ct (target gene)-
Ct (reference gene) and AACT = ACt (experimental group)-
ACt (control group). Gene-specific primer pairs are listed in
Supplementary Table S2. Three biological replicates and three
technical replicates were performed.

Subcellular Localization

The AcMYBI and AcbHLHI open reading frames, without
the stop codons, were inserted into the BglIl and Kpnl sites
of the pSAT6-EYFP-Nlvector which is a yellow fluorescent
protein (YFP) driven by the 35S Cauliflower mosaic virus

(35S) promoter. The final plasmids, 35S:AcMYBI-YFP,
35S:AcbHLH1-YFP, control 35S:YFP, and nuclear marker
35S:mCherry, were introduced into A. thaliana mesophyll
protoplasts by polyethylene glycol (PEG)-mediated transient
transformation (Yoo et al, 2007). Co-transformation with
the control 35S:YFP and nuclear marker 35S:: mCherry were
used as a negative control. After incubation at 20°C for 20h,
the protoplasts were detected using a Zeiss LSM 510 confocal
microscope (Zeiss, Jena, Germany).

Yeast Two-Hybrid Assay

Yeast two-hybrid (Y2H) analysis was performed using the
Matchmaker Two-Hybrid System 3 (Clontech; Takara Bio USA,
Inc.; San Jose, CA, United States). The coding region of AcbHLH1
was inserted into the bait vector pGBK-T7 (GAL4 DNA-binding
domain), and AcMYBI was fused to the prey vector pGAD-T7
(GAL4 activation domain). Vector pGADT7-T and pGBKT7-
53 were used as the positive controls. All constructs were
transformed into the yeast strain AH109 (Clontech, Takara Bio
USA, Inc.; San Jose, CA, United States) using the PEG/LiAC
method, according to the protocol handbook. All transformed
yeast cells were selected on a synthetic drop-out medium without
leucine and tryptophan (SD-Leu-Trp) at 30°C for 3 days.
Colonies that survived from double selection plates were then
screened for growth on a quadruple selection SD medium lacking
adenine, histidine, leucine, and tryptophan (SD-Ade-His-Leu-
Trp) containing 30 mM 3-amino-1,2,4-triazole (3-AT) solution
and 25 mg/L X-a-Gal.

Bimolecular Fluorescence

Complementation

For the biomolecular fluorescence complementation (BiFC)
assay, the AcMYBI and AcbHLH1 ORFs, without stop
codons, were inserted into the pSPYNE and pSPYCE vectors
containing the N- and C-terminal halves of YFP (Walter et al,,
2004). Recombinant plasmids were then introduced into A.
thaliana mesophyll protoplasts by PEG-mediated transient
transformation (Waadt et al., 2008). After incubation at 20°C
for 20h, the protoplasts were observed using a Zeiss LSM 510
confocal microscope (Zeiss, Jena, Germany).

Overexpression of AcMYB1 in Tobacco

To overexpress AcMYBI in tobacco, the coding sequence of
AcMYBI was inserted into the pGreen-C17 vector, which was
triggered under the control of the CaMV 35S promoter. The
resulting vector, pGreen-C17-AcMYBI1, was transferred into
Agrobacterium tumefaciens strain EHA105 and then transformed
into tobacco via the leaf disc method (Zhang et al., 2007). Empty
vector-infected tobacco plants were used as controls. The T1-
generation leaves and corollas from the three transgenic lines and
control plants were collected for the anthocyanin concentration
(Section Anthocyanins Content Analysis) and gene expression
(Section RNA Extraction, cDNA Synthesis, and Gene Expression
Analysis) analyses.
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FIGURE 1 | Anthocyanin content in the leaves, at the three developmental stages; roots; stems; and flowers of Aglaonema commutatum “Red Valentine.” (A) The
phenotypes of the leaves at the three developmental stages, S1, S2, and S3; roots; stems; and flowers. Bar: 1 cm. (B) Anthocyanin content in the different tissues.
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Transient Expression Assay

The transient over-expression experiments in N. benthamiana
leaves were performed according to the method described by
Palapol et al. (2009). Briefly, 35S-promoter-driven AcMYBI1
and AcbHLH1 constructs were inserted into Agrobacterium
tumefaciens strain GV3101 via electroporation. N. benthamiana
plants with 6-8 leaves were solely or simultaneously infiltrated
with a needleless 1-ml syringe into the abaxial sides of the
fourth or fifth leaves, and Agrobacteria with an empty vector
was used as a control. Anthocyanin content was measured
and digital photographs were taken 8 days after infiltration.
Anthocyanin content was measured with the pH difference
method as described in Section Anthocyanins Content Analysis.

Statistical Analysis

All experiments were performed on at least three independently
grown biological replicates. All values represent the mean =+ SE.
Differences between the treatment groups were examined
using SPSS software (one-way ANOVA, Duncan test), and the
significant differences (p < 0.05) are indicated with different
letters, respectively.

RESULTS

Determination of Anthocyanin

Concentration in A. commutatum

Leaves of A. commutatum “Red Valentine” has white color
and stay curly at leaf-S1. At leaf-S2, leaf color changes
from white to light pink and appears deep red at leaf-
S3 (Figure 1A). Anthocyanin content in the leaves of A.
commutatum significantly increased with developmental age.
Additionally, trace amounts or no anthocyanins were detected in
the roots, stems, and flowers (Figure 1B).

Isolation and Sequence Analysis of

AcMYB1 and AcbHLH1
In this study, R2R3-MYB and bHLH TFs were isolated
from the leaf transcriptome database of A. commutatum

“Red Valentine.” The candidate genes were cloned from the
cDNA of A. commutatum leaves by RACE PCR, sequenced,
and named AcMYBI and AcbHLHI. The results showed
that AcMYB1 and AcbHLHI contained 969 and 2,115 bp
ORFs, encoding proteins of 322 and 712 amino acids,
respectively. The neighbor-joining phylogenetic tree showed
that AcMYBI1 clustered with monocot-positive anthocyanin
regulators, including AaMYB2, LhMYB6, LhMYBI12, and
MaAN?2 (Figure 2A). Similarly, AcbHLH1 formed a cluster with
AabHLHI and other bHLH TFs associated with anthocyanin
biosynthesis in several plant species (Figure2B). Alignment
analysis showed that a highly conserved R2R3 domain is
contained in the AcMYBI1 protein for DNA binding at the N-
terminus, which contains a crucial bHLH-interacting motif in
the R3 domain for interactions with bHLH TFs (Figure 2C)
(Zimmermann et al, 2004). We also found an N-terminal
MYB-interacting region and conserved bHLH domain in the
AcbHLHI1 protein (Supplementary Figure S1) (Pattanaik et al.,
2008). These results suggested that AcMYB1 and AcbHLH1 may
interact and play roles in anthocyanin biosynthesis.

Expression Levels of AcMYB1, AcbHLH1,

and Anthocyanin Structural Genes

The gene expression analyses showed that all the candidate
structural genes, including AcMYBI and AcbHLHI, had
significantly higher expression levels in the three developmental
leaf stages compared to those in the other tissues and reached
a peak at leaf stage two except AcF3H (Figure 3). Furthermore,
the correlation analysis revealed that the gene expression
correlation coeflicient between AcMYB1 or AcbHLHI
and structural genes was in the range of 0.73-0.99 and
0.75-0.98. This result implies that transcript abundance
of AcMYBI and AcbHLHI are correlated with those of
the most anthocyanin structural genes and they are likely
involved in the regulation of anthocyanin biosynthesis in
A. commutatum.
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FIGURE 2 | Phylogenic and sequence alignment analyses of A. commutatum “Red Valentine” AcMYB1 and AcbHLH1. Phylogenetic relationships of (A) AcMYB1 and
(B) AcbHLH1 with known anthocyanin MYB and bHLH transcription factors, respectively, from monocotyledon and other species. The neighbor-joining method with
1,000 bootstrap replications was performed using MEGA (v7.0.26). (C) Amino acid sequence alignments of the R2 and R3 domains in AcMYB with the functionally
characterized R2R3-MYBs regulator using DNAMAN (v8.0.8.789). The R2 and R3 domains are shown with red and green lines, respectively, and the bHLH-interacting
motif is indicated in the black box. bHLH; basic helix-loop-helix, MYB: myeloblast. The GenBank accession numbers of the MYB and bHLH proteins are listed in
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Localization and Protein-Protein
Interaction of AcMYB1 and AcbHLH1

Subcellular localization analysis in A. thaliana leaf protoplasts
revealed that both AcMYB1 and AcbHLH1 were specifically
localized in the cell nucleus (Figure4). In A. commutatum,
AcMYBI and AcbHLHI showed conserved interacting motifs,
similar mRNA expression patterns in different tissues, and
co-localization in the nucleus, suggesting a possible interaction.
To test this hypothesis, we used Y2H and BiFC assays. For
the Y2H assay, all the transformed colonies grew well on

SD/-Leu/-Trp, indicating their successful transformation. The
co-transformed colonies of pGADT7-AcMYB1 + pGBKT7-
AcbHLH1 displayed distinct blue coloration on SD/-Leu/-Trp/-
His/-Ade, indicating that AcMYB1 and AcbHLHI physically
interacted (Figure5A). In the BiFC assays, YFP fluorescence
signals were observed only when pSPYNE/AcMYB1 and
pSPYCE/AcHLHI1 were co-expressed and no fluorescence was
detected in cells that contained control vectors (Figure 5B).
These results further confirm that AcbHLH1 and AcbMYB1 may
interact in A. commutatum cells.
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FIGURE 3 | The relative expression levels of 10 anthocyanin structural genes, AcMYBT1, and AcbHLH1 in various tissues of A. commutatum “Red Valentine” by
gRT-PCR. The relative expression was calculated based on the 2-24CT method using AcEF-1a gene as the reference gene.
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FIGURE 4 | Subcellular localization of AcMYB1 and AcbHLH1 proteins in Arabidopsis thaliana mesophyll protoplasts. Transient expression of the 35S::YFP-mCherry
control, 35S::AcMYB1-YFP, and 35S::AcbHLH1-YFP, showing YFP fluorescence, mCherry nuclear localization, chlorophyll autofluorescence, bright field, and merged
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Functional Analysis of AcMYB1 in Tobacco
To investigate the role of AcMYBI in regulating the anthocyanin
biosynthetic pathway, overexpression (OE) under the control
of the CaMV-35S promoter was carried out in tobacco. More
than 20 independent transgenic lines were generated using
genomic PCR. The results of phenotypic changes showed that
pigment levels were significantly increased in both vegetative
and reproductive tissues relative to that in the control plants.
In particular, the OE-AcMYBI line showed a remarkable change
in leaf color, and the mature leaves of the transgenic plants
displayed an observably darker red color than that of the control
plants. In addition, the corolla color of OE-AcMYBI tobacco
changed from light pink to deep red, and increased anthocyanin
accumulation was markedly visible in the anthers, filaments,
calyxes, ovary walls, and seed coats (Figures 6A-L). Anthocyanin
content determination confirmed that the anthocyanin extracted
from the three lines of OE-AcMYBI tobacco leaves and corollas
were markedly higher than those in the controls (Figures 6M,N).
To reveal the potential target genes in OE-AcMYB1 transgenic
plants, the mRNA expression level of structural genes and two
bHLH TF genes involved in anthocyanin biosynthesis were
verified by RT-PCR assay in tobacco leaves and corollas. A high
expression level of AcMYB1 was first confirmed in three lines by
qRT-PCR (Figures 7A,B). Expression analysis showed that the
11 anthocyanin regulatory genes were significantly upregulated
in the leaves of all three transgenic lines compared to those of
the control plants (Figure 7C). However, in the corollas of the
three transgenic tobacco plants, only NtCHI, NtANS, NtUFGT,
and NtAnlb showed significantly higher expression levels
than that of the control (Figure 7D). These results indicated

that AcMYBI1 could upregulate or activate the expression of
key anthocyanin structural genes and bHLH TFs, ultimately
promoting anthocyanin accumulation in transgenic tobacco.

Transient Expression of AcMYB1 and
AcbHLHT1 in N. benthamiana Leaves

An Agrobacterium-mediated transient assay was further
performed to investigate the regulation of AcMYB1 and
AcbHLH1 on anthocyanin biosynthesis. The results showed
that a slight accumulation of anthocyanin was detected in the
leaves inoculated with the control or AcbHLH1 construct, while
patches of anthocyanin were observed in AcMYB1 and AcMYB1
+ AcbHLH1 inoculated leaves (Figures 8A-E). The anthocyanin
content in AcMYB1 + AcbHLH1 leaves is 1.36 times that of
the AcMYBI1 leaves (Figure 8E). Moreover, the expression of
anthocyanin biosynthetic genes were strongly up-regulated in
the leaves infiltrated with AcMYB1 and AcMYBI1 + AcbHLH1
constructs (Figure 8F). Interestingly, NbCHI, NbANS, NbDFR,
and NDUFGT displayed significantly higher expression levels in
simultaneous inoculation of 35S:AcMYBI and 35S:AcbHLHI
constructs than solely infiltrating with 35S::AcMYBI. Taken
together, we predicted that the ability of AcMYBI1 in anthocyanin
regulation could enhance by the interaction with AcbHLH1.

Influence of Light on Gene Expression and
Anthocyanin Accumulation in A.

commutatum
Comparative analysis was conducted between 2-year-old
A. commutatum “Red Valentine” seedlings after growing in
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FIGURE 5 | Interactions between AcMYB1 and AcbHLH1 determined by Y2H and BiFC assays. (A) Y2H assay of AcMYB1 with AcbHLH1: co-transformed colony,
pGADT7-AcMYB1 + pGBKT7-AcbHLH1; positive control, pPGADT7-T + pGBKT7-53. (B) BiFC assay showing the fluorescence signal of co-expressed
PSPYNE/AcMYB1 + pSPYCE/AcbHLH1 in Arabidopsis thaliana leaf protoplasts. Representative images under the YFP fluorescence, chlorophyll autofluorescence,
bright field, and merged images. Scale bar: 5 um.

the dark or light for 5 days. As shown in Figure9A, the in light treatment seedlings is 11.2-fold higher than that of
leaf color was bright red in light treatment plants and pale the seedlings growing in dark (Figure 9B). Furthermore, the
pink in dark-grown plants. The leaf anthocyanin content  transcriptional level of AcMYBI, AcbHLH1, and 10 anthocyanin
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FIGURE 6 | Phenotypes and anthocyanin content of transgenic Nicotiana tabacum cv. NC89 plants overexpressing (OE)-AcMYB1 and empty vector controls. Culture
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FIGURE 7 | Expression analysis of anthocyanin biosynthesis pathway genes in the leaves and corollas of Nicotiana tabacum cv. NC89 using gRT-PCR. The expression
patterns of AcMYBT1 in the (A) leaves and (B) corollas. Relative expression levels of anthocyanin pathway-related genes in the leaves (C) and corollas (D). L1, L5, and
L7 represent the three transgenic tobacco lines. The relative expression was calculated based on the 2-24CT method using the NitActin gene as the reference gene.
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FIGURE 8 | Transient over-expression assay in N. benthamiana leaves. Images of infiltration sites 8 days after transformation of control vector (A), AcbHLH1 (B),
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structural genes in light-grown conditions were all noticeably ~ the expression of anthocyanin-related genes and promote
higher in comparison with the seedlings growing in dark  the anthocyanin accumulation in A. commutatum “Red
(Figure 9C). The results reveal that light can strongly induce  Valentine” leaf.
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FIGURE 9 | Influence of light on leaf color. (A) Leaf phenotype after 5 days light (left) or dark (right) treatment. (B). Anthocyanin content of light and dark treatment.
(C) Expression analysis of AcMYB1, AcbHLH1, and 10 structural genes of the anthocyanin pathway was determined by gRT-PCR assay with ACEF-1a as a reference
gene. Bar: 1cm.
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DISCUSSION

Recently, more attention has been given to the cultivation of
ornamental plants with colored leaves; a phenotype that is mainly
obtained by the accumulation of anthocyanins (Lightbourn et al.,
2008; Lietal.,, 2021; Huang et al., 2022). Multiple R2R3-MYB and
bHLH TFs have been reported as key regulators of anthocyanin
biosynthesis (Allan et al., 2008; Petroni and Tonelli, 2011;
Qin et al., 2022). A. commutatum is an excellent foliage plant
with abundant leaf coloration; therefore, acquiring increasing
importance for breeding desirable leaf color traits. However, few
studies have focused on the molecular mechanisms underlying
anthocyanin biosynthesis and regulation in A. commutatum.

Many R2R3-MYBs involved in the regulation of anthocyanin
biosynthesis have been identified at the genetic and molecular
levels (Nuraini et al., 2020; Yin et al., 2021), such as PeMYB2,
PeMYBI11, and PeMYBI12 in Phalaenopsis spp. (Hsu et al., 2015);
MaAN2 and MaMYBA in Muscari armeniacum (Chen et al.,
2017, 2019); MAMYB10 and MdMYB6 in Malus x domestica
(Espley et al., 2009; Xu et al., 2020); and FhPAP1 from Freesia
hybrida (Li et al, 2020). In this study, AcMYB1 had the
typical characteristics of an R2R3-MYB transcription factor. The
AcMYBI protein contains a highly conserved R2 and R3 repeat
in the N-terminal region and a bHLH- interacting motif in
the R3 domain. Phylogenetic analysis indicated that AcMYB1
was grouped into the AN2 subgroup, which is represented by
PhAN2 and AtPAP1 (Allan et al., 2008). Besides, AcMYBI1
was closest to the AaMYB2 transcription factor. AaMYB2 was
reported to be a key regulator of anthocyanin biosynthesis
in the spathes and leaves of Anthurium andraeanum, another
member of the Araceae (Li et al., 2016). Moreover, based on the
expression patterns, the anthocyanin biosynthetic genes, except
for AcF3H, in A. commutatum share similar trends with those of
AcMYBI in the different tissues. These results suggest a potential
role for AcMYBI in regulating anthocyanin accumulation in
A. commutatum.

The enzymes of anthocyanin structural genes are mainly
regulated at the transcriptional level by the interaction between
R2R3-MYB and bHLH transcription factors (Koes et al., 2005;
Xu et al, 2014). Examples include the ZmC-ZmLc (R2R3-
MYB-bHLH) complex in Zea mays (Dooner et al, 1991),
PhAN2-PhAN1 complex in Petunia spp. (Spelt et al., 2000),
and NtAn2-NtAnl complex in N. tabacum (Bai et al., 2011).
In this study, AcMYBI formed a heterodimer with AcbHLH1
and could play a key role in the regulation of leaf color in
A. commutatum (Figure 5). Additionally, in the three lines
of OE-AcMYBI tobacco leaves, the expression levels of both
NtAnla and NtAnlb were significantly upregulated (Figure 7C),
suggesting that AcMYB1 may activate anthocyanin-related
bHLH in tobacco.

Heterologous expression in model plants can quickly provide
the basis for functional identification of target genes. Tobacco
is one of the most widely studied model plants in verifying
the functions of anthocyanin regulators (Vimolmangkang et al.,
2013; Huang et al, 2016; Zhao et al, 2022). For example,
HtMYB2 (Gao et al., 2020), EsMYB9 (Huang et al., 2017),
AaMYB2 (Li et al., 2016), and IbMYBla (An et al, 2015)

were found to regulate tobacco anthocyanin biosynthesis to
varying degrees. Similarly, in this study, overexpression of
AcMYBI in tobacco displayed striking changes in anthocyanin
accumulation in both vegetative and reproductive tissues at
various developmental stages (Figures 6A-L). A remarkable
increase in anthocyanin was also observed in OE-AcMYBI1
lines (Figures 6M,N). We further investigated the function of
AcMYBI in regulating anthocyanin biosynthesis by examining
the expression patterns of anthocyanin biosynthesis pathway-
related genes in tobacco. In the leaves of the three OE-
AcMYBI lines, all anthocyanin structural genes and endogenous
bHLH genes were highly expressed, whereas little or no
mRNA abundance was detected in control tobacco. In the
corolla, the activation of AcMYBI was not as strong as that
of leaves; only NtCHI, NtANS, NtUFGT, and NtAnlb were
significantly upregulated in the three OE-AcMYBI lines. Overall,
the heterogeneous expression analysis strongly supports the
notion that AcMYBL1 plays an important role in determining red
leaf coloration in A. commutatum.

It has been reported in a variety of plants that strong light
can increase the expression of anthocyanin-related genes and
promote the accumulation of anthocyanins, while under dark
or weak light conditions, the expression and the biosynthesis of
anthocyanins were both inhibited, usually showing white color
or pale phenotype (Cominelli et al., 2008; Azuma et al., 2012;
Zhang et al., 2018). After the dark treatment for 6 days, the color
of the lily flower became lighter with a decrease of anthocyanin
content, and the expression of the structural gene LhDFR and the
regulatory gene LhbHLH2 was only one-fifth of that under light
conditions, while another anthocyanin-related gene LhbHLH]I
was not affected by shading (Nakatsuka et al., 2009). Similarly,
the anthocyanin content and the expression abundance of
anthocyanin genes, including MrF3H, MrF3’H, MrDFR, MrANS,
MrUFGT, and MrMYBI of the Chinese bayberry fruit were
significantly inhibited after bagging treatment (Niu et al., 2010).
In A. commutatum, both structural and regulatory genes were
expressed at a high level under light conditions compared with
the significant reduction in dark conditions. It can be seen
that light is a vital environmental factor for the red coloration
of A. commutatum leaf. Further studies are needed to reveal
the potential mechanism of how light regulates anthocyanin
biosynthesis in A. commutatum.

CONCLUSIONS

In this study, novel R2R3-MYB and bHLH transcriptional factors
were identified in A. commutatum “Red Valentine” leaves and
named AcMYBI and AcbHLHI. Expression pattern analysis
showed that the transcript abundances of AcMYBI and AcbHLH1
are similar to those of several structural anthocyanin genes
and correlate with anthocyanin distribution. AcbHLH1 interacts
with AcMYB1 to form a transcriptional complex. Moreover,
overexpression of AcMYBI in tobacco results in excessive
accumulation of anthocyanins in tobacco leaves and other tissues
and upregulates anthocyanin regulatory genes. Furthermore,
light can significantly promote anthocyanin accumulation, and
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anthocyanin-related genes were strongly up-regulated in A.
commutatum leaves. Therefore, we believe that AcMYBI is a key
gene in regulating anthocyanin production in A. commutatum
“Red Valentine.” Our study may be useful for modifying leaf color
in ornamental breeding and provide a basis for further research
and development in the plant breeding industry.
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