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A Phloem-Expressed PECTATE
LYASE-LIKE Gene Promotes
Cambium and Xylem Development
Max Bush‡, Vishmita Sethi†‡ and Robert Sablowski*

Cell and Developmental Biology Department, John Innes Centre, Norwich Research Park, Norwich, United Kingdom

The plant vasculature plays essential roles in the transport of water and nutrients and
is composed of xylem and phloem, both of which originate from undifferentiated cells
found in the cambium. Development of the different vascular tissues is coordinated
by hormonal and peptide signals and culminates in extensive cell wall modifications.
Pectins are key cell wall components that are modified during cell growth and
differentiation, and pectin fragments function as signals in defence and cell wall integrity
pathways, although their role as developmental signals remains tentative. Here, we show
that the pectin lyase-like gene PLL12 is required for growth of the vascular bundles
in the Arabidopsis inflorescence stem. Although PLL12 was expressed primarily in the
phloem, it also affected cambium and xylem growth. Surprisingly, PLL12 overexpression
induced ectopic cambium and xylem differentiation in the inflorescence apex and
inhibited development of the leaf vasculature. Our results raise the possibility that a
cell wall-derived signal produced by PLL12 in the phloem regulates cambium and
xylem development.

Keywords: Arabidopsis, shoot development, pectate lyase, phloem, cambium, xylem

INTRODUCTION

The vasculature of land plants is critical for growth, as it distributes water and nutrients throughout
the plant and provides mechanical support (Ruonala et al., 2017). Each vascular bundle contains
three types of tissues: xylem, including water-transporting xylem elements, the mechanically
reinforced xylem fibres and parenchyma; phloem, containing the sugar-transporting sieve elements,
the companion cells that regulate movement of molecules in and out of the phloem, phloem fibres
and parenchyma; and cambium, a layer of undifferentiated cells that produces new xylem cells
toward the plant’s main axis and new phloem cells away from it (Nieminen et al., 2015).

During the early stages of vascular development, the position of xylem, phloem and the
procambium (precursor of the cambium) is defined by intercellular signals mediated by the
auxin and cytokinin hormones, in combination with mobile transcription factors and microRNAs
(Carlsbecker et al., 2010; Miyashima et al., 2019). The subsequent production of new vascular
cells by the cambium is regulated by the peptide signals CLAVATA3/EMBRYO SURROUNDING
REGION (CLE) CLE41/CLE44, which activate the Phloem Intercalated With Xylem (PXY) receptor
to regulate the balance between the production of new phloem and xylem cells (Ito et al., 2006;
Fisher and Turner, 2007; Hirakawa et al., 2008). The ensuing differentiation of these tissues is
guided by cell type-specific transcription factors, such as VASCULAR-RELATED NAC DOMAIN 6
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(VND6) and VND7, which specify xylem cell types (Kubo et al.,
2005), or Altered Phloem Development (APL) (Bonke et al.,
2003) and NAC DOMAIN-CONTAINING PROTEIN 45 (NAC45)
(Furuta et al., 2014), which control phloem differentiation.

Among the processes regulated during vascular
differentiation, modifications of the cell wall feature prominently,
for example in the deposition of lignified hoops that mechanically
reinforce xylem elements (Mitsuda et al., 2007; Sugiyama
et al., 2017), or in the development of perforated plates that
connect adjacent sieve elements (Kalmbach and Helariutta,
2019). Pectic polysaccharides, of which the most abundant
form is homogalacturonan, are important components of
the plant cell wall that are modified during cell growth and
differentiation. Pectins are secreted in a methyl-esterified
form and modified by pectin methylesterase (PME) to control
the degree of methylesterification. Pectins with low levels of
methylesterification bind Ca2+ within the cell wall to form
a cross-linked gel that surrounds cellulose and is believed to
decrease cell wall extensibility (Wolf et al., 2012; Yang et al.,
2018). Developmentally controlled pectin methylesterification
modulates not only wall extensibility, but also access to
further cell wall-modifying enzymes, such as those involved
in the deposition of lignin during xylem differentiation
(Wolf et al., 2012).

One group of cell wall modifiers that target demethylesterified
pectin are the PECTATE LYASE-LIKE (PLL) proteins, which
are found throughout the plant kingdom and are encoded by
large gene families (Uluisik and Seymour, 2020). PLLs have an
N-terminal signal peptide that targets them for secretion into the
cell wall, where they cut homogalacturonan at β(1–4) linkages to
generate oligogalacturonides (OGs) of different sizes (Sénéchal
et al., 2014; Yang et al., 2018). Pectin cleavage occurs during
cell expansion or remodelling, and in the middle lamella during
cell separation (Yang et al., 2018). Accordingly, PLLs have been
implicated in cell expansion processes, such as elongation of
cotton fibres (Sun et al., 2020), in secondary wall formation in
the xylem, and in cell separation during fruit ripening (Uluisik
and Seymour, 2020). Additionally, the OGs produced during
pectin cleavage have a signalling role, studied mostly in relation
to pathogen attack and as part of the cell wall integrity pathway
(Brutus et al., 2010; Ferrari et al., 2013). Externally applied OGs
also have developmental consequences, for example by inhibiting
the effect of auxin on pea stem elongation (Branca et al., 1988),
although a role for OGs as endogenous developmental signals still
remains to be established (Ferrari et al., 2013).

Here, we characterise the function of PLL12 in Arabidopsis
vascular development. We selected this gene based on ChIP-
seq data for the BEL1-like homeodomain transcription factor
REPLUMLESS (RPL) (also known as PENNYWISE, PNY and
BELLRINGER, BLR) (Byrne et al., 2003; Roeder et al., 2003;
Smith and Hake, 2003), which is required for correct vascular
patterning (Smith and Hake, 2003; Etchells et al., 2012) and
directly interacts with multiple genes that regulate vascular
development, such as PXY, CLE41 and NAC45 (Bencivenga et al.,
2016). Furthermore, RPL has been implicated in the expression
of cell wall enzymes involved in vascular differentiation
(Peaucelle et al., 2011; Etchells et al., 2012). We reasoned that

less well-characterised RPL target genes, such as PLL12, might
reveal novel aspects of vascular development. Our functional
analysis showed that PLL12 is expressed in the phloem but
has unexpected cell non-autonomous effects on cambium and
xylem development.

MATERIALS AND METHODS

Plant Material
Plants were grown on JIC Arabidopsis Soil Mix (Levington
F2 compost plus Intercept and 4 mm grit at a 6:1 ratio) at
16◦C under continuous light (100 mE) or in a Sanyo cabinet
at 18◦C under 16 h light/8 h dark cycles (100 mE). Arabidopsis
thaliana Columbia (Col) and Landsberg-erecta (L-er) were
used as wild-types; pll12 (AT5g04310; SAIL 1149_C06) was
obtained from The Nottingham Arabidopsis Stock Centre and
genotyped using primers 1–3 Table 1. For the construction of
RPS5A:LhGR:opPLL12, the PLL12 CDS was amplified from
Col cDNA (primers 12–13 Table 1), cloned into pGEMT-EASY,
sequenced, moved into pOWL49 by SalI/KpnI restriction
cloning and transformed into RPS5A:LhGR in L-er background.
Transformants were selected on gentamycin/kanamycin
Murashige and Skoog medium (M&S) with agar, transferred
to soil and treated at appropriate developmental stages with
either 10 µM dexamethasone (from a 10 mM stock in ethanol)
or the equivalent volume of ethanol (mock-treatment) diluted
in aqueous 0.015% Silwet L-77 (49). Some seedlings were
germinated and grown on M&S agar and then transferred to
M&S agar supplemented with either 10 µM dexamethasone
or ethanol (mock).

To complement the pll12 phenotype, a full length
pPLL12:PLL12 construct was generated as follows. Using
Columbia genomic DNA and Phusion polymerase (New England
Biolabs), the promoter and 5′ utr (1,884 bp) were amplified
as two fragments, the gene (3,997 bp) as four fragments and
the 702 bp 3′ utr as a single fragment using primers 14–27 in
Table 1. The seven fragments were assembled into plasmid G45
by Golden Gate cloning (Engler et al., 2014). The assembly
was verified by sequencing and inserted into plasmid G800 by
Gateway cloning. For construction of pPLL12:PLL:GUS, PLL12
was amplified from Col-0 genomic DNA and fused in-frame with
GUS and cloned into pPZP222 (Hajdukiewicz et al., 1994) using
Golden Gate cloning as above, with primers listed in Table 1.
The final constructs were transformed into Col-0 by the floral
dip method (Clough and Bent, 1998) and transformants were
selected on Murashige and Skoog medium supplemented with
gentamycin 100 µg/mL.

Measurements of Stem Growth
Arabidopsis Col and pll12 plants were grown until the first flower
reached stage 17 (Smyth et al., 1990), ink marks were placed on
the stem at 2 mm intervals and photographed next to a ruler using
a Nikon D3100 DSLR camera and 18–55 mm VR lens. Plants were
returned to the growth cabinet for 4 d and then re-photographed.
Manual land marking of the stem ink marks and calibration
points on the ruler was performed using the Point Picker plugin
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TABLE 1 | Oligonucleotide sequences.

Number Name Sequence

Genotyping

1 PLL12 F TCATTTTCATGCTTTATCTTGTG

2 PLL12 R CCTGACTATTAATTGTAGGGCTA

3 SAIL LB1 TDNA GCCTTTTCAGAAATGGATAAATAGCCTTG
CTTCC

RT-PCR

4 PLL12 RTPCR F1 ATGGTGGCTCATGAGAGGAGGATCC

5 PLL12 RTPCR R1 CTATGATCTCGTATGGTGTGGAATATA

6 PLL12 RTPCR R2 CTTTGAACATTAAGAACAACATGTTC

7 PLL12 RTPCR R3 TCGTCGTGACCTAGGAGCATAACC

qPCR

8 PLL12 qPCR F TCCCAATGCCAAAGAGGTAACG

9 PLL12 qPCR R TCCAGTTCCATCCCGACCAATG

10 TUBULIN4 qPCR F CTGTTTCCGTACCCTCAAGC

11 TUBULIN4 qPCR R AGGGAAACGAAGACAGCAAG

pOp:PLL12

12 PLL12 CDS F CTGTCGACATGGTGGCTCATGAGAGGAGG

13 PLL12 CDS R CTGGTACCCTATGATCTCGTATGGTGTGG

pPLL12:PLL12

14 pPLL12 fragment 1 F GTGGTCTCAGGAGACCTGGTCTGGTTTC
ATCAGC

15 pPLL12 fragment 1 R GTGGTCTCAGAAATCGAATCAATGAAACT
CTTG

16 pPLL12 fragment 2 F GTGGTCTCGTTTCTTTAGTGAAGATACA
TTTG

17 pPLL12 fragment 2 R GTGGTCTCACATTATATCTCCTATTATATC
TTATG

18 PLL12 gene fragment 1 F GTGGTCTCTAATGGTGGCTCATGAGA
GGAGG

19 PLL12 gene fragment 1 R GTGGTCTCTGATGAGAGAAATAGT TGTTG

20 PLL12 gene fragment 2 F GTGGTCTCGCATCACGACGAGGT TATGC

21 PLL12 gene fragment 2 R GTGGTCTCGGCATTGACCGTGAGC TGGTC

22 PLL12 gene fragment 3 F GTGGTCTCAATGCCGGCGTTTTCGG CGATC

23 PLL12 gene fragment 3 R GTGGTCTCACTTGCTAAAGAATGCT AAAC

24 PLL12 gene fragment 4 F GTGGTCTCGCAAGTTGGTATATCTCAA AAAC

25 PLL12 gene fragment 4 R GTGGTCTCTAAGCCTATGATCTCGTATG
GTGTGG

26 PLL12 3′utr F GTGGTCTCAGCTTTTTCATTATTGGTTCATA
GTTAC

27 PLL12 3′utr R GTGGTCTCAAGCGAAGGGAAATCCTGA
ATTGACTTG

PXY RNA in situ hybridisation

28 PXY F in situ AAGGATCCATCAGCAATAACCTCTCAGG
TGAAG

29 PXY R in situ AAGTCGACTGCATCCAACGTAATTTGGGA
TTTCAC

Sequences re shown in 5′–3′ orientation. Restriction enzyme sites are underlined,
Golden Gate recombination overhangs are shown in italics.

of Fiji (Schindelin et al., 2012). Digitalised coordinates were
measured, graphs were plotted, and Mann-Whitney U tests and
Student’s t tests were performed using standard functions in
matplotlib,1 Python 2.7, and Scientific Python.2

Microscopy and Staining
Expression of GUS reporters in stem tissue was performed as
described (Sieburth et al., 1998), stained tissue was observed
with a Leica S8APO stereozoom or Zeiss Axio Imager Z2.

1http://matplotlib.org
2http://www.scipy.org

Modified pseudo-Schiff propidium iodide (mPS-PI) staining was
performed before imaging samples with a Zeiss LSM780 confocal
microscope as described (Serrano-Mislata et al., 2015). Staining
with 0.04% Calcofluor was performed on Technovit sections for
5 min at room temperature.

To determine if xylem bundles in pll12 stems were continuous
and intact, 1 cm stem apices were stained with propidium
iodide (Banasiak et al., 2019) and examined using a Zeiss
Axiozoom V16 microscope.

Tissues for light microscopy were fixed in either 1%
glutaraldehyde in 0.05 M cacodylate buffer pH 7.2 or
formalin:acetic acid:ethanol (4:5:50), dehydrated in an ethanol
series and embedded in Technovit following the manufacturer’s
instruction. Sections were cut 5 µm thick with glass knives and
a Leica ultramicrotome UC7, stained with toluidine blue and
examined with a Zeiss Axio Imager Z2 microscope.

Stems for vibratome sectioning were prepared following the
protocol of Wang et al. (2014), sections were cut 25–30 µm thick
using a Leica VT1000S vibratome, stained with phloroglucinol-
HCl (Mitra and Loqué, 2014) and mounted on glass slides
following Speer’s modification (Speer, 1987).

RNA in situ Hybridisation Experiments
Stem apices of RPS5A:LhGR:opPLL12 plants were treated with
or without dexamethasone: all stem apices were fixed and
subsequently processed according to Rebocho et al. (2017). Serial
sections from control (mock-treated) and experimental (dex-
treated) samples were collected onto the same Poly-L-Lysine
coated slide. Duplicate slides were sandwiched together between
plastic spacers and loaded with either sense or antisense probes.
To generate specific digoxigenin-labelled riboprobes probes,
550 bp of PXY coding sequence was cloned using primers 28-
29 (Table 1) and BamH1/Sal1 ligated into pBluescript II KS9
(±). Antisense probes were PCR amplified using combinations
of M13R primer and the specific gene F primer, whilst sense
probes were amplified similarly using M13F and specific gene R
primers. Purified antisense and sense probes were obtained by
RNA transcription using the T3 and T7 promoters respectively
following the protocol of Rebocho et al. (2017).

Rhodamine B Uptake
Col and pll12 plants grown to the same developmental stage
(3–5 flowers/siliques) were removed from their pots and very
gently washed under running tap water to remove soil from the
root balls before blotting dry with absorbent paper towels. Roots
were then threaded through holes cut into a disc of polystyrene
foam and the plants floated in a glass beaker containing 50 ml
of 0.25% rhodamine B (w/v) so that the roots were immersed in
the solution. Batches of 3–4 Col and pll12 plants were incubated
simultaneously under a 6 h light-8 h dark-6 h light regime at
16◦C in a Sanyo cabinet. The following day, excess dye was
rinsed off the roots which were then blotted dry and the plants
photographed and stem samples collected. All but the smallest
flower buds were removed before the apical 1 cm and basal 1 cm
of stem above the rosette were isolated, frozen in liquid nitrogen
and stored at−70◦C. Individual stem samples were ground up in
400 µl protein extraction buffer (100 mM HEPES pH 7.5, 5% v/v
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glycerol, 50 mM KCl, 5 mM EDTA, 0.1% v/v Triton X-100, 1 mM
DTT and one Complete EDTA-free protease inhibitor cocktail
tablet/50 ml buffer) and rotated at 4◦C for 1 h to extract soluble
proteins and the rhodamine B dye. After a 10 min centrifugation
at 12,000 g to pellet insoluble material, 100 µl aliquots of the
extracts were collected into wells of a 96-well microtitre plate and
assayed spectrophotometrically at A550nm; dye concentrations
were calculated against a rhodamine B standard curve. Soluble
proteins were isolated from the extracts by methanol-chloroform
precipitation and the rhodamine B removed by methanol
washes, protein pellets were then resuspended in 100 µl of
protein extraction buffer and protein concentrations calculated
by Bradford reactions.

Quantitative Reverse
Transcription-Polymerase Chain
Reaction
mRNA levels were measured by quantitative reverse
transcription-polymerase chain reaction (qRT-PCR) as published
(Schiessl et al., 2012), with primers 8–11 listed in Table 1.

RESULTS

Genes annotated as belonging to the pectin lyase superfamily
are enriched among candidate targets of RPL (Bencivenga
et al., 2016; Supplementary Table 1); among these, PLL12
(AT5G04310) showed clear binding to RPL in three ChIP-
seq biological replicates, but in none of the negative controls

(Supplementary Figure 1). Furthermore, PLL12 expression was
located specifically in vascular cell types in a root transcriptomic
atlas (Brady et al., 2007) and was associated with vascular
differentiation in vitro (Kondo et al., 2016). Based on these
data, we hypothesised that PLL12 might have a role in cell
wall modification during vascular development, in addition
to the previously described function in stomatal guard cells
(Chen et al., 2021).

To confirm the PLL12 expression during vascular
development, we used the GUS reporter fused to the complete
PLL12 gene. Previous reporter genes using GUS fused to
2 kb of the putative PLL12 promoter gave weak and variable
expression (Sun and Van Nocker, 2010) or suggested widespread
expression (Chen et al., 2021). Our ChIP-seq data, however,
indicated RPL binding to intron 3 of PLL12 (Supplementary
Figure 1), raising the possibility that regulatory sequences have
been missed in previous constructs. To include all potential
regulatory sequences, we used a genomic fragment that fully
complemented the pll12 mutation (see below), with GUS fused
in frame after the last exon of PLL12. In nine independent lines,
this pPLL12:PLL12-GUS reporter was expressed in stomata and
throughout the vasculature of seedlings (Figure 1). In both the
root and in the inflorescence, expression initiated close to the
apical meristem, indicating that PLL12 begins to function during
early stages of vascular development. Cross-sections of the stem
showed that within the vascular strands, PLL12 was expressed
primarily in the phloem. This localised expression pattern was
in agreement with the reported role of PLL12 in stomatal guard
cells (Chen et al., 2021) and with reports of phloem-specific

FIGURE 1 | PLL12 is expressed in the stem phloem. (A,B): pPLL12:PLL12:GUS seedling (A) and inflorescence apex (B) stained for GUS and cleared with chloral
hydrate, showing GUS activity in the vasculature (arrows); in panel (A), note also the dotted signal on cotyledons due to expression in stomatal guard cells. Bars:
1 cm (A), 500 µm (B). (C–E): Cross-section of the inflorescence stem showing pPLL12:PLL12:GUS expression in phloem cells; (C): overview of a stem section, with
GUS staining in part of the vascular bundles (arrows); (D): calcofluor-stained section through a single vascular bundle, with the phloem, cambium and xylem regions
enclosed in green, magenta, and blue lines, respectively; (E): same section as in panel (D), showing GUS staining specifically in the phloem (arrow); bars: 50 µm.
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PLL12 expression in the root (Brady et al., 2007; Kalmbach et al.,
2022) and during in vitro differentiation (Kondo et al., 2016).

We next analysed the function of PLL12, focussing especially
on vascular development. For this, we used two independent
T-DNA mutant alleles, pll12-1 (SAIL 1207_A07) (Chen et al.,
2021) and pll12-2 (SAIL 1149_C06). As reported, pll12-1 had
undetectable PLL12 mRNA (Chen et al., 2021), and the same
was seen for pll12-2 (Supplementary Figure 2). Both alleles
caused similar phenotypes: the mutants were dwarf and late
flowering, with slow stem growth (Figure 2). Complementation
with full genomic fragments (from 1,884 bp upstream of the
start codon to 702 bp downstream of the stop codon) confirmed
that the pll12 mutations caused these phenotypes, and that the
selected genomic region contained all regulatory and coding
regions required for function (Figure 2). Because the mutants
had comparable and fully recessive phenotypes, from this point
on we used the previously characterised pll12-1 mutant.

The vascular pattern of pll12-1 appeared normal and
was uninterrupted in leaves and in the inflorescence apex

FIGURE 2 | pll12 mutants have reduced growth and slow stem elongation.
(A): Adult wild type (Col-0) and two different pll12 mutant alleles grown side by
side for 40 days. Both mutant lines bolted late and produced slow growing
stems with few lateral organs. Scale bar: 2 cm. (B): Relative growth rate (fold
increase in length over 4 days) in Col-0 and pll12 mutants measured at
different starting positions along the stem. The stem elongates faster nearer to
the apex and in the mutants this differential growth was significantly reduced.
(C): A genomic pPLL12:PLL12 construct transformed into both mutant lines
rescued the wild type phenotype. Scale bar: 2 cm.

(Supplementary Figure 3). The vascular bundles contained all
the expected cell types in their correct positions, but appeared
smaller, especially in the mature region of the inflorescence stem
(Figure 3). To detect growth defects, we measured the size
and cell numbers in different regions of the stem vasculature.
To compensate for differences in the growth rate between the
mutants and the wild type, stems were collected when the fifth
flower had matured (i.e., after a longer period of growth in
pll12-1). Within stems at this stage, we collected sections at
two positions: at the base of the fifth flower, corresponding
to the immature region of the stem, which is still elongating
(less than 1 cm of the apex, see Figure 2), and near the first
silique, where stem elongation is complete and the vascular
bundles have started to deposit secondary cell walls (more than
2 cm from the apex, Figure 2). In pll12-1, the size of immature
vascular strands was not different from the wild type (number
of cells per cross-section, mean ± SD: 101.4 ± 19.9 in wt,
98.7 ± 15.9 in pll12-1, Supplementary Table 2). However, as
the stem matured, differences became clearer (213.9 ± 27.7
in wt, 142.4 ± 33.5 in pll12-1, Supplementary Table 2) and,
contrary to the expectation based on the expression pattern,
were not specific to the phloem. Instead, all three regions
of the vascular strand (phloem, cambium and xylem) had
reduced growth, measured either by cross-sectional area or cell
numbers (Figures 3D,F–H). The region most affected was the
cambium, which already had significantly fewer cells in the
mutant before differences were detectable in the phloem and
xylem (Figures 3G,H). Furthermore, the cambium was the only
region with no detectable growth (measured as either cross-
sectional area or by number of cells in cross-section), in contrast
to the phloem and xylem, which grew at about half the wild-
type rate. These results showed that PLL12 is not essential for
the initial vascular patterning or differentiation but is required
for subsequent growth of all regions of the vascular strand,
particularly the cambium.

To reveal physiological consequences of the histological
defects described above, we investigated whether pll12-1 affected
phloem and xylem function. Using carboxyfluorescein diacetate
(CFDA) as a tracer, reduced phloem transport from hypocotyls
to roots was shown in pll12 seedlings (Kalmbach et al.,
2022). Although we were not able to adapt this method to
measure phloem transport in the inflorescence stem, it would be
reasonable to assume that a similar defect would occur in the stem
vasculature. As an indirect method to detect defects in phloem
function in the stem, we assayed for high starch levels after a
dark period, which are typically seen in plants with compromised
sugar transport (Barratt et al., 2010; Bezrutczyk et al., 2018).
Consistent with a defect in sugar export, staining with Lugol’s
Iodine reagent revealed a strong accumulation of starch in the
cortex of the inflorescence stem in pll12-1 compared to the wild
type (Figure 4). To assess xylem function, we measured transport
of rhodamine B dye from roots to the inflorescence apex. Both
visually (Figures 4E,F) and based on the dye concentration in
the apex (normalised to protein concentration, Figure 4G), the
mutant showed a clear reduction in transport through the xylem.
We conclude that the reduced growth of vascular bundles in pll12
was accompanied by a decrease in both sugar and water transport,
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FIGURE 3 | PLL12 is required for growth of the cambium and vascular bundles in the stem. (A,B): overview of wt (A) and pll12-1 (B) inflorescence stems, with the
position of the most mature flower before organ abscission (f) and of the oldest silique (s) indicated; scale bars: 1 cm. (C–F): calcofluor-stained cross-sections of
vascular bundles of wt (C,D) and pll12-1 (E,F) stems, at the position of the most mature flower (C,E) or of the oldest silique (D,F); the phloem, cambium and xylem
regions are enclosed in green, magenta, and blue lines, respectively; scale bars: 50 µm. (G,H): boxplots of the area (G) and cell number (H) within phloem, cambium
and xylem regions selected as in (C–F), comparing vascular bundles at positions f and s in wt and pll12-1 stems; * and ns indicate significant and non-significant
differences in pairwise comparisons (p < 0.05, Mann-Whitney test); Supplementary Table 2 contains a full statistical analysis, including numbers of replicates,
p-values and power analysis.

which might be the cause of the general inhibition of growth in
the mutant. Similarly, slow growth of the cambium and xylem in
the mutant might be an indirect consequence of a reduced sugar
supply, caused by a primary defect in the phloem. Alternatively,
PLL12 might be required to produce a phloem-derived signal that
promotes development of the cambium and xylem.

To test whether increased or ectopic PLL12 expression might
be sufficient to promote cambium and xylem development,
we generated plants in which PLL12 transcription could be
induced ubiquitously. To do this, we used an pOp:PLL12
construct expressed in an RPS5A:LhGR background; when tissues
are exposed to dexamethasone, this system induces PLL12
expression under the widely expressed RIBOSOMAL SUBUNIT
5A promoter (Supplementary Figure 4). After inflorescence
tips were treated five times at 2-day intervals, dexamethasone-
treated plants showed variable inhibition of growth, ranging from
short internodes to death of the shoot apex (Figures 5A–C).
These phenotypes were associated with different levels of lignin
deposition in the cortex and vascular bundles within 1–2 mm
below the shoot meristem (Figures 5D–F). In apices with a
mild phenotype, it was possible to trace the earliest deposition
of ectopic lignin to strands of cells leading basally away from
the shoot apical meristem—this position is typically occupied by
procambial strands in the wild type (Supplementary Figure 5),
suggesting that cells at early stages of vascular differentiation were
particularly sensitive to ectopic PLL12 expression.

Ectopic lignification is one of the responses elicited by cell
wall fragments during pathogen attack (Ferrari et al., 2013),

so lignification could have been a defence response activated
by pectin fragments produced when PLL12 was overexpressed.
However, closer examination of the dexamethasone-treated
apices revealed cortex cells with lignification in a pitted pattern
and openings between adjacent cells (Figure 5I), similar to
root metaxylem and to ectopic metaxylem cells induced by
the regulators of xylem differentiation, VND6 and SND5
(Figures 5G–I; Kubo et al., 2005; Zhong et al., 2021). Pitted
cells were also seen within the vascular bundles of plants with
a mild phenotype after PLL12 induction, but not in uninduced
controls (Supplementary Figure 5). Further supporting the idea
that ectopic PLL12 expression re-directed cortex cells to vascular
development, ectopic expression of the regulator of cambium
development, PXY, was detected by in situ hybridisation after
PLL12 induction (Figure 5N). Conversely, the normal PXY
expression in the cambium of the wild type was disrupted
in the disorganised vascular bundles seen after dexamethasone
treatment (Figures 5J–O). Together with the inhibition of
cambium and xylem growth in the pll12-1 mutant (Figure 3),
the results above supported a role for PLL12 in the regulation
of cambium and xylem development, although the experiments
could not distinguish whether PLL12 promoted cambium and
xylem identity sequentially, or separately in different cells.

The stronger effects of PLL12 overexpression close
to the meristem and in cortex cells suggested that the
response to a putative PLL12-produced signal depended on
developmental stage and cell type. To study the effect of ectopic
PLL12 in a different context, we also looked at seedlings.
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FIGURE 4 | PLL12 is required for both phloem and xylem function. (A,B):
inflorescence stems of wt (A) and pll12-1 (B) stained with Lugol’s solution,
showing accumulation of starch in the mutant; scale bars: 1 cm. (C,D):
transversal sections of wt (C) and pll12 (D) stems stained with Lugol’s
solution, showing accumulation of starch grains in cortex cells (co) in the
mutant; scale bars: 50 µm. (E,F): wt (E) and pll12-1 (F) plants grown for 20 h
with their roots immersed in rhodamine B solution; the dye was transported
efficiently throughout the wt inflorescence, whilst the mutant stems
transported far less dye to the apex; insets show the inflorescence apices at a
higher magnification; scale bars: 1 cm (main panels), 250 µm (insets). (G):
Boxplots showing Rhodamine content (normalised to protein concentration to
correct for differences in tissue mass) in the apical and basal 1 cm segments
of wt (magenta) and pll12-1 (green) stems; * indicate significant differences
(p < 0.05, Mann-Whitney test; full statistical analysis in Supplementary
Table 2).

RPS5A:LhGR pOp:PLL12 plants were grown on medium without
dexamethasone until the first pair of leaves emerged, then the
seedlings were moved on to dexamethasone or mock treatment
plates. Over the subsequent 7 days, a gradient of phenotypes
became evident, ranging from small rosettes to stunted seedlings
with severely deformed leaves (Figure 6), although root growth
was initially unaffected (Supplementary Figure 6). In the most
extreme cases, leaf blades failed to expand and became chlorotic
(Figures 6D,E). Confocal imaging of these leaves stained with
mPS-PI showed that the veins had irregular thickness, were
discontinuous and showed cambium-like cell divisions along
the leaf vasculature (Figures 6F–L). Thus, although ectopic
PLL12 only appeared to induce extensive lignification in the
inflorescence apex, it interfered with the differentiation of
vascular cells both in the inflorescence and in seedlings.

DISCUSSION

PLL12 has been shown to function in stomatal guard cells, where
it affects cell wall properties and the speed of stomatal opening
and closure (Chen et al., 2021). Here, we show that PLL12 is

also required for the development and function of the stem
vasculature. Loss of PLL12 function did not have obvious effects
on patterning or cell differentiation, but inhibited growth of
vascular bundles, with the earliest effects visible in the fascicular
cambium, followed by reduced cell numbers in both phloem and
xylem. The reduced cell numbers throughout the stem vascular
bundles were accompanied by reduced transport of both water
and sugar. The simplest interpretation of these phenotypes is
that PLL12 function is limiting for the activity of the fascicular
cambium, and consequently for the enlargement of vascular
bundles during stem growth.

Despite the reduced growth across the vasculature
(Figures 3G,H and Supplementary Table 2), PLL12 expression
was specific to the phloem, in line with previous reports (Brady
et al., 2007; Kalmbach et al., 2022). Thus, the effects on cambium
and xylem growth were likely indirect consequences of a primary
role of PLL12 in the phloem. In support of a phloem function
for PLL12, a recent pre-print reports that pll12-1 has a defect
in long-distance phloem transport, attributed to subtle changes
in the formation of sieve plates between phloem elements
(Kalmbach et al., 2022). However, defects in long-distance sugar
transport would not readily account for the disproportionate
effect of pll12-1 on the growth of established vascular bundles,
in comparison to earlier stages. Moreover, a role exclusively
in sieve plate formation would not easily explain why PLL12
overexpression induced ectopic cambium and xylem features and
disrupted vascular differentiation in seedlings. To explain both
loss- and gain-of-function phenotypes, and taking into account
the phloem-specific expression, we propose that in addition
to the reported role in sieve element development (Kalmbach
et al., 2022), PLL12 activity influences an intercellular signal that
coordinates development across vascular tissues.

PLL12 contains a canonical pectate lyase C domain, with
conserved residues implicated in catalysis, Ca++ binding and
exocytosis (Chen et al., 2021), so this protein is likely to cleave
demethylesterified pectin within the cell wall. Accordingly,
immunolocalisation showed increased levels of calcium-
crosslinked pectin in pll12-1 stomatal walls (Chen et al.,
2021) and mutation of the predicted pectate lyase catalytic
site abolished the ability of PLL12 to complement the mutant
(Kalmbach et al., 2022). Furthermore, PLL12 is homologous to
a Zinnia PLL protein for which pectate lyase activity has been
demonstrated in vitro (Domingo et al., 1998). Pectin cleavage
would be expected to release oligogalacturonides (OGs), which
bind to the WAK1 receptor and activate the cell wall integrity
and pathogen defence signalling pathways, whose downstream
responses include lignification (Caño-Delgado et al., 2003;
Brutus et al., 2010; Ferrari et al., 2013). However, the induction
of metaxylem-like pitted cell walls, combined with ectopic PXY
expression, suggested that lignification after ectopic PLL12
expression was an aspect of vascular differentiation, rather than
a generic defence or cell wall stress response.

Thus, the expected biochemical function of PLL12, together
with its non-cell-autonomous effects and its ability to ectopically
induce cambium and xylem identity, raise the possibility that
a cell wall-derived signal participates in the regulation of
vascular differentiation. The most straightforward candidate
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FIGURE 5 | PLL12 over-expression induces ectopic xylem differentiation and expression of a cambium marker. (A–C): Mock-treated RPS5A:LhGR,pOp:PLL12 (A)
looked normal, whilst induction of PLL12 expression with dexamethasone resulted in mild [(B), shortened internodes] to severe effects [(C), with death of the stem
apex (arrow) and lateral organs]; scale bars: 2 mm. (D–F): Mock-treated (D) or dexamethasone-treated (E,F) inflorescence apices of RPS5A:LhGR, pOp:PLL12
plants stained with phloroglucinol, showing mild (E) to severe (F) lignification; scale bars: 400 µm. (G–I): Confocal images of RPS5A:LhGR:PLL12 stem apices
stained with mPS-PI after mock-treatment (G) or dexamethasone treatment (H,I); c, v, and p indicate cortex, vasculature and pith; (I) higher magnification of stem
section similar to panels (H), with arrows indicating cells with the pitted walls characteristic of xylem elements and the top left arrow marking an opening between
adjacent pitted cells. Scale bars: 50 µm (G,H), 20 µm (I). (J–O): In situ hybridisation experiments showing PXY expression after mock (J,L,M,O) or dex-treatment
(K,N) of RPS5A:LhGR:PLL12 stem apices. All sections were incubated with PXY anti-sense probe except (L,O) (sense probe controls). (J–L) calcofluor images of
the corresponding images shown in panels (M–O) respectively; in panel (J), phloem, cambium and xylem regions are enclosed in green, magenta and blue lines,
respectively. The normal PXY expression pattern in the cambial and early xylem precursor cells [arrows in panels (J,M)] is disrupted after dexamethasone treatment,
which also induces strong PXY expression in a subset of cortical cells [arrows in panels (K,N)]. Bars: 50 µm.

signal would be OGs, although their developmental roles remain
speculative (Seifert and Blaukopf, 2010). Supporting a link to
xylem differentiation, genes that respond early to OG treatment
(Moscatiello et al., 2006) included SND5, which is part of the
transcriptional network controlled by PXY (Smit et al., 2020) and
encodes a NAC domain protein that regulates secondary wall
deposition in the xylem (Zhong et al., 2021). However, indirect

effects on other signalling pathways are also possible. External
application of OGs has been shown to interfere with auxin
signalling (Branca et al., 1988; Ferrari et al., 2013). However, the
phenotypes caused by ectopic PLL12 activation were different
from those seen in plants with an overall inhibition of auxin
signalling; for example, there was little effect on roots, where
auxin plays a central role (Israeli et al., 2020). The interrupted
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FIGURE 6 | Over-expression of PLL12 disrupts the development of leaf vasculature. (A–E): pRPS5A:LhGR pOp:PLL12 plants growing for 4 days on medium
containing dexamethasone (B,D,E) showed reduced growth and leaf chlorosis, in contrast to mock-treated plants (A,C); scale bars: 5 mm (A,B), 2 mm (C–E).
(F–H): Low magnification images of mPS-PI-stained leaves from an uninduced control (F) and two seedlings grown for 4 days on dexamethasone-containing
medium (G,H); arrows indicate interrupted, uneven vasculature seen after PLL2 induction; scale bars: 200 µm. (I–L): Confocal images of leaf veins from seedlings
comparable to panels (A–H), grown without (I,K) or with dexamethasone (J,L); panels (K,L) are higher magnifications of panels (I,J); arrows indicate cell divisions
oriented parallel to the veins, in a cambium-like pattern; scale bars: 50 µm.
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veins seen after ectopic PLL12 induction in cotyledons and leaves
are also reminiscent of phenotypes seen after application or
overexpression of the PXY ligand CLE41/44 (Hirakawa et al.,
2008), or in mutants that affect phosphoinositide-regulated
vesicle traffic, which may regulate auxin transport (Sieburth
et al., 2006; Carland and Nelson, 2009). In the future, it will be
interesting to explore how PLL12 function interacts with these
signalling pathways.
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