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Salvia miltiorrhiza, a medicinal and edible plant, has been extensively applied to treat

cardiovascular diseases and chronic hepatitis. Cadmium (Cd) affects the quality of S.

miltiorrhiza, posing serious threats to human health. To reveal the metabolic mechanisms

of S. miltiorrhiza’s resistance to Cd stress, metabolite changes in S. miltiorrhiza roots

treated with 0 (CK), 25 (T1), 50 (T2) and 100 (T3) mg kg−1 Cd by liquid chromatography

coupled to mass spectrometry (LC–MS/MS) were investigated. A total of 305metabolites

were identified, and most of them were amino acids, organic acids and fatty acids,

which contributed to the discrimination of CK from the Cd-treated groups. Among

them, S. miltiorrhiza mainly upregulated o-tyrosine, chorismate and eudesmic acid in

resistance to 25mg kg−1 Cd; DL-tryptophan, L-aspartic acid, L-proline and chorismite

in resistance to 50mg kg−1 Cd; and L-proline, L-serine, L-histidine, eudesmic acid, and

rosmarinic acid in resistance to 100mg kg−1 Cd. It mainly downregulated unsaturated

fatty acids (e.g., oleic acid, linoleic acid) in resistance to 25, 50, and 100mg kg−1

Cd and upregulated saturated fatty acids (especially stearic acid) in resistance to

100mg kg−1 Cd. Biosynthesis of unsaturated fatty acids, isoquinoline alkaloid, betalain,

aminoacyl-tRNA, and tyrosine metabolism were the significantly enriched metabolic

pathways and the most important pathways involved in the Cd resistance of S.

miltiorrhiza. These data elucidated the crucial metabolic mechanisms involved in S.

miltiorrhiza Cd resistance and the crucial metabolites that could be used to improve

resistance to Cd stress in medicinal plant breeding.
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INTRODUCTION

Salvia miltiorrhiza Bge., a well-known plant used as a medicinal
and food product, belongs to the Salvia species (Labiatae)
and has a wide range of ecological adaptations (Wu, 1977).
Its roots contain many metabolites (e.g., phenolic acids,
tanshinones, flavonoids, lipids, carbohydrates, carboxylic acids
and terpenoids), chiefly phenolic acids, carbohydrates and
tanshinones (Tong et al., 2022). Phenolic acids and tanshinones,
which are water-soluble active substances and fat-soluble active
substances, respectively, are two groups of pharmaceutical
components (Commission, 2020). They can promote blood
circulation to remove blood stasis, cool blood to remove
carbuncles, and clear heart heat to relieve restlessness (Su et al.,
2015). Due to their pharmacological actions, they have been
widely used in the treatment of various diseases, including
coronary heart disease, angina pectoris, tachycardia, and chronic
hepatitis (Li et al., 2009; Shi et al., 2019). In addition to tablets,
dripping pills, capsules, granules, injections, oral liquids, and
sprays, they can be prepared as a vinum, tea or medicined diet
(Su et al., 2015; Tan, 2017). Currently, many studies have been
conducted on S. miltiorrhiza, such as exploring and optimizing
its cultivation modes, improving the contents of its active
components, and uncovering its pharmacological effects (Shi
et al., 2019; Fu et al., 2020; Yan et al., 2020; Lv, 2021). These
findings lay a theoretical foundation for the study of ensuring S.
miltiorrhiza safety based on metabonomics.

Cd, along with arsenic (As), lead (Pb), mercury (Hg) and
chromium (Cr), is a toxic nonessential metal and it accumulates
in organisms with a long half-life of approximately 25-30 years
(Kabata and Pendias, 1992; Genchi et al., 2020b). Over the past
century, various human activities have resulted in environmental
Cd pollution (Rahimzadeh et al., 2017; Genchi et al., 2020a,b).
Characterized by strong bioaccumulation, high bioavailability,
and strong biotoxicity, Cd can cause the wilting of leaves, the
browning of roots, and even the death of plant cells, leading
to a decline in plant yield and quality (Sarangthem et al., 2011;
Wang et al., 2019; Grajek et al., 2020). Cd accumulates in the
human body through the food chain and causes irreversible
damage (Valverde et al., 2001; Satarug et al., 2003; Filipič, 2012).
Therefore, plant Cd contamination has attracted much attention
from researchers.

With the aggravation of heavy metal pollution in soil, heavy
metals (e.g., Cd, As, Pb, Hg) have become important pollutants
in traditional Chinese medicine (TCM), which would restrain
the sustainable development of the TCM industry (Meng et al.,
2009; Yan et al., 2012). According to previous studies, Cd stress
could inhibit growth, accumulate Cd residue and affect secondary
metabolites of S. miltiorrhiza roots (Zhang et al., 2013; Wei et al.,
2020). However, little has been published on the Cd-resistance
mechanisms of S. miltiorrhiza based on metabolomics.

In the present study, taking S. miltiorrhiza seedlings under
different levels of Cd treatment as the research object, metabolites
of S. miltiorrhiza roots were determined by LC–MS/MS in a pot
experiment. The objective of this study was to investigate the
main metabolites of S. miltiorrhiza in resistance to Cd under
different levels of Cd stress and how S. miltiorrhiza resists

Cd stress based on the metabolome. This study provides deep
knowledge of the response to Cd stress in S. miltiorrhiza and lays
a foundation for further revealing the Cd resistance mechanisms
of S. miltiorrhiza, which can be used as a reference by plant
breeders and forest managers.

MATERIALS AND METHODS

Plant Materials
The S. miltiorrhiza seedlings used in the study were purchased
from the plantation of S. miltiorrhiza in Pingyi County, Shandong
Province (35◦30’ N, 117◦35’ E). The area has a temperate seasonal
climate with an average elevation of 87.9m. The annual mean
precipitation, air temperature, and average relative humidity are
836.0mm, 14.3 ◦C and 67.1%, respectively (Lu, 2020; Tian et al.,
2021). Healthy seedlings with approximately 4 basal leaves were
cultivated from the upper and middle parts of the annual root.
They were identified as S. miltiorrhiza Bge. By Associate professor
XiaoyunWang from the Research Center for Traditional Chinese
Medicine Resources and Ethnic Minority Medicine of Jiangxi
University of Chinese Medicine (JXUCM).

Healthy and disease-free seedlings were selected and planted
in Shennong garden of JXUCM. The physical and chemical
properties of the topsoil (0–20 cm) in the planting area of
S. miltiorrhiza in Shennong garden were as follows: total nitrogen
0.30 g kg−1, total phosphorus 0.28 g kg−1, total potassium 27.15 g
kg−1, available nitrogen 0.01 g kg−1, available phosphorus 0.01 g
kg−1, available potassium 0.08 g kg−1, organicmatter 1.97 g kg−1,
pH 4.6, and total Cd 0.92mg kg−1. The total Cd content was
lower than the critical value of Cd (1.0mg kg−1) in soils, which
could ensure the normal growth of plants.

The indicated amounts of cadmium chloride hemi
(pentahydrate) (CdCl2·2.5H2O) were mixed well with sieved
topsoils from Shennong garden. Based on the study of Zhang
et al. (2013) and Wei et al. (2020), four Cd treatment levels were
set in the present study as follows: 0 (CK), 25mg kg−1 (T1),
50mg kg−1 (T2), and 100mg kg−1 (T3). Subsequently, 2 kg of
the soils were placed a flower pot (16 × 17 cm) and incubated
for 30 d. Then, the S. miltiorrhiza seedlings, which had grown in
Shennong garden for 30 d, were transplanted into the pots, and
each pot included one seedling. There were three repetitions at
each level and three seedlings in each repetition. After 15 d of
treatment, root samples were collected, washed with ultrapure
water, quickly frozen with liquid nitrogen, and transferred to
−80◦C until further metabolomic analysis. Voucher specimens
(No. DS-001) were deposited in a public herbarium in the
Research Center for Traditional Chinese Medicine Resources
and Ethnic Minority Medicine of JXUCM.

Metabolite Extraction
A 25mg fresh sample in a 500 µL mixture of methanol and
water (3:1, v/v) (including an isotope-labeled internal standard
mixture) was ground at 35Hz for 4min and lysed in an
ultrasonic water bath for 5min. After sitting at−40◦C for 1 h, the
samples were centrifuged at 12000 rpm for 15min at 4◦C. The
supernatant was stored at −80◦C until liquid chromatography-
tandem mass spectrometry (LC–MS/MS) analysis. Quality
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control (QC) samples were prepared with a mix of the
supernatants from all samples.

LC–MS/MS Analysis
Ultrahigh-performance liquid chromatography and quadrupole
orbital well hybrid TM mass spectrometry coupled with an
Acquity UPLC HSS T3 liquid chromatographic column were
conducted to separate the target compounds.

The chromatographic conditions were as follows: an Acquity
UPLC HSS T3 liquid chromatographic column (2.1mm ×

100mm, 1.8µm) was used; the column temperature was 35◦C;
mobile phase A and phase B were the aqueous phase (containing
5 mmol L−1 ammonium acetate and 5 mmol L−1 acetic acid)
and acetonitrile, respectively; gradient elution was carried out
(0–0.7min, 1% B; 0.7–9.5min, 1–99% B; 9.5–11.8min, 99% B;
11.8–12.0min, 99–1% B; 12–14.8min, 1% B); the flow rate was
0.5mL min−1 and the injection volume was 3 µL.

A Thermo Q Exactive HFX mass spectrometer was used
to collect the primary and secondary mass spectrometry
data of the samples under the control of Xcalibur 4.0.27
(Thermo Scientific). The detailed parameters are presented in
Supplementary Table S1.

Metabolite Data Acquisition
The raw data were converted into mzXML format with the
software ProteoWizard (https://proteowizard.sourceforge.io/),
and the recognition, extraction, alignment and integration of the
peaks was conducted with the R package (XCMS as the core).
Then, the MS2 database was applied for metabolite annotation.
The cutoff for annotation was set at 0.3. Data with no definite
substance name and no spectral ratio or substances with a
missing quantity greater than 50% in the comparison group
samples were filtered and removed. For substances with amissing
quantity less than 50%, the K-nearest neighbor (KNN) algorithm
was used to simulate the missing value. Finally, the total ion
current (TIC) or internal standard (IS) of each sample was used
to normalize the data, and 305 metabolites were identified for
further analysis.

Data Analysis
Unsupervised principal component analysis (PCA) was
performed to analyze the distribution of root samples in CK,
T1, T2 and T3. Supervised orthogonal partial least squares-
discriminant analysis (OPLS-DA) was used to distinguish
the metabolic profiles of the roots between the CK and each
Cd-added group (T1, T2 and T3). To test the OPLS-DA model,
a cross-validation residual variance test (CV-ANOVA test)
and 200 permutation tests were carried out. The model with
p < 0.05 in the CV-ANOVA test or R2 > 0.7 and Q2 > 0.4 in the
permutation test was reliable (Yuan et al., 2020). The variable
importance in projection (VIP) was vital for explaining the
data of the OPLS-DA model. The discriminating metabolites
were defined based on a VIP value above 1 and a p value below
0.05 (Yuan et al., 2020). Metabolic pathway analysis of these
discriminating metabolites was conducted. Meanwhile, one-way
ANOVA was performed to calculate the variability in the relative
contents of the metabolites.

Multivariate statistical analysis (PCA and OPLS-DA) and
validation of the OPLS-DA model were carried out with SIMCA-
P 14.1 (Umetrics, Sweden). Univariate statistical analysis and
one-way ANOVA were conducted with IBM SPSS Statistics 20.0
(SPSS, Inc., IBM Corp, New York, USA). The metabolic pathway
analysis was carried out with the online software MetaboAnalyst
4.0 (http://www. Metaboanalyst.ca/faces/ModuleView.xhtml).
The heatmap was drawn by online software (https://matrix2png.
msl.ubc.ca/bin/matrix2png.cgi). The Venn diagrams were drawn
by Venny 2.1 (https://bioinfogp.cnb.csic.es/tools/venny/index.
html).

RESULTS

Metabolites Responding to Different Levels
of Cd Stress
By observing the differences in the peak height of the internal
standard between the QC samples and the peak conditions of
the internal standard in the blank samples, this study determined
whether the instrument was stable and whether there were
residues in the detection process. Supplementary Figure S1

shows that both the retention time and the response strength
of the internal standard in the QC samples were stable, and
the data acquisition stability of the instrument was excellent.
Supplementary Figure S2 shows that no obvious peaks other
than the internal standards were detected in the blank samples.

The metabolite profiles of the roots were investigated using
an untargeted global metabolomic platform with LC–MS/MS.
A total of 305 metabolites were annotated and quantified
in S. miltiorrhiza roots with different levels of Cd treatment
(Supplementary Table S2), which could be categorized into
seven major groups based on their molecular structure: amino
acids, organic acids, fatty acids, ketones, sugars, amides, and
others (Figure 1C; Supplementary Table S3).

There were 136 upregulated metabolites and 169
downregulated metabolites in T1 and 141 upregulated
metabolites and 164 downregulated metabolites in both T2
and T3 (Figures 1A,B). Proportions of the metabolites in
the roots changed in response to Cd addition (Figure 1C;
Supplementary Table S3). Compared to CK, the total content of
amino acids increased by 0.2-fold in T1, approximately 0.9-fold
in T2 and T3 (p < 0.05), and the total content of fatty acids
decreased by 87% in T1, 59% in T2 and 75% in T3 (p < 0.05).
There were no significant differences in the total content of
organic acids between CK and each Cd-added group (Figure 1;
Supplementary Table S3).

Discriminating Metabolites in Roots
Between CK and Each Cd-Added Group
According to the results of the PCA, root samples from CK could
be separated from the Cd-treated groups (Figure 2). Based on
the reliable OPLS-DA model with a p value below 0.05 (Figure 3;
Supplementary Figure S3A), S. miltiorrhiza roots in T1 and CK
could be distinguished by metabolites with major contributions
from amino acids, organic acids, and fatty acids (Figure 4):
174 discriminating metabolites were selected, 56 of which were
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FIGURE 1 | Variation in the total metabolites in S. miltiorrhiza roots under different levels of Cd stress. (A,B) represent changes in the total number of upregulated and

downregulated metabolites in S. miltiorrhiza roots with different levels of Cd treatment, respectively; different colors in (A,B) represent different sources of upregulated

metabolites and downregulated metabolites, respectively; (C), Total relative amino acid, organic acid, fatty acid, ketones, sugar, amide and others content in

S. miltiorrhiza roots; Different lowercase letters on the columns of the same metabolite indicate significant differences within each treatment in the roots (p < 0.05);

vertical bars above the columns indicate the standard error of each mean (mean ± SE).

upregulated and 118 of which were downregulated. Among them,
most fatty acids (especially α-linolenic acid, linoleic acid (C18:2),

and oleic acid (C18:1)) and organic acids were downregulated,
with chorismate and o-tyrosine contributing the most to the
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FIGURE 2 | Score plots of principal component analysis (PCA) for metabolomic data from S. miltiorrhiza roots under different levels of Cd stress. PC1, the first

principal component; PC2, the second principal component. The ellipse indicates Hotelling’s T2 (95%); (A–C) stand for score plots PCA of metabolite data obtained

from LC–MS/MS in S. miltiorrhiza roots of T1 (25 mg/kg Cd group) and CK (control group), of T2 (50 mg/kg Cd group) and CK, and of T3 (100 mg/kg Cd group) and

CK, respectively.

upregulation of organic acids and amino acids in S. miltiorrhiza
roots, respectively.

Similarly, based on the significant OPLS-DA model
(Supplementary Figures S3B,C), the root samples could be
significantly distinguished by metabolites with the major
contributions from 161 metabolites (81 of them were
upregulated and 80 were downregulated) in T2 and CK
and from 191 metabolites (120 of them were upregulated and
71 were downregulated) in T3 and CK. Major contributors to
the differences were amino acids, organic acids, and fatty acids
(Figure 4): compared to CK, in T2, all of these amino acids
(especially DL-tryptophan, L-aspartic acid, and L-proline) were
upregulated, and most fatty acids (e.g., linoleic acid, oleic acid)
were downregulated, with chorismate contributing the most to
the upregulation of the organic acids (Figure 4); in T3, most of
the amino acids (especially L-proline, L-serine and L-histidine),
organic acids (especially eudesmic acid and rosmarinic acid) and
all of the saturated fatty acids (e.g., stearic acid (C18:0)) were
upregulated, and oleic acid was downregulated (Figure 4).

Metabolic Pathways Involving All
Discriminating Metabolites
The discriminating metabolites were annotated into the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database,
and 65 metabolic pathways were obtained (Figure 5A;
Supplementary Table S4). Among them, biosynthesis of
unsaturated fatty acids, isoquinoline alkaloid biosynthesis,
betalain biosynthesis, aminoacyl-tRNA biosynthesis, and
tyrosine metabolism were the significantly enriched metabolic
pathways (p < 0.05) (Figure 5B; Supplementary Table S4).
In addition, a metabolic map of the resistance process was
developed based on these results (Figure 6).

DISCUSSION

To the best of our knowledge, this study is the first to illustrate
how the medicinal and food plant S. miltiorrhiza resists abiotic
stress in terms of the metabolome. The discussions focused on
changes in the metabolic profiles of roots and the identification
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FIGURE 3 | Score plots of orthogonal projections to latent structures discriminant analysis (OPLS-DA) of metabolite data in S. miltiorrhiza roots. (A–C) stand for score

plots OPLS-DA of metabolite data obtained from LC–MS/MS in S. miltiorrhiza roots of T1 (25 mg/kg Cd group) and CK (control group), of T2 (50 mg/kg Cd group)

and CK, and of T3 (100 mg/kg Cd group) and CK, respectively.

of metabolites that played key roles in metabolic regulation under
different levels of Cd stress.

Global Responses of the Metabolome
Under Cd Stress
Our results clearly revealed that amino acids, organic acids
and fatty acids in S. miltiorrhiza roots played essential roles in
resisting Cd stress. As the basic components of proteins, amino
acids can participate in the regulation of ion transport and
nitrogen metabolism and play vital roles in resisting abiotic stress
in plants (Sharma and Dietz, 2006; Xu et al., 2012; Tian, 2021).
Organic acids are a class of compounds containing carboxyl
groups (excluding amino acids), most of which can combine
with metal ions or alkaloids (Kuang, 2017). Fatty acids and their
derivatives are essential energy stores and the main components
of membrane lipids (Chaffai et al., 2009; Liu et al., 2014; Li-
Beisson et al., 2016). Due to the important roles of these three
classes of metabolites in plant survival and stress resistance (Liu
et al., 2014; Panchal et al., 2021; Trovato et al., 2021), in this study,
the changes in the proportions of amino acids, organic acids, and
fatty acids were larger than those of the other metabolites in S.
miltiorrhiza roots under Cd treatment (Figure 1).

In comparison with CK, in T1, T2 and T3, the total
relative contents of the amino acids significantly increased (p <

0.05), the total relative contents of the fatty acids significantly
decreased (p < 0.05), and the total relative contents of the
organic acids presented no significant differences (Figure 1;
Supplementary Table S3). In disagreement with these results, in
Oryza sativa L. roots, Cd at a low content could promote the
production of amino acids and organic acids, and Cd at a high
content could inhibit the production of amino acids and organic
acids (Tang et al., 2016), while in agreement with our results,
there was a significant decline in the production of fatty acids in
Sedum plumbizincicola L. roots under Cd stress (Sun et al., 2020).
This might result from the fact that the plant metabolic response
to abiotic stress is affected by the stress modes, stress intensity,
and plant species (Hu and Xu, 2014; Zhang and Chen, 2021).

Amino Acids Play Vital Roles in Resisting
Cd Stress
As reported above, amino acids were the main contributors to
the differences in S. miltiorrhiza roots under different levels
of Cd stress (Figure 4). Well known as an abiotic and biotic
stress indicator, proline can function as a hydroxyl radical
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FIGURE 4 | Variation in the discriminating metabolites in S. miltiorrhiza roots under different levels of Cd stress. (A,B) stand for overlap of the upregulated and

downregulated discriminating metabolites of S. miltiorrhiza roots in response to different Cd treatments, respectively; different colors in (A,B) represent different

sources of upregulated discriminating metabolites, and downregulated discriminating metabolites, respectively; (C), Heatmap analysis of amino acids ((Li et al.), fatty

(Continued)
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FIGURE 4 | acids (b), esters (c), organic acids (d), ketones (e), sugars (f) and others (g) of the discriminating metabolites in S. miltiorrhiza roots between the control

and Cd stressed groups; T1, T2 and T3 stand for discriminating metabolites in roots between the control and 25mg kg−1 Cd group (T1), 50mg kg−1 group (T2), and

100mg kg−1 Cd group (T3), respectively; Log2(FC), an estimate of the log2-transformed ratio of the relative content of metabolites in S. miltiorrhiza roots of the Cd

treated group to that of the control group. The colors indicate the log2 transform of the ratios for the relative content of metabolites between the control and Cd

treated groups in S. miltiorrhiza roots, ranging from black (low level) to red (high level). The gray ellipses stand for not discriminating metabolites.

FIGURE 5 | Pathway of discriminating metabolites in S. miltiorrhiza roots between the control and Cd-stressed groups. (A–C) represent pathways of discriminating

metabolites between CK and T1 (A), T2 (B), and T3 (C), respectively; the size and color of the bubble represent the number hits and -log10(p) values for each

pathway from pathway analysis; (D), overlap of metabolic pathways discriminating metabolites of S. miltiorrhiza roots based on KEGG in response to different levels of

Cd stress; different colors represent different sources of metabolic pathways for discriminating metabolites.

scavenger and it plays a vital role in the adjustment to osmotic
stresses in plants (Sharma and Dietz, 2006; Zemanov et al.,
2017). Tyrosine is the precursor of many metabolites (including
tocopherol, plastoquinone and ubiquinone) that are essential
to the survival and stress resistance of plants (Kilgore and
Kutchan, 2016; Cassels and Sáez-Briones, 2018; Xu et al., 2020).
Tryptophan, an aromatic amino acid, plays important roles in
the regulation of plant development and it acts as a precursor for
the biosynthesis of the hormone auxin (Sanjaya et al., 2008; Liu
et al., 2011a). Histidine plays important roles in the regulation

of the biosynthesis of other amino acids and in the chelation
and transport of metal ions (Stepansky and Leustek, 2006).
Aspartic acid can be fed into the synthesis of other amino
acids (e.g., lysine, methionine and threonine) (Angelovici et al.,
2009). Serine is essential for the synthesis of proteins and other
biomolecules, including nucleotides and serine-derived lipids
(e.g., phosphatidylserine and sphingolipids), and is involved in
the resistance to various stresses (Ho and Saito, 2001; Waditee
et al., 2007; Ros et al., 2013). Due to the different roles of these
amino acids in the stress resistance of plants, with different levels

Frontiers in Plant Science | www.frontiersin.org 8 July 2022 | Volume 13 | Article 889370

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Yuan et al. Cadmium Stress on Salvia miltiorrhiza

FIGURE 6 | Metabolic map of S. miltiorrhiza roots based on LC–MS/MS with different levels of Cd stress. Metabolisms in orange were involved in isoquinoline alkaloid

biosynthesis, betalain biosynthesis, and tyrosine metabolism, and purple and green were involved in aminoacyl-tRNA biosynthesis and unsaturated fatty acids

biosynthesis, respectively; G3P, PEP, L-Ser, SA, EU, L-Phe, L-Try, RA, L-Asp, L-His, L-Pro, L-Arg and L-Asn represent glucose-3-phosphate, phosphoenolpyruvic

acid, L-serine, shikimic acid, eudesmic acid, L-phenylalanine, L-tyrosine, rosmarinic acid, L-aspartic acid, L-histidine, L-proline, L-arginine, and L-asparagine,

respectively; Log2(FC), an estimate of the log2-transformed ratio of the relative content of metabolites in S. miltiorrhiza roots of the Cd treated group to that of the

control group.

of Cd treatment, the levels of amino acids playing vital roles in
resisting Cd stress were different (Benral and McGrath, 1994;
Wang et al., 2015; Cosio and Renault, 2020) (Figures 5, 6).

In the present study, o-tyrosine contributed more to
the upregulation of the discriminating amino acids between
T1 and CK; DL-tryptophan, L-aspartic acid, and L-proline
contributed more to the upregulation of the discriminating
amino acids between T2 and CK, and L-proline, L-serine
and L-histidine contributed more to the upregulation of the
discriminating amino acids between T3 and CK (Figure 4;
Supplementary Table S2). This illustrated that there were
different Cd stress resistance patterns of amino acids in
S. miltiorrhiza roots under different levels of Cd stress. Under
moderate Cd (T2) stress, S. miltiorrhiza roots might mainly
increase the relative contents of DL-tryptophan, L-aspartic acid,
and L-proline to resist Cd, but under high-level Cd (T3) stress,
the roots might mainly increase the relative contents of L-proline,

L-serine and L-histidine to resist Cd. Inconsistent with this,
compared to CK, the proline content declined significantly and
the aspartic acid content increased significantly with moderate
Cd treatment; and the histidine content increased significantly
and the serine content declined significantly with high Cd
treatment (p < 0.05) of Crassocephalum crepidioides (Zhu et al.,
2018). As the level of Cd increased, the contents of tryptophan
and proline increased significantly, and the L-aspartic acid
content declined significantly in Solanum nigrum (Xu et al.,
2012). These differences might be caused by the differences in the
Cd sensitivity of different plants or by the different methods of
applying Cd stress (Zhang and Chen, 2021).

Organic Acids Play Vital Roles in Resisting
Cd Stress
Our study revealed that based on the changes in the relative
contents of organic acids in S. miltiorrhiza roots with different
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levels of Cd treatment, chorismate and eudesmic acid in
T1, chorismate in T2, and eudesmic acid and rosmarinic
acid in T3 were upregulated. In the present study, organic
acids were among the main contributors in distinguishing
CK samples from Cd treated samples (T1, T2 and T3)
(Figure 4; Supplementary Table S2): most organic acids showed
a decreasing accumulation, with chorismate and eudesmic acid
contributing the most to the upregulation of organic acids in
T1; most organic acids showed an increasing accumulation, with
chorismate contributing most to the upregulation of organic
acids in T2; and most organic acids presented an increasing
accumulation (especially eudesmic acid and rosmarinic acid)
in T3.

Chorismate could function as a key branching point between
primary and secondary metabolisms, as well as being a precursor
of aromatic amino acids (e.g., tryptophan, phenylalanine,
tyrosine) and hormonal substances (e.g., indoleacetic acid and
salicylic acid) that play essential roles in plant metabolism
(Kristin and Michael, 2010). Eudesmic acid and rosmarinic acid
are polyphenol derivatives and phenol compounds, respectively,
and both have strong antioxidation activity and strong hydroxyl
radical scavenging activity (Lv et al., 2005; Wang et al., 2014;
Korkmaz et al., 2018). Under Cd stress, the elevation of
intracellular chorismite would result in some pathways, including
the biosynthesis of aromatic amino acids (e.g., phenylalanine
and tryptophan) and secondary metabolites (e.g., polyphenols
and flavonoids) (Figure 6; Supplementary Table S2) (Malik,
1979), and the activity of the enzymes involved in phenolic
compound metabolism might increase (Michalak, 2006). This
might lead to an increase in phenolic compounds and polyphenol
derivatives, which could bind heavy metals, enhance the activity
of antioxidant enzymes, and reduce the harmful effects of heavy
metals on plants (Güez et al., 2017;Manquián-Cerdaa et al., 2018)
(Figure 6). Therefore, in response to low-level (T1) and high-
level (T3) Cd treatment, S. miltiorrhiza roots upregulate their
secondary metabolism, mainly by upregulating eudesmic acid
and rosmarinic acid to resist Cd stress (Figure 6) (Zoufan et al.,
2020).

Fatty Acids Play Vital Roles in Resisting Cd
Stress
Our study proved that fatty acids played vital roles in resisting
Cd stress. Compared to CK, most discriminating fatty acids (e.g.,
oleic acid and linoleic acid) decreased significantly both in T1 and
T2, and unsaturated fatty acids (e.g., oleic acid and linoleic acid)
decreased significantly, with all of the discriminating saturated
fatty acids (e.g., stearic acid) being upregulated (Figure 5;
Supplementary Table S2) in T3. As discussed above, in plants,
fatty acids and their derivatives play vital roles in improving stress
tolerance by participating in various defense pathways, including
basal, systemic, and effector-triggered immunity (Chaffai et al.,
2009; Liu et al., 2014; Li-Beisson et al., 2016). Unsaturated fatty
acids (e.g., oleic acid and linoleic acid) are produced by the
catalysis of fatty acid desaturases (FADs), which can catalyze the
formation of double bonds at specific positions in the chain of
saturated fatty acids (e.g., stearic acid) to regulate the response to

various stresses (Liu et al., 2011b; Park et al., 2015). It is important
to regulate the lipid composition and adjust the unsaturation
level of membrane fatty acids to cope with metal stress
(Thompson, 1992) (Figures 4, 6; Supplementary Table S2).

Therefore, oleic acid and linoleic acid, which could induce the
production of plant reactive oxygen species, showed a decreased
accumulation in T1, T2 and T3 to maintain the normal growth
of S. miltiorrhiza under Cd stress (Cury-Boaventura and Curi,
2005) (Figure 5), and high-level Cd stress might inhibit the
expression of FADs, leading to the enrichment of saturated fatty
acids (especially stearic acid) (Figure 5) (Liu et al., 2013). In
contrast to our study, other researchers found that Cd stress
increased the contents of oleic acid, linoleic acid, and stearic acid
in Asterioneilu glacialis (Jones et al., 1987) and decreased the
linoleic acid content in Sedum plumbizincicola (Sun et al., 2020)
and the oleic acid content in Sedum alfredii (Luo et al., 2014).
As mentioned above, these differences might be caused by the
differences in the Cd sensitivities of different plants (Zhang and
Chen, 2021).

CONCLUSION

Metabolic regulation is one of the vital mechanisms by
which plants respond to various stresses. In this study, we
characterized the roles of metabolic regulation in S. miltiorrhiza
roots under different levels of Cd stress in a pot experiment.
First, amino acids, organic acids, and fatty acids played
essential roles in resisting Cd stress in S. miltiorrhiza roots
due to their larger proportions than the other metabolites
and their major contributions in distinguishing roots between
the CK and each Cd treatment group (T1, T2, and T3).
Moreover, biosynthesis of unsaturated fatty acids, isoquinoline
alkaloid biosynthesis, betalain biosynthesis, aminoacyl-tRNA
biosynthesis, and tyrosine metabolism played vital roles in Cd
resistance due to their involvement in the synthesis of these
metabolites. Second, amino acids, organic acids, and fatty acids,
which play vital roles in resisting Cd stress, were different
in S. miltiorrhiza roots under different levels of Cd stress.
Because of the important roles of these metabolites in stress
resistance, S. miltiorrhiza roots might mainly upregulate o-
tyrosine, chorismite and eudesmic acid under low Cd (25mg
kg−1) stress; DL-tryptophan, L-aspartic acid, L-proline and
chorismite under moderate Cd (50mg kg−1) stress; and L-
proline, L-serine, L-histidine, eudesmic acid, and rosmarinic
acid under high Cd (100mg kg−1) stress. S. miltiorrhiza mainly
downregulated unsaturated fatty acids (e.g., oleic acid and
linoleic acid) under all levels of Cd stress and upregulated
saturated fatty acids (especially stearic acid) under high Cd stress.
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Supplementary Table S1 | Primary and secondary mass spectrometry analysis

conditions.

Supplementary Table S2 | All metabolites identified by LC–MS/MS in S.

miltiorrhiza roots with different levels of Cd stress. CK, T1, T2 and T3 represent

roots in the control, 25mg kg−1 Cd, 50mg kg−1 Cd, and 100mg kg−1 Cd treated

groups (n = 3), respectively (the same below). All data are presented as the mean

± SE.

Supplementary Table S3 | Relative contents of metabolites of different types in

S. miltiorrhiza roots with different levels of Cd stress. CK, T1, T2 and T3 represent

roots in the control, 25mg kg−1 Cd, 50mg kg−1 Cd, and 100mg kg−1 Cd treated

groups, respectively (the same below). Different lowercase letters indicate

significant differences within each treatment in the roots (p < 0.05). All data are

presented as the mean ± SE (n = 3).

Supplementary Table S4 | Results of pathway analysis involving all of the

discriminating metabolites in S. miltiorrhiza roots with different levels of Cd stress.

All pathways shown in the table are potential target metabolic pathways with

pathway impacts above 0.1; Total Cmpd, total number of compounds in the

pathway; Hits, the number of actually matched compounds in the pathway; Holm

adjust, p value adjusted by the Holm–Bonferroni method; FDR, p value adjusted

using the False Discovery Rate; Impact, pathway impact value.
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