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Multi-omics data sets are increasingly being used for the interpretation of cellular

processes in response to environmental cues. Especially, the posttranslational

modification of proteins by phosphorylation is an important regulatory process affecting

protein activity and/or localization, which, in turn, can have effects on metabolic

processes and metabolite levels. Despite this importance, relationships between protein

phosphorylation status and metabolite abundance remain largely underexplored. Here,

we used a phosphoproteomics–metabolomics data set collected at the end of day and

night in shoots and roots of Arabidopsis to propose regulatory relationships between

protein phosphorylation and accumulation or allocation of metabolites. For this purpose,

we introduced a novel, robust co-expression measure suited to the structure of our

data sets, and we used this measure to construct metabolite-phosphopeptide networks.

These networks were compared between wild type and plants with perturbations in

key processes of sugar metabolism, namely, sucrose export (sweet11/12 mutant) and

starch synthesis (pgm mutant). The phosphopeptide–metabolite network turned out

to be highly sensitive to perturbations in sugar metabolism. Specifically, KING1, the

regulatory subunit of SnRK1, was identified as a primary candidate connecting protein

phosphorylation status with metabolism. We additionally identified strong changes in the

fatty acid network of the sweet11/12 mutant, potentially resulting from a combination of

fatty acid signaling and metabolic overflow reactions in response to high internal sucrose

concentrations. Our results further suggest novel protein-metabolite relationships as

candidates for future targeted research.

Keywords: metabolites, phosphopeptides, co-expression analysis, clustering, network construction

INTRODUCTION

The ultimate goal of systems biology is to incorporate all interactions of molecular
cellular components into a descriptive model that can also be predictive (Li and
Snyder, 2011). To fully understand genotype-to-phenotype relationships at the systems
level, comprehensive knowledge of the complex and dynamic interactions between
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transcripts, proteins, and metabolites that exist in an organism
is required (Bassel et al., 2012). While recent improvements
in “omics” technologies have facilitated a deeper understanding
of the set of molecular interactions in plant cells, larger gaps
in knowledge remain regarding interactions between proteins
and metabolites. This is also partly because proteome analyses
still suffer from lower coverage compared to transcript analyses.
Thus, many studies focused on concordance between transcripts
and changes in metabolite levels. While this often delivered
valuable results (Brotman et al., 2012; Balmer et al., 2013;
Rudd et al., 2015; Zhu et al., 2018), it must be used with
care when inferring protein expression from transcriptome
data, as transcript and protein abundance do not always
correlate (Bassel et al., 2012; He et al., 2021). Also, establishing
causation from transcript to metabolite concentrations is
not always straightforward, as in many cases, correlations
between metabolites and transcripts were found to be due
to regulation of gene expression by metabolites rather than
metabolite levels being changed as a consequence of change
in gene expression (Gibon et al., 2006). Furthermore, changes
in enzyme activities were often found to be strongly delayed
compared to changes in transcript levels (Gibon et al.,
2006).

However, despite the challenges in the analysis of the protein-
metabolite interactome (PMI), such as the large diversity of
small molecules or the lack of generally applicable approaches
for system-wide monitoring of protein-metabolite interactions
(Veyel et al., 2017), the benefits of a systematic investigation
of interactions between proteins and metabolites may help
to bridge the gap between genome-wide association studies
and small-molecule screening studies (Li and Snyder, 2011).
Small molecules not only represent cellular building blocks
and metabolic intermediates but also function as regulatory
ligands and signaling molecules that interact with proteins.
In this way, alterations in concentrations of metabolites
can affect cellular metabolism, growth, and development
(Veyel et al., 2018). There is growing evidence that biological
systems contain a multitude of small molecules/metabolites,
many of which are still unexplored, which can form stable
complexes with proteins. These are primary candidates
with function in signaling and regulation (Li and Snyder,
2011), and together with cellular proteins, they form a still
unexplored wealth of protein–metabolite interactions (Veyel
et al., 2018).

It has, therefore, been suggested that proteomics and
metabolomics are the methods of choice to study the qualitative
and quantitative compositions of the constitutive cellular system
(Arrivault et al., 2009; Feussner and Polle, 2016), as the proteome
and the metabolome of plants do not just mirror transcriptional
changes in response to environmental changes but also
incorporate further processes, such as activation and deactivation
of existing proteins by phosphorylations and dephosphorylations
or reversible binding of other side groups. This might, in turn,
trigger further signaling cascades (Feussner and Polle, 2016).
Nevertheless, the analysis of the PMI received comparatively
little attention, despite its high-potential importance for both
basic research (e.g., identifying novel signaling molecules)

and translational research (e.g., food security, bioenergy, and
identification of lead compounds for drugs) (Veyel et al., 2017).
An exception is the application of integrated omics analysis
combining transcriptomics, proteomics, and metabolomics.
Examples of such analysis are comparison of the interactomes
of free-tillering and low-tillering wheat isolines (Wang et al.,
2019) and construction of networks based on expression
patterns of mRNAs on one hand and on co-expression of
proteins including phosphorylation levels on the other, the
integration of which substantially improved predictive power
when inferring transcription factor activity (Walley et al.,
2016).

Sucrose metabolism in plants is a unique and central
metabolic pathway connected to long-term storage metabolism
(starch), metabolic conversion (glycolysis), and, ultimately,
generation of ATP during respiration. Sucrose is the primary
transport form of carbohydrates in the phloem in the majority
of plant species, and the loading of sucrose to the phloem
is tightly regulated (Sauer and Stolz, 1994; Ward et al.,
1997; Kühn et al., 1999; Liesche et al., 2011; Liesche, 2017).
Furthermore, sucrose is a key metabolite in stress responses
that accumulate in vacuoles in response, for example, to cold
stress (Schulze et al., 2012). Thus, sucrose metabolism is an
interesting pathway to explore protein-metabolite interactions
and the dynamics of this network in a day-night cycle and upon
additional perturbations.

Internal perturbations of sucrose concentrations can be
achieved using mutants in metabolism or sucrose transport.
The starch-less pgm mutant (Caspar et al., 1985) is known
to have a high diurnal sucrose concentration in leaves but
runs into carbon limitation during the night (Schulze et al.,
1991, 1994). The sweet11/12 mutant (Chen et al., 2011) is
a sucrose export mutant. In contrast to the pgm mutant,
sweet11/12 has a high starch content in leaves that are not
degraded at night (Chen et al., 2010). In the sweet11/12
mutant, sucrose accumulation occurs in source tissues, while
sink tissues experience sucrose starvation. Thesemutants provide
valuable tools to study perturbations in the protein-metabolite
regulatory network.

This study was performed based on a combination of
phosphoproteome and metabolome profiling on shoots (source
tissue) and roots (sink tissue). Making use of both mutants
affecting carbon partitioning between metabolic pathways and
allocation between plant tissues, we aimed to understand the
relationships between protein phosphorylation and metabolite
accumulation and allocation. Since phosphorylation is an
important regulatory protein modification and proteins are the
actual active components in cellular metabolism in the form
of enzymes, transporters, or regulators, we expect to capture
more direct relationships between protein activity status and
metabolism. Results are expected to give new insights into the
regulation of plant carbon status in a whole-plant context. Our
final aim was the construction of metabolite-phosphopeptide
networks for different genotypes (wild type and both mutants) to
gain a deeper understanding of biochemical processes in relation
to the cascade of changes that were triggered by modifying
sucrose metabolism in the mutants.
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METHODS

Plant Materials and Growth Conditions
Arabidopsis seeds of wild-type (col-0), pgm mutant (Caspar
et al., 1985) (point mutation mutant), and sweet11/12 double
mutant (crossing of the sweet11 (SALK_073269) and sweet12
(SALK_031696) T-DNA insertion lines) were imbibed and
vernalized for 2 days and then germinated and grown under
12/12 day/night (22◦C, 120 µE/s∗m2) in ½ MS medium in a
hydroponic cultivation system (Schlesier et al., 2003). After 20
days, seedlings were starved by changing the growth medium
to a sucrose-free medium and leaving the culture vessels under
8/16 day/night for 7 days. The light period was changed to a
short day to induce carbon starvation metabolic phenotype in
the pgm mutant. Shoots (leaves) and roots were harvested for
microsomal protein preparation. Plants were harvested before
the onset of flowering.

Genotyping Analysis of T-DNA Mutants
Homozygous mutants were confirmed by PCR- and CAPS-
(cleaved amplified polymorphic sequence) (Schaller and
Oecking, 1999) based genotyping. The PCR amplification used T-

DNA border primer LBb1.3 (5
′
-ATTTTGCCGATTTCGGAAC-

3
′
) or LB4 (TGATCCATGTAGATTTCCCGGACATGA

AG) and gene-specific primers (SIRK1-RP: 5
′
-TTTCC

AGCATTTCCAACACTC-3
′
, SIRK1-LP: 5

′
-CACTAAGCTT

GTTGAGGTCGC-3
′
; SAK1-RP: 5

′
-CAAACCAGG

TCCATCAAGATC-3
′
, SAK1-LP: 5

′
-GAGATTCCGT

CGCTTCTCTTC-3
′
; SAK2_wisc-RP TTCCATTCAC

TGCAGTCTGC, SAK2_wisc-LP GCAGAAGCTTTCAG
CAATCC; SWEET11-RP TGAAGTGGGTGCTTTTGTTTC,
SWEET11-LP CCGA AGAGTAATGTGACCACG;
SWEET12-RP TCAAAGGCCAAAGCAATATACC, and
SWEET12-LP ATGC AGGCCAACGTTCTATAG). The
CAPS assays used gene-specific primers (PGM-LP
AGGCTTCCGAGCA ACTCAATATC and PGM-RP
CTGACCACTGCTGTAATTGAAC) to amplify DNA fragments
that were digested with a restriction endonuclease BspCN I.

Analysis of Primary Metabolites
Metabolite profiling of Arabidopsis seedlings was carried out by
gas chromatography–mass spectrometry (ChromaTOF software,
Pegasus driver 1.61; LECO) as described previously (Lisec
et al., 2006) while using smaller amounts of reactants because
of more sensitive equipment. Briefly, around 50mg of plant
materials were snap-frozen (<-60◦C) and homogenized in a
ball mill. After adding 1ml of 100% methanol and 60 µl of
ribitol, samples were mixed and centrifugalized. Supernatants
were transferred to a glass vial, and 400 µl of chloroform and
600 µl of dH2O were added to the samples, which were then
again centrifugalized. Then, 150 µl of supernatant was dried
in a vacuum container, after which it was used for GC-MS
measurement (a detailed description of extract preparation with
larger amounts of reactants can be found in Figure 1 of Lisec et al.,
2006). Samples were derivatized using a standard protocol of
mass spectrometry-based untargeted plant metabolomics (Perez
de Souza et al., 2019). Chromatograms and mass spectra were

evaluated using TagFinder software (Luedemann et al., 2012).
Metabolite identification was manually checked by mass spectral
and retention index collection of the GolmMetabolomeDatabase
(Kopka et al., 2005). Peak heights of the mass fragments
were normalized on the basis of the fresh weight of the
sample and the added amount of an internal standard (ribitol).
Statistical differences between groups were analyzed by Student’s
t-tests on the normalized data. Results were determined to be
statistically different at a probability level of P < 0.05. Identified
metabolites and their log2-transformed concentrations relative to
the standard substance are available (Supplementary Table 1).

Protein Preparation, Tryptic Digestion, and
Phosphopeptide Enrichment
Microsomal membrane preparation and phosphopeptide
enrichment were performed as described in the “ShortPhos”
workflow (Wu et al., 2017). A total of 1–1.5 g of roots and shoots
(fresh weight) was homogenized in a 10-ml extraction buffer
(330mM mannitol, 100mM KCl, 1mM EDTA, 50mM Tris-
MES, fresh 5mMDTT, and 1mM phenylmethylsulfonylfluoride,
pH 7.5) in the presence of a 0.5% v/v proteinase inhibitor mixture
(Sigma-Aldrich, Germany) and phosphatase inhibitors (25mM
NaF, 1mM Na3VO4, 1mM benzamidin, and 3µM leupeptin)
in Dounce Homogenizers. The homogenate was centrifuged for
15min at 7,500 × g at 4◦C. The pellet was discarded, and the
supernatant was centrifuged for 75min at 48,000× g at 4◦C. The
microsomal pellet was resuspended in 100µl UTU (6M urea and
2M thiourea, pH 8). The soluble fraction in the supernatant was
precipitated with three times volume ethanol plus 40 µl ml−1

of 2.5M sodium acetate (pH 5) overnight, and then proteins
were resuspended in 500 µl UTU. Protein concentrations were
determined using a Bradford (Sigma–Aldrich, Germany) assay
with BSA (bovine serum albumin) as the protein standard.

An amount of 150 µg protein was aliquoted separately for
tryptic digestion and phosphopeptides enrichment. Microsomal
membranes and soluble protein were subjected to disulfide
bond reduction by DTT and alkylation by iodoacetamide before
protein was predigested for 3 h with endoproteinase Lys-C
(0.5 µg µl−1; Wako Chemicals, Neuss, Germany) at room
temperature. After 4-fold dilution with 10mM Tris-HCl (pH
8), samples were digested with 3 µl sequencing-grade modified
trypsin (0.5 µg µl−1; Promega) overnight at 37◦C. After
overnight digestion, 10% v/v trifluoroacetic acid (TFA) was added
(until the pH was 3 or less) to stop digestion. Digested peptides
were dried in a vacuum concentrator.

Dry peptides were dissolved in 200 µl of 1M glycolic acid
in 80% v/v acetonitrile (ACN) and 5% v/v trifluoroacetic acid
(TFA). Phosphopeptides were enriched over titanium dioxide
(TiO2) (GL Sciences, Japan). TiO2 beads (1.5mg per sample)
were washed once with 100 µl of 1% v/v ammonia solution
and equilibrated three times with 50 µl of 1M glycolic acid
in 80% v/v ACN and 6% v/v TFA. The amount of 200 µl
digested peptides was mixed with equilibrated TiO2 for 30min
incubation. Peptides and TiO2 bead mixture were washed one
time with 100 µl of 1M glycolic acid in 80% v/v ACN and
6% v/v TFA, and three times with 100 µl of 80% v/v ACN
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FIGURE 1 | Exemplified calculation of the concordance index IC of a metabolite-phosphopeptide pair from the single measurements of each condition. (A) Deviation

of the mean of the single metabolite measurements for conditions DS and DR (DS|DR) in the sweet11/12 mutant is measured in terms of the number of standard

deviations (see Equation 1) with the mean of DS being ∼3.8 standard deviations of DR higher than the mean of DR. (B) Difference in the condition means, where the

(Continued)
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FIGURE 1 | blue bar of the first column (DS|DR) corresponds to a difference of +3.8 standard deviations for sucrose. The same calculation was performed for all

differences between possible condition pairs for metabolites and phosphopeptides. These “condition deviations” are now compared for each

metabolite-phosphopeptide pair (blue bars: metabolite; orange bars: phosphopeptide), resulting in the “combined condition deviations” (green bars; see Equation 2). It

corresponds to lower absolute values of the condition deviations of metabolites and phosphopeptides and shows a positive sign in case deviations are either both

positive or both negative, or a negative sign otherwise. The “combined condition deviations” are converted into discrete “deviation classes” (Table 1), resulting in

concordance index components (red bars). (C) The concordance index components are summed up separately for negative (violet) and positive (pink) components

(Equation 3) to yield the negative and positive concordance indices IC(−) (violet) and IC(+) (pink), which in turn were summed up to the concordance index IC (red with

black cross-hatch; Equation 4). The IC is 8, and was calculated for the sucrose- NFANS(1)FGRK pair (sweet11/12 mutant).

and 1% v/v TFA. Phosphopeptides were eluted from TiO2

beads three times with 1% v/v ammonia solution. Eluates were
immediately acidified with 70µl of 10% v/v formic acid. Acidified
phosphopeptides were desalted over a C18 stage tip prior to mass
spectrometric analysis (Rappsilber et al., 2003).

LC-MS/MS of Peptides and
Phosphopeptides
Enriched phosphopeptides were resuspended in 5 µl
resuspension buffer (0.2% v/v TFA, 5% v/v ACN) and analyzed
by LC-MS/MS using the standard setting as described (Wu
et al., 2017) with nanoflow EASY-nLCTM 1200 System (Thermo
Scientific, Germany) as an HPLC system and an Orbitrap
hybrid mass spectrometer (Q ExactiveTM, Hybrid Quadrupole-
OrbitrapTM; Thermo Scientific, Germany) as a mass analyzer.
Peptides were eluted from a 75µm × 25 cm analytical column
(EasySpray ES802; Thermo Scientific, Germany) on a linear
gradient running from 5 to 90% acetonitrile over 180min and
sprayed directly into the Q-Exactive mass spectrometer. Peptides
were identified via the MS/MS based on the information-
dependent acquisition of fragmentation spectra of multiple
charged peptides. Up to 12 data-dependent MS/MS spectra
were acquired for each full-scan spectrum acquired at 70,000
full-width at m/z 200 resolution.

Protein Identification and Ion Intensity
Quantitation
Raw data acquired with the mass spectrometer were processed
using MaxQuant version 1.5.3.8 (Cox and Mann, 2008). Spectra
were matched against the Arabidopsis proteome (TAIR10, 35,386
entries) using the Andromeda search engine (Cox et al., 2011).
Common contaminants (trypsin, keratin, etc.) were included
during database searches. Carbamidomethylation of cysteine
was set as a fixed modification, and oxidized methionine (M),
acetylation (protein N-term), and phosphorylation (STY) were
set as variable modifications. Trypsin was specified as the
digesting protease, and up to two missed cleavages were allowed.
The mass tolerance for the database search was set based on the
default settings in MaxQuant with 4.5 ppm for full scans and 20
ppm for fragment ions. The multiplicity was set to 1. For label-
free quantitation (LFQ), retention time matching between runs
was chosen within a time window of 1min. False discovery rate
cutoffs were set to 0.01 for peptide and protein identification
and to 0.01 for phosphorylation site assignment. The location
of phosphorylation sites was determined with the site-scanning
algorithm in Andromeda. Hits to contaminants (e.g., keratins)
and reverse hits identified by MaxQuant were excluded from

further analysis. Phosphopeptides (Supplementary Table 2),
including their spectra, were submitted to the phosphorylation
site database PhosPhAt 4.0 and are publicly available. The
mass spectrometry proteomics data have been deposited to
the ProteomeXchange Consortium via the PRIDE partner
repository (Deutsch et al., 2017) with the dataset identifier
PXD031942. Label-free quantitation was performed using LFQ-
values calculated by MaxQuant (Cox et al., 2014), and further
analysis was performed with the Perseus software (version
1.5.6.0) (Tyanova et al., 2016). Reported label-free intensity
values (Phospho(STY)Sites.txt) were used for data analysis.
Missing values were imputed from a normal distribution around
the detection limit of the mass spectrometer as offered by the
default settings in Perseus. For each peptide, imputed values
from three biological replicates were averaged. Annotations were
extracted from MAPMAN (Thimm et al., 2004), and subcellular
locations were obtained from SUBA3 (Tanz et al., 2013).

Statistical Analysis
Metabolite concentrations and phosphopeptide intensities were
measured for each of four conditions, “end of day/root” (DR),
“end of day/shoot” (DS), “end of night/root” (NR), and “end
of night/shoot” (NS), and in each condition, between four
and six biological replicates were analyzed. All measurements
were log2-transformed, and transformed values were used for
further analysis. For comparisons of changes in metabolite and
phosphopeptide levels between genotypes, log2-fold changes
were calculated based on the original values.

Untransformed and transformed measurements were
subjected to outlier classification using a Python function that
classifies points as outliers by means of a modified z-score based
on the median absolute deviation (MAD) (Iglewicz and Hoaglin,
1993). A threshold of 5 for the modified z-score was used, and
any measurement that exceeded this threshold was removed. The
threshold value was deliberately chosen conservatively, as due
to the rather low number of measurements for each condition,
we only removed rather obvious outliers. Descriptive statistical
operations were performed using the “stats” module of SciPy. In
particular, the procedures “describe,” “tmean,” and “tstd” were
used to calculate means, variances, and standard deviations,
whereas “median_abs_deviation” was used to compute the
median over the absolute deviations from the median (MAD),
and “kruskal” was used to calculate the p-value of a Kruskal–
Wallis test by ranks. Other values, such as the ratio of the
variance between conditions to the variance within conditions,
Vbtw/Vwithin, were calculated directly from the respective values.

Frontiers in Plant Science | www.frontiersin.org 5 May 2022 | Volume 13 | Article 891405

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Stefan et al. Regulatory Modules Metabolites Protein Phosphorylation

Clustering
Clustering was performed on the standardized mean metabolite
concentrations (z-scores) of the four conditions, DR, DS, NR, and
NS, separately for each genotype using the k-means clustering
algorithm of scikit-learn (k-means++ initialization method, 100
runs with different centroid seeds, max. 300 iterations for a
single run) and orange 3.25.1, as well as the hierarchical and
k-means clustering algorithms of orange 3.25.1. In addition,
clusters were calculated for genotype-overlapping concentration
patterns, again using both hierarchical and k-means clustering.
The arithmetic mean of each condition was calculated from the z-
scores of all mean metabolite concentrations, therefore obtaining
“average” patterns for the genotype-specific and genotype-
overlapping clusters, respectively. The clusters obtained with this
procedure were used to determine whether the standardized
concentration pattern of a metabolite showed a qualitatively
different behavior between genotypes. For hierarchical clustering,
the Euclidean distance metric was used. The same clustering
procedures were also applied to the standardized mean
phosphopeptide intensities.

Measuring Concordant Behavior of a
Metabolite–Phosphopeptide Pair
To classify whether a metabolite-phosphopeptide pair
qualitatively displays the same pattern, we developed a novel
co-expression measure subsequently called “concordance index
(IC)”. This index is based on the calculation of the pairwise
deviations between measurement means for conditions DR,
DS, NR, and NS relative to the standard deviation of the first
member of the pair. For example, the pairwise deviation between
conditions DR and DS, relative to the standard deviation of
DR, was calculated by dividing the difference between the mean
values of the measurements for DS and DR by the sample
standard deviation of the measurements for DR (Equation
1). Pairwise deviations were calculated for all metabolites
and phosphopeptides, resulting in 12 values overall for each
metabolite or phosphopeptide.

d
(M)

k
=

x̄j − x̄i

sd (x)i
(1)

where, i and j
(

1 ≤ i ≤ 4, 1 ≤ j ≤ 4, i 6= j
)

represent the

conditions DR, DS, NR, and NS; xi and xj are the mean values of
the measurements for conditions i and j, and sd (x)i is standard
deviation of the measurements of the condition i. The deviation
d

(M)

k
is the kth deviation, and 1 ≤ k ≤ 12 for the metabolites.

Deviations between conditions d
(P)

k
for the phosphopeptides were

calculated accordingly.
To obtain the concordance indices, we first calculated the

combined condition deviations z
(M, P)

k
(Equation 2):

z
(M, P)

k
= (2)

sign
(

d
(M)

k

)

· sign
(

d
(P)

k

)

·min
(

abs
(

d
(M)

k

)

, abs
(

d
(P)

k

))

The combined condition deviations z
(M, P)

k
were subsequently

discretized into “deviation classes” (Table 1), which are
mapped to contributions characterizing the strength of
the concordant behavior between any two conditions. By

determining the class that comprises z
(M, P)

k
for each k, we,

thus, obtained the discretized combined condition deviations,
or concordance index components, z̃

(M, P)

k
. These concordance

index components z̃
(M, P)

k
were added up, separately for negative

and positive values of z̃
(M, P)

k
, yielding the concordance indices

I
(M, P)

C(−)
(Equation 3) and I

(M, P)

C(+)
(Equation 4):

I
(M, P)

C(−)
=

12
∑

k=1

z̃
(M, P)

k
· δ, δ =

{

1 if z̃
(M, P)

k
< 0

0 if z̃
(M, P)

k
≥ 0

(3)

I
(M, P)

C(+)
=

12
∑

k=1

z̃
(M, P)

k
· δ, δ =

{

1 if z̃
(M, P)

k
> 0

0 if z̃
(M, P)

k
≤ 0

(4)

The negative and positive concordance indices were summed
up to result in the final combined concordance index

I
(M, P)
C = I

(M, P)

C(−)
+ I

(M, P)

C(+)
. The derivation of the concordance

index from the single measurements is visually explained
in Figure 1.

To supplement the concordance index, we used
Spearman’s rank correlation coefficient to filter out the
metabolite-phosphopeptide pairs with no strong support
for a significant rank correlation between the respective
measurements (α > 5%). In addition, we removed
interactions where the Kruskal-Wallis test does not
indicate significant differences between the conditions
(resulting in a “flat” pattern) for either the metabolite or
the phosphopeptide of the interaction pair. As a result,
we arrived at a list with the most probable metabolite–
phosphopeptides relationships for the wild type and the
two mutants.

Assessment of False-Positive Rate and
Cutoff Values for Co-expression Analysis
To minimize false-positive co-expressions, we compared
the share of metabolite-phosphopeptide pairs of both co-
expression measures used (the concordance index IC as
well as Spearman’s rank correlation coefficient ρ) between
experimental and simulated data. We used three different modes
to replace the experimental data by randomly drawn data sets
(“simulation types”): (i) we randomly drew the metabolite
values and calculated the co-expression measures of these
to the experimental phosphopeptide measurements; (ii) we
calculated the co-expression measures from the experimental
measurements for the metabolites and randomly drawn values
for the phosphopeptides; and (iii) we randomly drew metabolite
and phosphopeptide values and calculated the co-expression
from these two simulated data sets. In all cases where random
values were drawn, we first drew values as condition means of
a single molecule (metabolite or phosphopeptide) from a fitted
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TABLE 1 | Classes, boundaries (with respect to z(M, P)

k ), and concordance index components z̃(M, P)

k for non-negative values of z(M, P)

k .

Class Class 1 Class 2 Class 3 Class 4 Class 5

Boundaries for

z
(M, P)

k

[1, 2) [2, 3) [3, 5) [5, 10) [10, ∞)

Concordance

index component

z̃
(M, P)

k

0.25 1 1.5 1.75 2

For negative values of z
(M, P)

k , corresponding negative boundaries were used, and the concordance index components z̃
(M, P)

k were assigned the respective values of this table, but with

a negative sign.

Gamma distribution with location, shape, and scale parameter
calculated from the experimental data of this molecule. Gamma
distribution was preferred over normal distribution, as it is more
flexible because of the three parameters used. Furthermore,
the average distribution of phosphopeptide condition means is
strongly asymmetrical, which often results in poor fit when using
the normal distribution.

Using these drawn condition means, we then drew single
random measurements for each molecule and each condition
from a normal distribution based on the experimental condition
mean and standard deviation of the respective molecule
(assumption of normality of residuals). For each condition,
the number of drawn measurements matched the experimental
number of measurements. This procedure resulted in a close
match of average standard deviations of condition means
between experimental and simulated data sets for all genotypes,
and both metabolites and phosphopeptides (deviation <1.1% in
all cases), demonstrating good comparability.

Over-representation Profiles
We calculated the overrepresentation of an entity within a
sorted list (such as a metabolite within a list of metabolite-
phosphopeptide interactions) by Fisher’s exact test and applying
Bonferroni’s correction. The elements of the 2 × 2 contingency
table used in Fisher’s exact test were:

(

n − k k

(N − K) −
(

n− k
)

K − k

)

(5)

Here, n is the current position on the sorted list, starting with
the first position, N is the length of the list, while k and K are
the numbers of occurrences of the entity of interest within the
first n entries and in the entire list, respectively. We varied n
from 1 to either the number of entries in the top 10% or the
top 25% of the list and calculated the respective p-value using
Equation (5) together with Bonferroni’s correction, therefore
arriving at a profile that can be represented visually. If an entity
is overrepresented over a substantial section of the profile, then
we can be more confident that we observe a real effect as opposed
to only considering single values for n, where overrepresentation
might just be observed by chance for a particular n. Using
profiles can, therefore, be considered a more robust approach to
quantifying overrepresentation.

Overrepresentation of MAPMAN functional categories
(simplified to highest order categories and subsequently

referred to as “bins”) (Thimm et al., 2004) in the concordance
index-sorted metabolite-phosphopeptide interaction table
was quantified by applying weights to the –log10 p-values.
Specifically, we calculated the scalar product of the weights
vector (w) with the vector of the –log10 p-values (v) for every
point of the profile. This yields a value xk = wTv for each
bin, and the xk can subsequently be ranked to obtain a list
of relative over-representation for each bin in the interaction
table. We chose the weights vector wT = (n, n− 1, . . . , 1),
where n is the chosen number of interactions that represents
the top of the interaction table. For positive interactions, we
selected the n interactions with highest co-expression measures.
As we considered the top 10% of all 42 · 3330 = 139, 860
metabolite-phosphopeptide interactions, we set n = 13, 986 in
this case. Applying the chosen wT resulted in bins that were
over-represented among the first few highest interactions being
assigned a higher weight than those that were over-represented
towards the bottom of the table of the n top interactions.

Using the same approach, the overrepresentation of
protein functional categories (“bins”) was calculated among
the phosphopeptides and for genotype distances between
phosphopeptides (in both cases, we considered the top 25%
of all 3,330 ranked phosphopeptides, i.e., we set n = 832).
Furthermore, the overrepresentation of metabolites and
the overrepresentation of bins were calculated among the
metabolite-phosphopeptide interaction pairs. The results were
finally normalized to the range (0, 1) (“scaled ranks” ρSC) and
summarized in Supplementary Table 3. Ranking was performed
for each genotype (wild type, pgm mutant, and sweet11/12
mutant) as described above, and the scaled rank tables of bins
and metabolites were finally sorted according to their mean
scaled rank ρSC over all genotypes in ascending order. Bins and
metabolites with lower rank values were more overrepresented.
All initial tables (phosphopeptide abundance table, interaction
table, and genotype distance table) were sorted in descending and
ascending orders prior to overrepresentation analysis, resulting
in ranked lists of overrepresented bins or metabolites.

RESULTS

Phosphopeptides and metabolites were analyzed in the shoot and
root tissue of each genotype at the end of the day (1 h before
dark) and at the end of the night (1 h before light) after growth
in short-day condition (8/16-h light/dark cycles). The same tissue
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was used for metabolic profiling as well as for phosphoproteomic
analysis (Figure 2A) on four to six biological replicates. In total,
42 metabolites were quantified (Supplementary Table 1). These
were 6 fatty acids, 17 proteinogenic and 2 non-proteinogenic
amino acids, 6 other organic acids, 5 sugars, 3 sugar alcohols, one
inorganic acid (phosphoric acid), one phosphoric ester (glycerol-
3-phosphate), and one polyamine (putrescine).

A total of 19,089 unique phosphopeptides matching 5,019
proteins were identified by Maxquant using an accepted
FDR of 0.01% (Figure 2B). This is a deep coverage of the
phosphoproteome achieved by single-step purification (Wu et al.,
2017). There was an overlap of 8,172 unique phosphosites
between this study and the PhosPhAt 4.0 database (Figure 2C).
Most of the identified phosphorylated amino acids were serines
(83.8%), followed by threonines (15.5%) and tyrosines (0.7%)
(Figure 2D). The phosphopeptides were distributed to 54.5%
single, 34.9% double, and 10.6% triple phosphorylated peptides
(Figure 2D). A total of 3,330 phosphopeptides were used
for quantitative analysis (Supplementary Table 2) across all
harvesting time points and tissues in each genotype. In order
to perform statistical analyses, the phosphopeptides used for
quantitative analysis were required to have LFQ values in at least
three biological replicates and to be present in at least two of the
sampled conditions (DS, DR, NS, and NR).

We analyzed all metabolite-phosphopeptide pairs for
concordant behavior, i.e., similar concentration patterns in
shoots and roots at the end of the day and at the end of
the night. To assess the similarity of patterns, we looked for
significant differences between any two conditions using a novel
“concordance index”, (IC), described in the methods section.
The concordance index IC represents a smoothed similarity score
to describe concordance or discordance between metabolite
and phosphopeptide patterns. This index was complemented
by Spearman’s rank correlation coefficient ρ to extract pairs
with a substantial probability of concordance, which were
then assembled to form metabolite-phosphopeptide interaction
networks for each genotype.

Concordance Index as a Robust Measure
to Describe Pattern Similarity
Tomeasure the analogous (concordant) behavior of ametabolite-
phosphopeptide pair, the “concordance index” IC was calculated
(see Equations 1–4; Figure 1). This index aimed to quantify how
well the mean changes in the measured concentrations of the
metabolite and the measured intensities of the phosphopeptide
match over the four conditions, DR, DS, NR, and NS, with
changes either in the same direction (analogous to a positive
correlation) or in the opposite direction (analogous to a negative
correlation). We expect that such a pattern-based index will
give a more reliable estimate for the concordant behavior of a
metabolite–phosphopeptide pair than a (rank-based) correlation
measure, as it awards substantial differences between conditions
instead of similar order or ranks of measurements. The latter
might carry a considerable amount of randomness in case
of small within-condition variation. Using the concordance
index also overcame another issue with correlation measures:

if measurements form two data clusters, with very little
variation within each cluster, but a large difference between
the clusters (i.e., if metabolites or phosphopeptides differ
largely just between tissue or time of day), then a regression
line will connect two narrow point clouds, and correlation
measures might be very high despite only limited evidence
of concordant behavior of the metabolite–phosphopeptide pair
(Supplementary Figure 1).

The concordance index was exemplified for different
scenarios (Figure 3). In cases of concordant patterns
of metabolite docosanoic acid and phosphopeptide
SLEELS(1)GEAEVS(1)HDEK in wild type (Figure 3A),
standardized condition means (z-scores) show a similar
pattern with higher average measurements in roots compared
to shoots, and with higher values for shoots at the end of the
day than at the end of the night for both the metabolite and
the phosphopeptide. Measured as multiples of the standard
deviation of one of the conditions (see Equation 1), this
translates into strongly concordant deviations between most

condition pairs (Figure 3A, center): blue (metabolite, d
(M)

k
)

and orange (phosphopeptide, d
(P)

k
) bars, have high absolute

values and the same direction, resulting in positive concordance
index components. These components are added to yield
the negative and positive concordance indices, which in
turn sum up to the concordance index (red with black
cross hatch) of 16.5. In contrast, the z-score patterns of
alanine and TFDELS(1)DGEVYEDS(1)D in the pgm mutant
(Figure 3B) showed little similarities, as some components
of the concordance index are positive while the others are
negative (Figure 3B, center), reflecting deviations between
conditions in the same direction or in different directions,
respectively. In total, the discretized deviations that sum
up to negative (violet) and positive (pink) concordance
indexes cancel each other out, resulting in no concordance
(IC = 0). In the case of docosanoic acid and phosphopeptide S
(0.003)PS (0.997)YKEVALAPPGSIAK in the pgm mutant, the
z-scores show opposite patterns (Figure 3C). Thus, most of the
deviations between condition pairs (center; blue and orange
bars) have an opposite sign, resulting in negative combined
condition deviations and concordance index components
(Figure 3C, center). The negative and positive concordance
indices are therefore IC(−) = −17 and IC(+) = 0, giving a
concordance index of −17, which is indicative of discordant
co-expression patterns.

To estimate the likelihood of co-expression patterns to be
genuine biological effects rather than random artifacts, the
concordance index IC and Spearman’s ρ were calculated from
experimental measurements of metabolites and phosphopeptides
as well as from a randomized data set in which metabolites,
phosphopeptides, or both were replaced by simulated data
based on the respective experimental values (see methods,
Supplementary Table 4). For all scenarios, both co-expression
measures and all genotypes, higher shares of co-expression
pairs at different threshold values were found in experimental
data sets compared to simulated data (Figure 4). Thus,
both co-expression measures resulted in a substantial
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FIGURE 2 | Phosphoproteome analysis of Arabidopsis thaliana shoots and roots. (A) Samples were collected at the end of the day and at the end of the night.

Proteins were isolated, and phosphopeptides were enriched using the ShortPhos platform (Wu et al., 2017). The phosphopeptides were measured in a single-run

mode using Q-Exactive and identified with MaxQuant following data analysis with Perseus. (B) The number of unique phosphopeptides, phosphosites, and

phosphoproteins identified in our phosphoproteome of Arabidopsis thaliana shoots and roots. (C) The unique phosphopeptides identified in our phosphoproteome

were compared with those deposited in the PhosPhAt database. (D) Distribution of the amino acid residues (left) and frequency of phosphorylated residues (right).

proportion of likely true co-expressions of metabolites and
phosphopeptides with an increasing likelihood for smaller
shares of pairs from simulated data sets, especially for IC-
values (Figure 4). For example, in the wild type, the share
of co-expression pairs in experimental data with an IC-
value of at least 6 is more than two times as high as than
in simulated data for all three simulation types (Figure 4;
Supplementary Table 4). Similar ratios were found for the
other genotypes and for matching values of Spearman’s ρ. For
higher threshold values of IC or ρ, these ratios even increase
(Supplementary Table 4).

Metabolomics Data Set
We compared the variance of each metabolite in the
biological replicates analyzed (within-sample variance) to
the variance between the four harvested samples (between-
sample variance) for each genotype and condition (end
of day root, DR; end of day shoot, DS; end of night root,
NR; end of night shoot, NS). In the wild type, the fatty

acids docosanoic acid, hexadecanoic acid, tetradecanoic
acid and octadecanoic acid, the amino acids isoleucine
and valine, and putrescine, nicotinic acid and fumaric acid
showed the highest ratio of between-sample to within-sample
variance, indicating that these metabolites showed great
differences between tissues and/or day/night. In contrast,
maltose, trehalose, and erythritol showed a relatively
low variation between tissues and harvesting time points
compared to the variation in samples in the wild type
(Supplementary Table 1).

We grouped the metabolites into clusters to differentiate
characteristic concentration patterns over the conditions DR,
DS, NR, and NS. To avoid bias by considering “flat”
patterns with a low ratio of between-sample to within-sample
variance, only metabolites showing a significant difference
(Kruskal-Wallis test with α = 0.05) between any two of the
conditions DR, DS, NR, and NS were subjected to clustering.
Metabolites displaying “flat” patterns were assigned to a
single, separate cluster (cluster “Z”, Supplementary Table 5).
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FIGURE 3 | Different types of concordant behavior of metabolite-phosphopeptide pairs over the four conditions: DR, DS, NR, and NS. (A) Example of positive

concordance between metabolites and phosphopeptides. (B) Example of no concordance between metabolites and phosphopeptides. (C) Example of strongly

negative concordance (discordance). The left figure in each panel shows the z-score pattern over the four conditions, DR, DS, NR, and NS, whereas the middle and

right figures show the derivation of the concordance index IC from the deviations between conditions as in Figure 1.
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FIGURE 4 | Comparison of experimental and simulated data sets contrasting the concordance index IC(red) with Spearman’s rank correlation ρ (blue) in the wild type.

(A) only the metabolites’ measurements were randomly drawn, and co-expression measures were subsequently calculated using experimental measurements for the

phosphopeptides, (B) only the phosphopeptides’ measurements were randomly drawn, and (C) both metabolites’ and phosphopeptides’ measurements were

(Continued)
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FIGURE 4 | randomly drawn. Left panels: percentage range of co-expression pairs exceeding respective threshold values in experimental data (y-axis) vs. simulated

data (x-axis). Concordance indices IC (red), which are discrete by definition, were examined for every possible value from −17.5 to 17.5 (i.e., −17.5, −17.25, −17.0,

etc.), while Spearman’s ρ (blue) was subdivided into 100 classes from −1 to +1. Dashed line: y = x, i.e., points above that line show a higher share of pairs in the

experimental data set for the given threshold value than could be expected by chance. Right panels: share of metabolite-phosphopeptide pairs for IC = 6 and

Spearman’s ρ = .57. The entire height of the bars represents the share of co-expression pairs in the experimental data set, and the dark-shaded bars represent the

share of co-expression pairs in the simulated data set.

To assess the robustness of the results, we performed both
hierarchical and k-means clustering. In order to choose a
suitable number of clusters, we used the silhouette score of
k-means clustering and aimed for even cluster sizes and the
identification of qualitatively sufficiently different patterns when
using hierarchical clustering. In the case of the wild type,
both the k-means and hierarchical clustering methods gave
almost identical results when choosing 13 clusters for both
hierarchical and k-means clustering (only nicotinic acid and
tyrosine were assigned to different clusters). This configuration
also gave relatively even cluster sizes (Supplementary Table 5,
“MetClusters_WT”). The clustering was also stable with
respect to the single genotypes, as for each genotype, similar
clusters were obtained with the respective clustering method
(Supplementary Table 5).

Metabolites of clusters A_WT, D_WT, and F_WT in the
hierarchical clustering approach (Supplementary Table 5,
“MetClusters_WT”) containing fumaric acid (Figure 5A),
asparagine, and octadecanoic acid (Figure 5B) were found
with high concentrations in the shoots at the end of the day
but with low concentrations in the roots at the end of the
night. Putrescine, arginine, and ornithine (Figure 5C) were
further examples of such metabolites with high concentrations
in the shoot compared to the root with only small differences
between day and night within each tissue. Metabolites in cluster
B_WT showed high concentrations in the shoots compared
to the roots with only small differences between day and
night within each tissue. The third group of metabolites,
corresponding to clusters G_WT and L_WT, comprised those
with generally higher concentrations in the roots than in the
shoots and higher levels at the end of the day than at the
end of the night in roots. Sucrose (Figure 5D) and the amino
acids valine, isoleucine, and aspartic acid (Figure 5E), and
malic acid (Figure 5F) were in this group. Another group
of metabolites, in cluster I_WT, showed strong differences
between tissues and a high turnover in one of the tissues. For
example, methionine and phosphoric acid were found with
higher concentrations in the roots than in the shoots in general,
while concentrations in the shoots at the end of the night were
higher than those at the end of the day. Myo-inositol, being
the only member of cluster J_WT in hierarchical clustering,
showed high concentrations in the roots compared to in the
shoots but with higher levels at the end of the night than at
the end of the day in the roots. The sixth group of metabolites
(cluster F_WT) showed higher concentrations during the day
and lower concentrations at the end of the night but only
small to medium differences between the roots and the shoots.
Among these, asparagine, glycerol, and octanoic acid were
prominent examples. Clustering results of all genotypes and

details on the metabolites in the identified clusters are listed in
Supplementary Table 5.

Phosphoproteomics Data Set
When phosphopeptides were classified by their functional
category according to MAPMAN (Thimm et al., 2004),
two functional groups were overrepresented among
the phosphopeptides with highest average abundance
across all conditions (DR, DS, NR, and NS): MAPMAN

bin 29.2 (protein.synthesis) was overrepresented among
the first 50–100 most frequent phosphopeptides, while
phosphopeptides classified within bin 31.4 (cell vesicle.transport)
were overrepresented among the first 800 most frequent
phosphopeptides (corresponding to the top 25% of the most
abundant phosphopeptides, Supplementary Figure 2). These
two bins were also the bins with lowest rank numbers (ρSC, for
calculation see methods) when calculating over-representation
ranks, followed by bins 17.2 (hormone metabolism/auxin) and
30.5 (signaling/G-proteins) (Supplementary Table 3, ST3A),
indicating high concentrations for many of the phosphoproteins
in these groups. Scaled ranks of these bins were low not only
in the wild type but also in the pgm and sweet11/12 mutants
(Supplementary Table 3, ST3A). Thus, ribosomal proteins (bin
29.2.2) were overrepresented among the most abundant proteins
in the data set, reflecting the well-known high abundance of this
protein group (Piques et al., 2009). In contrast, proteins with
signaling functions (e.g., in bins 30.11 and 30.2), transporters
(e.g., in bins 34.15, 34.2, and 34.21), and proteins involved
in protein degradation (bin 29.5) were overrepresented in
about 800 proteins with lowest average intensity, i.e., the
lower-abundant proteins.

Based on the variance in the six biological replicates
compared to the variance across the four samples, we identified
phosphopeptides with especially high between-sample variance,
i.e., those which showed strong differences between at least
two sampling conditions. Protein functions among these
phosphopeptides were, among others, signaling proteins,
transporters, proteins of N-metabolism, and proteins of
photosynthesis. Apparently, phosphorylation of these proteins
showed marked differences between the roots and the shoot
and/or day and night. In contrast, other signaling proteins,
ribosomes, and proteins with developmental functions showed
low between-sample variance (Supplementary Table 2).

Mutants in Sucrose Partitioning and
Allocation Have Altered Metabolite and
Phosphorylation Patterns
The pgm mutant is deficient in starch synthesis. As a
consequence, higher cytosolic sucrose levels in leaves at the end
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FIGURE 5 | Concentrations of selected metabolites. (A) ornithine, (B) fumaric acid, (C) octadecanoic acid, (D) sucrose, (E) aspartic acid, and (F) malic acid in the

different samples in the wild type, the pgm mutant, and the sweet11/12 mutant as well as daily turnover rates. The turnover rates were calculated as the difference of

concentrations at the end of the day and at the end of the night. Averages of five to six independent samples with standard deviations are shown.
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of the night were observed (Figure 5D). The high sugar levels
previously were shown to result in higher respiration rates in
the pgm mutant and reduced carbon allocation to roots and
seeds (Schulze et al., 1991). As a consequence, the pgm mutant
was characterized to run into carbon starvation during long
and extended night periods, leading to slower root growth at
night times (Yazdanbakhsh et al., 2011) and lower overall seed
yield (Schulze et al., 1994). At the molecular cellular level,
global alteration in gene transcription (Thimm et al., 2004)
and polysome loading (Pal et al., 2013) were described. The
sweet11/12 mutant is deficient in sucrose export from the leaves
(Chen et al., 2011). As a consequence, starch accumulates at high
levels in source leaves, and less carbohydrates are available for
growth in sink tissues such as roots and seeds. We analyzed
the log2-fold changes in mutants vs. wild type for metabolite
concentrations in each of the samples DR, DS, NR, and NS to
assess whether the difference between genotypes is significant
(Kruskal-Wallis test, see Supplementary Table 6, ST6A).

As expected, the sucrose in the pgm mutant significantly
accumulated at higher concentrations than in the wild type
during the day in the roots and shoots. At night, sucrose
concentrations in the pgm mutant were significantly reduced
in the shoots and roots (Figure 5D). In the sweet11/12 mutant,
higher than wild-type sucrose concentrations were found in
the shoots at the end of the day as well as at the end of the
night. In contrast, the root tissue in the sweet11/12 mutant was
highly depleted of sucrose, especially at night (Figure 5D). A
similar pattern was observed for the sugars glucose, fructose, and
maltose, with strong accumulation in shoot tissues at the end of
the day and substantial depletion in root tissues at night.

The lack of sucrose export in the sweet11/12mutant coincided
with the accumulation of maltose, myo-inositol, and fatty acids.
These concentration changes were observed for octadecanoic
acid, hexadecanoic acid, and tetradecanoic acid. In the wild type,
these fatty acids were found to accumulate at high concentrations
in the shoots during the day and were metabolized at night
(Figure 5B). In the roots, long-chain fatty acids accumulated at
night but at lower concentrations as in the leaves. In the pgm
mutant (Figure 5B), and especially in the sweet11/12 mutant
(Figure 5B), the high turnover of long-chain fatty acids observed
in wild type leaves was substantially reduced, with significantly
lower than wild type concentrations during the day, and higher
than wild type accumulation in shoots at night.

Several amino acids also showed different concentration
patterns among the genotypes. For most of the amino acids,
significantly higher concentrations in the shoots at the end of
the day were found in the sweet11/12 mutant than in the wild
type. For some of the amino acids (serine, lysine, methionine,
histidine, and ornithine), this was also true when comparing the
pgmmutant to the wild type (Supplementary Table 6, ST6A).

Some of the organic acids showed qualitatively different
patterns among the genotypes. A common feature for most of the
organic acids was lower concentrations in the roots at the end of
the day in the sweet11/12mutant compared to the wild type. For
malic acid, fumaric acid (Figure 5A), succinic acid, and pyruvic
acid, the differences were significant. Differences in organic acids
between the pgmmutant and the wild type were less pronounced,

with fumaric acid showing significantly increased concentrations
at the end of the night in both tissues and with pyruvic acid
showing significantly decreased concentrations in the shoots at
the end of the day. Furthermore, the concentration of glycerol-
3-phosphate was significantly higher in the pgm mutant in the
shoots at the end of the night and was significantly lower in the
shoots at the end of the day. Similarly, the polyamine putrescine
shows a significant increase in the shoots at the end of the night
in the pgm mutant, while in the sweet11/12 mutant, it displayed
a significantly lower concentration in the roots at the end of the
day. Phosphoric acid concentration was significantly decreased
in the sweet11/12 mutant in both tissues at the end of the night
(Supplementary Table 6, ST6A).

Examples of differences in protein phosphorylation
levels across the genotypes were also found: among the
phosphopeptides in the wild type, phosphorylation of AHA2
in activating T937 was highest in the roots at the end of the
day and generally slightly higher in the roots than in the shoots
(Figure 6A). In the pgm mutant, AHA2 phosphorylation in the
roots at the end of the day was significantly reduced. In contrast,
in both mutants, we observed increased phosphorylation of
vacuolar ATPase subunit VHA-A3 in the shoots at the end
of the day, which was significant in the sweet11/12 mutant
(Supplementary Table 6, ST6B). Generally, strong changes
in phosphorylation patterns in mutants vs. wild types are
observed especially in proteins involved in sucrose metabolism
and signaling, such as sucrose-phosphate synthase (SPS1F;
Figure 6B), cytosolic invertase (CINV1), kinase KIN10
(Figure 6C), and in a protein of nitrate assimilation (NIA2;
Figure 6D).

Genotype-Overlapping Clusters of
Metabolites and Phosphopeptides
Assigning concentration patterns to genotype-overlapping
clusters (i.e., the cumulative set of patterns of all
the three genotypes, see Supplementary Tables 5, 7,
“Clustering_OverAllGT”) gives an additional view with a
focus on qualitative changes in patterns over the four conditions
when comparing the three genotypes instead of quantifying the
strength of changes between single conditions. Only patterns
that were not “flat” (see methods section) were used for the
analysis, while the “flat” patterns were aggregated in a separate
cluster (named “Z” in Supplementary Tables 5, 7).

Using the genotype-overlapping clusters allowed us to
assess which metabolites showed the largest qualitative changes
between the genotypes regarding their patterns. We used the
weighted number of changes between the genotypes for different
clustering approaches (hierarchical and k-means with different
numbers of clusters) and complemented this value with the
weighted sum of the Euclidean distances between any two of
the genotypes to arrive at a “between-genotype distance” dGT that
provided us with a robust means for quantifying variation of
patterns between the genotypes. Sorting the table of metabolites
by this between-genotype distance dGTshows that the largest
qualitative pattern changes between the genotypes were found
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FIGURE 6 | Phosphopeptide intensities of selected phosphopeptides. (A) Plasma membrane ATPase AHA2, (B) sucrose-phosphate synthase SPS1F, (C) kinase

KIN10, and (D) nitrate reductase NIA2 in the different samples in the wild type, the pgm mutant, and the sweet11/12 mutant. Averages of four to six independent

samples with standard deviations are shown.
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for sucrose (Supplementary Table 5, Clustering_OverAllGT). A
large difference between the genotypes was indeed expected
for sucrose, as the mutants were explicitly chosen to cover
different sucrose levels in the tissues and between night and day.
Also, the sugar maltose and the amino acid tryptophan showed
large divergences between the genotypes, with dGT above 0.9,
followed by glutamic acid, nonanoic acid, octanoic acid, and
citric acids with dGT above 0.8. The amino acids methionine,
phenylalanine, histidine, serine, tyrosine, leucine, and proline as
well as phosphoric acid and glycerol-3-phosphate all showed a
dGTbetween 0.6 and 0.8, still indicating a qualitatively different
behavior between the genotypes.

Clusters of the phosphopeptides were, in general, less
clear-cut than the metabolite clusters, and the clusters
were harder to demarcate. To cluster the phosphopeptides,
we used the same clustering approach that was applied
to the metabolites. Since the results indicated that the
phosphopeptide clusters were harder to demarcate, we regarded
possible conclusions from this analysis with more caution
(Supplementary Table 7). In addition, we calculated the scaled
ranks ρSC of the bins in terms of their overrepresentation
in tables sorted by dGT in descending and ascending orders
to determine bins with generally large pattern differences
between genotypes, and those whose patterns show a rather
similar behavior for all the genotypes (Supplementary Table 3,
ST3G, ST3H). Proteins of carbohydrate metabolism (bins 2
and 3), calcium signaling proteins (bin 30.3), and proteins
involved in protein targeting (bin 29.3) were among the protein
categories with the highest between-genotype distance dGT .
In particular, phosphopeptides IRS(1)EMQIWSEDDKSSR
(AT4G10120, sucrose phosphate synthase, bin 2.1,
dGT0.96), S(1)MS(1)ELS(0.964)T(0.034)GYS(0.001)R
(AT1G35580, cytosolic invertase, bin 2.2, dGT 0.93),
S(1)YTNLLDLASGNFPVMGR (AT1G06410, trehalose
phosphate synthase, bin 3.2, dGT0.88), and ASS(1)SVSTLYK
(AT4G03550, callose synthase, bin 3.6, dGT0.81) were among the
phosphopeptides with highest distances between the genotypes.
Thus, it became apparent that the perturbation of sucrose
metabolism in pgm and sweet11/12 resulted in global changes in
phosphorylation patterns, with proteins involved in pathways
connected to sucrose metabolism being highly overrepresented.

Networks Reconstructed From
Concordant Behavior of
Metabolite-Phosphopeptide Pairs
Prior to network construction, we first used the MAPMAN

(Thimm et al., 2004) classification system to identify important
functional categories in the interactions between metabolites
and phosphopeptides. We scanned for positive interactions
(i.e., concordant patterns over the four conditions), which we
subsequently referred to as “connections” between metabolites
and one ormore phosphopeptide(s) of the respective investigated
functional category (bin). Thus, the edges in this network were
mainly based on the concordance index IC, which was developed
for this purpose (Supplementary Table 8).

We only considered connections with sufficient evidence
for a rank correlation and non-flat patterns (see methods;
Supplementary Tables 9–11). As these filters already reduced the
number of eligible interactions, we considered a concordance
index IC ≥ 6 as sufficient to robustly identify a connection. This
choice of threshold value was based on balancing the necessity
to reduce the chance of identifying co-expression pairs as valid
connections whose patterns only matched by chance (i.e., false
positives), with the prerequisite to include as many connections
with truly matching patterns as possible (i.e., minimizing false
negatives). Based on the comparison with the randomized data
sets (Figure 4), a cut-off score of IC ≥ 6 resulted in <2.5%
of interactions having an IC equal to or higher 6 in the
simulated data for all the genotypes and simulation types. In
the experimental data set, however, at least two times as many
interactions had an IC ≥ 6 in the wild type for all simulation
types (Figure 4; Supplementary Table 9). Also, the proportion
of patterns identified as “flat” by the Kruskal-Wallis test for any
of the interaction partners was relatively low when using this
threshold as a filter for the interaction table, with about 10%
(wild type), 12% (pgm mutant), and 6% (sweet11/12 mutant)
of “flat” patterns among the co-expression pairs with IC ≥ 6
(Supplementary Figure 3).

Higher IC thresholds resulted in lower number of interactions
but higher confidence in their biological relevance, thus
increasing the likelihood of false negatives while reducing false
positives. For example, applying a threshold of IC ≥ 7 in the
wild type decreased the proportion of positive interactions from
4.6 to 2.9%, but at the same time, the ratio of co-expression
pairs in experimental vs. simulated data increased by about 7–
13% while decreasing the share of “flat” patterns from 9.8 to
4.4% (Supplementary Table 9; Supplementary Figure 3). Using
an even stricter threshold, IC ≥ 10, resulted in only 0.66%
of all interactions being classified as relevant; however, none
of these had a flat co-expression partner (brown circles in
Supplementary Figure 3), and the ratio of co-expression pairs
in experimental vs. simulated data increased from 34 to 70%
compared to IC ≥ 6 in the wild type (Supplementary Table 4). In
all the genotypes, the concordance index was particularly suited
to reduce the proportion of “flat” patterns, while the Euclidean
distance of z-scores squarely failed, as the standardization
transformed “flat” patterns to patterns with a standard deviation
of 1 (Supplementary Figure 3). Rank correlation coefficients
were also able to filter out “flat” patterns to some extent
but less efficiently than the IC. Thus, for the construction of
metabolite–phosphopeptide networks, we applied the stricter
threshold of IC ≥ 7 (Figure 7). Significant Spearman’s ρ of the
connection and non-flat patterns for both partners were made
additional requirements.

In the network of sugars and sugar alcohols (Figure 7A),
glucose and myo-inositol were the most connected (highest
degree) metabolites in the wild type, forming connections to
glycolysis (bin 4.1), TCA cycle (bin 8.2), cell wall (bin 10.5),
ammonia metabolism (bin 12.2), signaling (bins 30.1, 30.2, and
30.3), development (bin 33.1), and transport (bins 34.5, 34.7,
34.15, and 34.19). The other sugars and sugar alcohols in the
wild type did not show any major connections to functional
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FIGURE 7 | Networks of connections between metabolite concentration levels and protein phosphorylation, grouped by functional categories (bins), as suggested by

the IC for (A) sugars, (B) amino acids, (C) organic acids, and (D) fatty acids and sterols. The concordance index IC of each metabolite-bin connection, represented by

edge width, is calculated as the mean of the IC values of all connections from the metabolites to the phosphopeptides in the respective functional group (according to

MAPMAN), given that the connection’s IC value matches or exceeds the chosen threshold of IC = 7. Edge color represents the connections revealed in each genotype:

green = wild type, purple = pgm mutant, cyan = sweet11/12 mutant. Node description according to MAPMAN: 1.1 photosynthesis.light reactions; 1.3

photosynthesis.Calvin-Benson cycle; 2.2 major carbohydrate metabolism.degradation; 4.1 glycolysis.cytosolic branch; 12.1 N-metabolism.nitrate; 29.2

protein.synthesis; 29.4 protein.posttranslational modification; 29.5 protein.degradation; 30.1 signaling.sugar and nutrient physiology; 30.2 signaling.receptor kinases;

30.3 signaling.calcium; 30.11 signaling.light; 31.1 cell.organization; 34.1 transport.p- and v-ATPases; 34.5 transport.ammonium; 34.7 transport.phosphate; 34.19

transport.aquaporins; 33.99 development.unspecific (contains SWEET proteins). Network layouts were obtained with an Allegro-Fruchterman Reingold algorithm

using concordance indices IC as edge-weighting parameter.

categories, with the exception of glycerol, which connected to
receptor kinase signaling (bin 30.2). However, in the mutants,
this picture drastically changed. In the pgmmutant, fructose and
erythritol were the most connected metabolites, showing strong
connections to aquaporins (bin 34.19) and vesicle trafficking (bin

31.1) and weaker connections to photosynthesis light reactions
(bin 1.1), Calvin-Benson Cycle (bin 1.3), glycolysis (bin 4.1), and
calcium signaling (bin 30.3). The sucrose in the pgmmutant was
connected to calcium signaling (bin 30.3) and light signaling (bin
30.11). However, in the pgm mutant, the number of connections
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for glucose was highly reduced, and the remaining ones had
lower IC. In the sweet11/12 mutant, the network revealed only
few significant edges connecting both sucrose and fructose with
photosynthesis (bins 1.1 and 1.3), N-metabolism (bin 12.1 and
12.2) receptor kinase signaling (bin 30.2), light signaling (bin
30.11), vesicle trafficking (bin 31.1), and aquaporins (bin 34.19).
These observations indicate a shift in centrality from glucose to
fructose and sucrose when comparing the wild type to the pgm
and sweet11/12 mutants. Sucrose, whose concentration in the
leaves was higher in the mutants, became more connected in the
network, with strong connections to a number of functions such
as N-metabolism ammonia (bin 12.2), receptor kinase signaling
(bin 30.2), and aquaporins (bin 34.19).

In general, the amino acids (Figure 7B) showed a large
number of connections to various functional categories, revealing
substantial differences between the genotypes. The number of
connections was largest in the wild type and decreased for
both mutants. The average IC value of all the connections
decreased from the wild type to the pgm and sweet11/12
mutants (Supplementary Table 8). Amino acids with functional
connections in all the genotypes were arginine, aspartic acid,
isoleucine, valine, and, to a lesser, extent alanine, beta-alanine,
and ornithine, which only had few connections. Functional
categories connected to at least two of the amino acids in all
the genotypes were photosynthesis light reactions (bin 1.1),
glycolysis (bin 4.1), cell wall proteins (bin 10.5), receptor kinase
signaling (bin 30.2), calcium signaling (bin 30.3), and transport
(bins 34.1, 34.5, 34.7, and 34.19). In the wild type, most of
the amino acids formed a dense network connected to the
processes mentioned above, and these connections showed
strong support with a large IC value. In the pgmmutant, however,
the density of the network was already reduced. For glutamic
acid, histidine, methionine, serine, and tryptophan, we did not
find any connections to functional categories with a large-enough
IC value in the pgmmutant. On the other hand, new connections
for asparagine, glycine, and lysine with light signaling (bin 30.11),
photosynthesis light reactions (bin 1.1), and vesicle trafficking
(bin 31.1) were found in this mutant, which was not apparent in
the wild type. The density of the network was further reduced
in the sweet11/12 mutant, where only six amino acids with
at least two connections each remained. The most prominent
connections were those of aspartic acid, isoleucine, and valine
with glycolysis (bin 4.1) and aquaporins (bin 34.19).

The network of organic acids (Figure 7C) around fumaric
acid, malic acid, nicotinic acid, pyruvic acid, and citric
acids showed large differences between the wild type and
the mutants. In the wild type, fumaric acid, malic acid,
and nicotinic acid showed the strongest connections with
glycolysis (bin 4.1) and transport processes (phosphate
transport, bin 34.7; potassium transport, bin 34.15;
aquaporins, bin 34.19). In the pgm mutant, fumaric acid
and nicotinic acid remained with strong connections, while
the connection of malic acid with glycolysis or transport
processes was less pronounced. In the sweet11/12 mutant,
organic acids were only weakly (low IC values) connected
to functional categories. Putrescine was found as a highly
connected metabolite with the strongest connection to nitrate

metabolism (bin 12.1) and aquaporins (bin 34.19) in all
the genotypes.

The network of fatty acids (Figure 7D) showed the opposite
picture compared to the amino acid network, as network density
was low in the wild type and denser in the mutants, especially
in the sweet11/12 mutant. Docosanoic acid was the only fatty
acid that, in all the genotypes, was strongly connected with
cellular, such as glycolysis (bin 4.1), cell wall proteins (bin 10.5),
signaling (bins 30.1, 30.2, and 30.3), and transport processes
(proton ATPases, bins 34.1; ammonium transport, bin 34.5;
phosphate transport, bin 34.7; potassium transport, bin 34.15;
aquaporins, bin 14.19). Tetradecanoic acid was connected to
nitrate metabolism (bin12.1) and aquaporins (bin 34.19) in all
the genotypes. In the pgm mutant, connections of functional
categories to docosanoic acid remained similar compared to
the wild type, while tetradecanoic acid, hexadecanoic acid, and
octadecanoic acid showed additional connections to aquaporins
(bin 34.19), nitrate metabolism (bin 12.1), vesicle trafficking (bin
31.1), and photosynthesis (bins 1.1 and 1.3), which were not
present in the wild type. Fatty acids in the sweet11/12 mutant
formed a very dense network in which carbohydrate metabolism
(bin 2.2), receptor kinase signaling (bin 30.2), light signaling
(bin 30.11), and aquaporins (bin 34.19) were connected to all
four fatty acids. Phosphopeptides of photosynthetic proteins
(bins 1.1 and 1.3), N-metabolism (nitrate assimilation, bin
12.1; ammonium assimilation; bin 12.2), and proteins of vesicle
trafficking (bin 31.1) again formed a separate network from
docosanoic acid, which was not found in the wild type.

Selected Phosphopeptides With Strong
Connection to Metabolites
In the wild type, we found that phosphopeptides
from proteins in the functional category of phosphate
transporters (bin 34.7), a doubly phosphorylated peptide,
(SLEEL(pS)GEAEV(pS)HDEK) from PHT1;2, showed strongest
connection to metabolites, in particular to organic acids and
some amino acids (Figures 7B–D). The phosphopeptide
SDKPLNY(pS)PDPENESGINER from the potassium
transporter KUP8 showed strongest connections to amino
acids valine and nicotinic acid. Overall, aquaporins, specifically
PIP1;1, PIP1;2, PIP2;2, PIP2;4; PIP2;6, PIP2;7, PIP2;8 (bin
34.19), were one of the two functional groups with the
most pronounced overrepresentation among metabolite–
phosphopeptide interactions (the other group was bin 10.5,
cell wall proteins, Supplementary Table 3, ST3E). This was
likely due to aquaporins being phosphorylated at multiple
phosphorylation sites for membrane targeting and regulation
(Tornroth-Horsefield et al., 2006; Prak et al., 2008). Increased
phosphorylation of aquaporins has been previously shown in
Arabidopsis roots in response to external sucrose supply (Wu
et al., 2013). Thus, it was not surprising to find a connection
of sucrose with aquaporin phosphopeptides in the sweet11/12
mutant, which showed the strongest variations in internal sucrose
concentrations. In all the three genotypes, the phosphopeptides
of aquaporins were strongly connected to the fatty acids and
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the organic acids fumaric acid, nicotinic acid, and malic acid
(Supplementary Tables 9–11).

Among the signaling proteins, the phosphopeptide
SE(pS)LGHR(pS)DV(pS)(pS)PEAK of KING1 (AT3G48530), the
SNF1 regulatory subunit gamma 1, had the strongest connection
to docosanoic acid in all the genotypes, with increasing IC values
in pgm and sweet11/12. At the same time, the ICvalue of the
connection of KING1with sucrose was rather low in the wild type
(1.75) and was further decreased in the pgmmutant (−1.75) and
the sweet11/12 mutant (−6.5). These findings at the individual
phosphopeptide level are supported by the increasingly dense
network of fatty acids in the sweet11/12 mutant (Figure 7D)
and suggest a strong involvement of fatty acids in cellular
signaling, especially under conditions when sucrose levels are
deregulated because of metabolic manipulation. Among the
phosphopeptides from proteins with functions in light signaling
(bin 30.11), the phosphopeptide GT(pS)PQPRPQQEPAPSNPVR
of photoreceptor PHOT1 was among the strongly connected
individual phosphopeptides. It showed particularly strong
connections in the sweet11/12 mutant, in which strong positive
connections of PHOT1 with the long-chain fatty acids, such as
tetradecanoic acid, hexadecanoic acid, and octadecanoic acid,
existed, and further connections with the sugars sucrose and
fructose were found (Supplementary Table 11).

Two isoforms of nitrate reductase (AT1G77760 and
AT1G37130) were found with phosphopeptides containing
the well-known regulatory phosphorylation site that deactivates
a nitrate reductase when phosphorylated (Sanchez and Heldt,
1990). These phosphopeptides showed strong connections
(large ICvalues) with sucrose in the sweet11/12mutant but lower
ICvalues in the pgmmutant and the wild type. Phosphorylation of
nitrate reductases did not show a concordant behavior (strongly
negative ICvalues) toward docosanoic acid in either genotype.
Instead, the phosphopeptides of nitrate metabolism (bin 12.1),
with SV(pS)SPFMNTASK and SV(pS)TPFMNTTAK of nitrate
reductases NIA1 and NIA2, were connected to a number of
organic acids (docosanoic acid, nicotinic acid, malic acid, and
fumaric acid) and amino acids (valine, isoleucine, and aspartic
acid) in all the genotypes.

Other functional groups that were substantially
overrepresented among the phosphopeptides with strong
connections to metabolites in all the genotypes were
proteins from photosynthesis light reactions (bin 1.1)
and Calvin-Benson Cycle (bin 1.3). The most highly
connected phosphopeptides were (pT)AILERR from PSBA,
a chlorophyll-binding protein D1, and EHGN(pS)PGYYDGR
and KFETLSYLPDLTD(pS)ELAK from RBCS1A, the small
subunit of RuBisCO (Supplementary Tables 9–11). These
phosphopeptides showed strongest connections (i.e. highest IC
values) to sucrose in the pgm and sweet11/12mutants.

The most highly connected phosphopeptides
from carbohydrate metabolism (bin 2.2) were
AAAAS(pS)DVEEVKTEK from a fructokinase, seven
peptides from the beta-amylase BAM1, and several different
phosphopeptides from the cytosolic inveratase CINV1.
We found only two metabolites (putrescine and fumaric
acid) with a direct connection to these phosphopeptides
that existed in all the genotypes. In the pgm mutant,

no other metabolites were connected to carbohydrate
metabolism. In the glycolysis pathway (bin 4.1), the
phosphopeptides with strongest connections to metabolites were
(pS)AQELVK of PPC3, ATGAFILTA(pS)HNPGGPTEDFGIK
of cytosolic phosphoglucomutase (in all genotypes; see
Supplementary Tables 9–11), and NSEDSGVTVDGS(pS)PSAK
of fructose 2,6 bisphosphate phosphatase (especially in
sweet11/12; see Supplementary Table 11). The long-chain
fatty acids hexadecanoic acid and octadecanoic acid showed
a connection to phosphopeptides from glycolysis only in
the mutants.

DISCUSSION

Networks are a powerful tool to understand regulatory processes
in biological systems (Rosato et al., 2018). A common starting
point for network inference is the calculation of the correlation
for each pair of nodes (i.e., in our case, each metabolite-
phosphopeptide pair) as a measure of co-expression (Song et al.,
2012; Saint-Antoine and Singh, 2020). Such networks will have
the potential to yield powerful biological insights (Song et al.,
2012) and define nodes with importance in information flow
through the network by path analysis (Gilbert et al., 2021).

In this study, rather than attempting to extract causal
directions or distinguishing between direct and indirect
regulation processes, we developed an alternative co-expression
measure, the “concordance index”, which quantifies analogous
(“concordant”) patterns of a metabolite-phosphopeptide pair.
We complemented this approach by applying further filters,
using more traditional co-expression measures such as the
Spearman correlation. Given the structure of our data sets with
four to six measurements for each of just four conditions, we
found that the concordance index was best suited to capture
the relationship between metabolites and phosphopeptides.
“Flat” concentration/intensity patterns were filtered out well,
and pairs where a high degree of co-expression existed were
most clearly distinguished by this index. Also, the concordance
index was less prone to overestimating co-expression than
the correlation measures in cases where the mean values of
at least two conditions were similar. We did not use mutual
information measures, as they are usually better suited to discrete
or categorical variables and can safely be replaced by correlation
measures in case of general monotonic relationships between
continuous variables (Song et al., 2012). We used the value of
the concordance index both as an indication of the connection
strength of the corresponding metabolite-phosphopeptide pair
and as a filter by choosing a cut-off value that defines whether a
connection is further considered or not. We defined the applied
threshold values based on the balance of false-positives and
false-negatives as estimated from the simulated data set.

In addition to using the concordance index as a measure of
co-expression for inferring networks, we used different clustering
algorithms to group the metabolites and phosphopeptides into
clusters. The results were more robust for the metabolites, as
the phosphopeptides formed a relatively spherical point cloud in
the (DR, DS, NR, NS)-space. Assigning metabolites to clusters
that were qualitatively different between the genotypes, therefore,
indicated that each of these metabolites showed a different
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abundance pattern across conditions when sucrose metabolism
or sucrose export was disturbed. This approach proved to add
complementary information to the co-expression networks, as it
focusedmore on qualitative changes between patterns as opposed
to hard thresholds for connections.

To reduce the level of complexity when constructing co-
expression networks, we grouped the phosphopeptides according
to the classification by MAPMAN (Thimm et al., 2004) rather
than directly constructing a full network of all the metabolites
and phosphopeptides. This also helped us to identify functional
categories of particular prominence in the data set. An
earlier study on dissecting the subcellular compartmentation of
proteins and metabolites in Arabidopsis leaves by non-aqueous
fractionation revealed a tight physical connection of metabolic
enzymes with metabolites of the respective pathway (Arrivault
et al., 2014). This could be taken as an indication that many of the
connections identified for enzymes of the primary metabolism
indeed are based on direct interactions in a pathway context
rather than indirect relationships.

Regulatory Modules of Phosphopeptides
and Metabolites
Our analysis describes connections of metabolites with
phosphopeptides of metabolic enzymes, transporters, or
regulatory proteins (e.g., kinases). Therefore, we used the
thorough methods discussed above to robustly derive these
connections, but the data set was not suitable to derive causality.
Thus, it remains subject to further research as to whether
metabolites caused changes in respective phosphopeptide levels
or whether proteins regulated by phosphorylation affected the
synthesis/degradation of the metabolites. We likely identified
examples for both possibilities. The sucrose non-fermenting-
related kinase 1 (SnRK1) is an enzyme complex that has been
widely discussed to have roles in sucrose sensing (Rolland
et al., 2002) and is well-established as a central regulator of
cellular metabolism (Wurzinger et al., 2018). Catalytic subunits
are activated by phosphorylation in the activation loop (Shen
et al., 2009; Glab et al., 2017). Isoforms of SnRK1 were shown
to play a role in stress signaling (abscisic acid signaling) and
metabolic signaling, especially sugars (Radchuk et al., 2009; Cho
et al., 2012; Tsai and Gazzarrini, 2012). In this study, we found
the regulatory subunit KING1 to have strong connections to
different metabolites, sucrose among them, for which connection
strength (measured by the concordance index) was altered in
the different genotypes. This could be an excellent example,
where indeed metabolite levels (e.g., sucrose or fatty acids) could
affect the phosphorylation status of the regulatory subunit and,
thus, affect kinase activity. Indeed, the phosphorylation status of
KIN10, an isoform of the catalytic subunit of SnRK1, was found
to have lower abundance at the end of the day in the shoots of
the pgm and sweet11/12 mutants (Figure 6C). In turn, SnRK1
was proposed as the primary kinase to phosphorylate nitrate
reductase (Harthill et al., 2006). Again, strong differences in the
connection of metabolites (e.g., sucrose) with nitrate reductase
were observed among the genotypes. In this case, the activity
of nitrate reductase likely affected metabolite pools (e.g., amino
acids and organic acids) at different levels in the genotypes
analyzed and resulted in different metabolite patterns in the

respective genotypes. Thus, the enzyme complex of SnRK1 has
been confirmed as a key regulator of metabolism in our study.

Fatty Acids as Putative Signaling
Molecules and/or Overflow Metabolites
It is noteworthy that fatty acids, especially long-chain fatty acids
(such as tetradecanoic acid, hexadecanoic acid, octadecanoic
acid, and docosanoic acid), were found as highly connected
metabolites, especially in genotypes with disturbed sucrose
metabolism (pgm mutant) or transport (sweet11/12 mutant).
Very long-chain fatty acids, formally defined as fatty acids with
more than 18 carbons, were indeed previously identified as
responsive to various stress signals (De Bigault Du Granrut
and Cacas, 2016) and, thus, were proposed as cellular signaling
molecules. They are suggested to act either by direct release
frommembranous context, through vesicle trafficking or through
membrane microdomains (De Bigault Du Granrut and Cacas,
2016). However, the effect of altered fatty acid levels may also be
indirect. Fatty acids are important constituents of photosynthetic
lamellae; therefore, lipid composition will affect photochemistry.
Thus, a change in lipid composition is expected to result in
alterations in photosynthesis and relatedmetabolism (as has been
observed, e.g., in the mutants). Regulation of membrane fatty
acid composition is actively adjusted, for example, in response
to temperature changes (Falcone et al., 2004), but this refers
mainly to changes in desaturation status not due to alterations in
the length of fatty acids. Interestingly, a link between lipids and
sucrose exists during germination of the plants, when lipids from
oil bodies are degraded to feed sucrose synthesis. Deficiencies in
lipid degradation affect sucrose levels (Cui et al., 2016). Thus,
likely altered long-chain fatty acid levels in the sweet11/12mutant
could be due to increased fatty acid synthesis in response to
elevated sucrose levels in the leaves to dispose excess carbon.

CONCLUSIONS

We developed a robust approach to identify concordance
betweenmetabolites and phosphopeptides in order to construct a
complex regulatory network between metabolites and functional
categories (bins). This network was highly dynamic in genotypes
with altered cellular sucrose levels. In this network, we
identified KING1, the regulatory subunit of SnRK1, as a
major regulator connecting metabolism with enzyme activities
through the targets of SnRK1. The network also revealed
strong changes in fatty acid metabolism, especially in the
sweet11/12 mutant. This may represent a combination of
fatty acid signaling and metabolic overflow reactions due to
high sucrose concentrations. Taken together, our approach,
especially by including three different genotypes, provides
novel protein-metabolite relationships to be explored in future
targeted research.
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