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Due to the cold climate and dramatically undulating altitude, the identification of dynamic 
vegetation trends and main drivers is essential to maintain the ecological balance in Tibet. 
The normalized difference vegetation index (NDVI), as the most commonly used greenness 
index, can effectively evaluate vegetation health and spatial patterns. MODIS-NDVI 
(Moderate-resolution Imaging Spectroradiometer-NDVI) data for Tibet from 2001 to 2020 
were obtained and preprocessed on the Google Earth Engine (GEE) cloud platform. The 
Theil–Sen median method and Mann–Kendall test method were employed to investigate 
dynamic NDVI changes, and the Hurst exponent was used to predict future vegetation 
trends. In addition, the main drivers of NDVI changes were analyzed. The results indicated 
that (1) the vegetation NDVI in Tibet significantly increased from 2001 to 2020, and the 
annual average NDVI value fluctuated between 0.31 and 0.34 at an increase rate of 
0.0007 year−1; (2) the vegetation improvement area accounted for the largest share of the 
study area at 56.6%, followed by stable unchanged and degraded areas, with proportions 
of 27.5 and 15.9%, respectively. The overall variation coefficient of the NDVI in Tibet was 
low, with a mean value of 0.13; (3) The mean value of the Hurst exponent was 0.53, and 
the area of continuously improving regions accounted for 41.2% of the study area, 
indicating that the vegetation change trend was continuous in most areas; (4) The NDVI 
in Tibet indicated a high degree of spatial agglomeration. However, there existed obvious 
differences in the spatial distribution of NDVI aggregation areas, and the aggregation types 
mainly included the high-high and low-low types; and (5) Precipitation and population 
growth significantly contributed to vegetation cover improvement in western Tibet. In 
addition, the use of the GEE to obtain remote sensing data combined with time-series 
data analysis provides the potential to quickly obtain large-scale vegetation change trends.

Keywords: vegetation greenness, ecosystem monitoring, spatial–temporal analysis, Google earth engine, 
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INTRODUCTION

As a link between the atmosphere, soil, and water bodies, 
vegetation constitutes an indispensable component of terrestrial 
ecosystems and plays an important role in the material cycle 
and energy flow (Ni, 2001; Yan et  al., 2020). Environmental 
and climate problems such as soil erosion, soil desertification, 
and the greenhouse effect caused by vegetation destruction 
cannot be  ignored (Fattet et  al., 2011; Dong et al., 2021). It 
is crucial to monitor and predict vegetation change trends 
and identify associated drivers (Fensholt et  al., 2009).

Tibet is the main body of the Tibetan Plateau and the 
birthplace of the Yangtze and Yarlung Tsangpo rivers, whose 
ecological changes affect the climate of East Asia and even 
the world (Luo et  al., 2018; Yi et  al., 2018). However, under 
global warming and enhanced human activities, environmental 
problems such as desertification are becoming increasingly 
serious (Wang et  al., 2016). Due to the complex influences of 
harsh climatic and geographical conditions, the vegetation 
ecosystem in Tibet is fragile and sensitive, and there exists 
notable spatial heterogeneity in the relationship between 
vegetation and climate and human activities (Immerzeel et  al., 
2008). Monitoring Tibetan vegetation trends and identifying 
its response to climate change and other factors can deepen 
the understanding of vegetation change mechanisms on the 
Tibetan Plateau, which is essential for the conservation of 
vegetation ecosystems and environmental restoration in alpine 
regions (Chen et  al., 2020).

The methods for vegetation surveys in alpine regions mainly 
include field surveys and remote sensing detection. Field 
surveys are highly accurate; however, the harsh environment 
and vastness of the area make manual surveys extremely 
difficult, and real-time vegetation renewal across the whole 
area is almost unattainable (Li et  al., 2014). Remote sensing 
technology, with its fast, real-time, and wide coverage, provides 
a new and convenient way to monitor terrestrial ecosystems 
and is widely used in areas such as vegetation growth 
management and remote sensing for land cover change 
monitoring (Zhan et  al., 2002; Jiang et  al., 2021). The use of 
remote sensing data sources to construct vegetation indices 
sensitive to vegetation growth has become a major method 
to monitor and assess regional vegetation environments. The 
normalized difference vegetation index (NDVI), as an index 
representing vegetation greenness, can visually reflect the 
vegetation growth status and distribution density and is an 
important index for vegetation change monitoring and climate 
response research (Rouse et  al., 1974; Yuan and Bauer, 2007). 
In recent years, the use of remote sensing data to extract 
NDVI time series for vegetation growth monitoring has become 
one of the main ways to evaluate vegetation ecosystems in 
large regions (Jiang et  al., 2015; Zou et  al., 2020). However, 
the acquisition of real-time vegetation NDVI data in alpine 
regions is always limited due to the cloud volume, data 
availability, and computational efficiency. In addition, existing 
studies on vegetation dynamics in Tibet or the Qinghai-Tibet 
Plateau involving remote sensing require massive data download 
and preprocessing procedures, which represents a very high 

workload and an extremely time-consuming endeavor, with 
limited applications in efficient large-scale vegetation monitoring. 
The Google Earth Engine (GEE) is an online cloud platform 
for data processing that can quickly acquire and batch process 
massive remote sensing data (Dong et al., 2016; Gorelick et al., 
2017). Currently, the GEE has been successfully used to acquire 
remote sensing images such as Landsat or Sentinel data for 
mangrove monitoring, land cover change determination, and 
deforestation detection (Tamiminia et al., 2020; Samanta et al., 
2021). In addition, MODIS data that can provide periodic 
surface information is also provided in GEE. As an evaluation 
index of vegetation greenness, MODIS-NDVI has the potential 
to quickly identify and monitor large-scale vegetation (Jepsen 
et  al., 2009). However, the efficiency and effectiveness of the 
GEE in the acquisition of time-series data of large areas for 
vegetation greenness monitoring in alpine and high-altitude 
regions require further validation.

Time-series vegetation indices for vegetation change 
evaluation have been widely employed (Jiang et  al., 2015; 
Zou et  al., 2020). In Wang and Han (2012), based on 
meteorological data and SPOT vegetation NDVI data from 
1999 to 2008, linear correlation analysis was performed to 
analyze the spatial and temporal variation patterns of the 
vegetation cover across the Tibetan Plateau. The results indicated 
that the annual NDVI exhibited a significant increasing trend 
and that the ecological environment of the Tibetan Plateau 
was developing along a favorable direction under the influence 
of climate change. Ding et  al. (2015) successfully obtained 
the start of the growing season (SGS) on the Tibetan Plateau 
from 1982 to 2012 based on normalized difference vegetation 
index (NDVI) data obtained from the GIMSS and SPOT. Zou 
et  al. (2020) calculated the spatial and temporal trends of 
vegetation indices and surface temperature on the Tibetan 
Plateau and explored the relationship between vegetation and 
surface temperature changes and climatic factors. The results 
demonstrated that the vegetation cover on the Tibetan Plateau 
generally followed an increasing trend and significant spatial 
and temporal heterogeneity levels from 2001 to 2012. However, 
these studies mainly focused on national scales or the entire 
Tibetan Plateau region. This could ignore the local distribution 
characteristics of Tibetan vegetation due to spatial heterogeneity 
and the specificity of altitude and climate. In addition, the 
validity and timeliness of the research cycles selected in these 
studies have progressively become inadequate.

Trends in vegetation dynamics can reflect the direction of 
vegetation change during the study period, and possible trends 
can be  predicted, which can guide the implementation of 
specific measures to manage future vegetation changes. The 
Hurst exponent, which can reflect the autocorrelation of time 
series and hidden long-term series trends, has been widely 
used in hydrological, meteorological, and environmental research. 
Studies have used the Hurst exponent to predict future vegetation 
dynamics. Peng et  al. (2012) used the Hurst exponent method 
to predict future vegetation changes on the Tibetan Plateau 
based on an AVHRR GIMMS-NDVI dataset from 1982 to 
2003, and the results indicated that the obtained future vegetation 
change trends were consistent across most of the Tibetan 
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Plateau. Notably, Chen et  al. (2020) used the Hurst exponent 
method to demonstrate that the Tibetan Plateau occurs at a 
high risk of vegetation degradation. However, as one of the 
main bodies of the Qinghai-Tibetan Plateau, the prediction of 
future vegetation change based on historical trends in Tibet 
has not been reported.

In this study, MODIS-NDVI data were obtained based on 
the GEE platform to reveal the latest trends of vegetation 
change in Tibet from 2001 to 2020 and to quantify the 
contribution of climate change and human activities. To reduce 
the influence of outliers, a more robust Theil–Sen median 
method and Mann–Kendall test were employed to evaluate 
the spatial patterns and trends of the NDVI. The Hurst exponent 
was established to predict the future trend of vegetation. In 
addition, the spatial autocorrelation of the NDVI in Tibet was 
examined to provide a scientific basis for ecological environment 
construction in the Tibetan Plateau region and other alpine  
regions.

MATERIALS AND METHODS

Study Area
Tibet is located on the Qinghai-Tibet Plateau (78°25′–99°06′E, 
26°50′–36°53′N) (Figure  1) in southwestern China. Due to 
the altitude and latitude, the climate difference between Southern 
and Northern Tibet is obvious. Southern Tibet is mild and 
rainy, with an annual average temperature of 8°C. Northern 
Tibet exhibits a typical continental climate, with an annual 
average temperature below 0°C and a freezing period longer 
than 6 months. With a total area of 1,228,400 km2 and an 
average altitude exceeding 4 km, the distribution of water and 

heat resources is uneven, and the ecosystem is relatively fragile. 
The vegetation types mainly include forests, meadows, grasslands, 
deserts, and alpine vegetation. The area of natural pastures is 
83 million hectares, accounting for 67% of the land area of 
the whole region, and the forest coverage reaches 6.32 million 
hectares. And the main tree species include spruce (Picea 
asperata Mast), fir (Abies fabri (Mast.) Craib), and larch 
(Larix ologensis).

Data Sources
NDVI data were provided by the National Aeronautics and 
Space Administration (NASA) MODIS Terra (MOD13Q1) 
satellite and acquired from the GEE cloud platform. The acquired 
MOD13A2 data encompassed 16-day vegetation index products, 
which have been verified to effectively reflect the vegetation 
growth status. MOD13A2 began providing vegetation index 
data with a spatial resolution of 1 km in February 2000, and 
low-cloud and low-view NDVI values were selected from all 
acquisitions over 16 days to ensure the best available pixel 
values (Fensholt et  al., 2009). NDVI images from 2001 to 
2020 were obtained and preprocessed via reprojection, splicing, 
and clipping. To eliminate the influence of clouds, the maximum 
value compositing (MVC) method was applied to all pixels 
to obtain the best annual grid data over 20 years (Leeuwen 
et  al., 1999).

To identify the drivers of NDVI change, climate change and 
human activity factors were selected for comparison and analysis. 
The drivers considered in this study included the annual cumulative 
precipitation, annual average temperature, annual population 
density data, and nighttime light data. Precipitation and 
temperature data were obtained from the Resource and 
Environmental Science and Data Center of the Chinese Academy 

FIGURE 1 | Location and altitude distribution in the study area.
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of Sciences,1 population density data were obtained from 
WorldPop,2 and nighttime light data were obtained from the 
NPP-VIIRS data website.3 Due to the limitation of the time-
series length of nighttime light data, data from 2013 to 2020 
were selected. The resolution of all data was resampled to match 
the 1 km spatial resolution of the NDVI data to ensure consistency 
between the different data sources (Figure 2). In addition, major 
meteorological and geological disasters in Tibet and important 
policies on vegetation were obtained from the Statistical Yearbook 
of Tibet (Statistical Bureau of Tibet, 2015, 2016).

Methods
Coefficient of Variation
The coefficient of variation (Cv) can suitably reflect the time-
based difference and change degree of spatial data and can 
be  used to evaluate the stability of time-series data (Weber 
et  al., 2004). The larger the Cv value is, the more discrete the 
distribution of the NDVI values and the more drastic the 
vegetation changes, while the smaller the Cv value is, the more 
concentrated the distribution of the NDVI values and the more 
stable the vegetation. Coefficient of variation values of the 
NDVI was calculated by the pixel to analyze the NDVI difference 
in Tibet and its stability over 20 years. Cv can be  calculated 
with Equation 1.

1 https://www.resdc.cn/
2 https://www.worldpop.org/
3 https://eogdata.mines.edu/products/vnl/
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where Cv is the coefficient of variation, NDVIi  is the NDVI 
value in year i, and NDVI  is the average NDVI value from 
2001 to 2020.

Trend Analysis
The Theil–Sen median method is a robust nonparametric 
approach for trend calculation, which is often used in combination 
with the Mann–Kendall test to evaluate the trend and significance 
of time-series data (Fernandes and Leblanc, 2005; Kisi and 
Ay, 2014). This method is insensitive to measurement errors 
and outlier data, which can reduce the influence of outliers 
on the results and has been widely used in trend analysis of 
long time-series data (Jiang et  al., 2015). The equation to 
calculate β in the Theil–Sen median method is as follows:
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where NDVI j and NDVIi are the NDVI values in years j and 
i, respectively. In this study, 2020 ≥ j ≥ i ≥ 2001. Additionally, 
when β is greater than 0, the vegetation NDVI exhibits an 
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C

FIGURE 2 | Spatial pattern of the average values of (A) the annual cumulative precipitation, (B) annual average temperature, and (C) annual population density in 
Tibet from 2001 to 2020.
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increasing trend; when β is less than 0, the NDVI exhibits a 
decreasing trend; and when β is equal to 0, the NDVI remains 
stable and unchanged. The vegetation NDVI trend results can 
be  classified into five classes: significant degradation, slight 
degradation, stable unchanged, slight improvement, and 
significant improvement.

Hurst Exponent
The Hurst exponent method based on rescaled interval (R/S) 
analysis is a time-series analysis method based on fractal theory 
and exhibits wide applications in the fields of climate change 
and population migration (Peng et  al., 2012). R/S analysis can 
measure how the fluctuation range of a given time series varies 
with the time span, which can be  used to predict the future 
trend of vegetation (Jiang et  al., 2015; Li et  al., 2021).

The main principle of R/S analysis is the development of 
a time series that defines an average series and {NDVI(t), 
t = 1, 2,····n}, for any positive integer τ ≥ 1. The calculation 
procedures are as follows:

Defined mean sequence:
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Hurst exponent:
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where H is the Hurst exponent, which is calculated via the 
least square method. For 0.5 < H ≤ 1, this indicates that vegetation 
change exhibits persistence, and the future change trend is 
consistent with past change trends, and the larger H is, the 
stronger the persistence. For H = 0.5, the vegetation change 
exhibits randomness, and the future change trend cannot 
be determined. For 0 ≤ H < 0.5, this suggests that the determined 
vegetation change exhibits inverse persistence, and the future 
change trend is the opposite to past change trends. In addition, 

the NDVI change trend was coupled with the Hurst exponent 
to obtain the persistence in the NDVI change trend. The 
definition of the trend is ruled as shown in Table  1.

Correlation Analysis
Pearson correlation coefficient values were separately calculated 
in R software using climate factors and human activity data 
contemporaneous with the above NDVI time series to reveal 
the main drivers of NDVI changes (Jiang et  al., 2015; Sun 
et  al., 2019). Pearson’s correlation can be  expressed by R, as 
calculated with Equation (8). Positive or negative values indicate 
whether the drivers are positively or negatively correlated, 
respectively, with the NDVI. Larger absolute values indicate 
stronger correlations.
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where n is 20, xij and yij denote the individual values of the 
drivers and NDVI, respectively, in the ith year, while x j  and 
y j  are the mean values of the drivers and NDVI, respectively, 
over 20 years.

RESULTS

Spatial Pattern of the Vegetation NDVI
Figure 3A shows the spatial distribution pattern of the average 
NDVI in Tibet from 2011 to 2020. The NDVI value in Tibet 
approximately decreased from southeast to northwest. 
Northwestern Tibet mainly comprises bare land and snowy 
areas with dry and cold climatic conditions and poor vegetation 
ecological conditions, resulting in low NDVI values. The 
southeastern region mainly includes a valley plain with a low 
altitude, belonging to semihumid and humid climate areas, 
with suitable hydrothermal conditions and an excellent ecological 
environment. This region is the main distribution area of crops 
and woodlands in Tibet, so the NDVI value is high. The 
statistical results of the average NDVI values in Tibet over 
the past 20 years indicated that the nonvegetated area with an 
NDVI value below 0.1 accounted for 10.4% of the total plateau 
area and the area with a low NDVI value (0.1–0.4) accounted 
for 59.8% of the total plateau area. The area with an NDVI 
value ranging from 0.5 to 0.6 accounted for 5.7% of the total 

TABLE 1 | The rule of definition of the NDVI change trend.

Standard of classification Hurst exponent & trend

0.5 < H ≤ 1 and β < −0.0005, |Z| > 1.96 Sustainability & Significant degradation
0.5 < H ≤ 1 and β < −0.0005, |Z| ≤ 1.96 Sustainability & Slight degradation
0.5 < H ≤ 1 and −0.0005 ≤ β ≤ 0.0005 Sustainability & Stable unchanged
0.5 < H ≤ 1 and β > 0.0005, |Z| ≤ 1.96 Sustainability & Slight improvement
0.5 < H ≤ 1 and β > 0.0005, |Z| > 1.96 Sustainability & Significant improvement
0 ≤ H ≤ 0.5 Uncertainty future trend
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plateau area, and the area with an NDVI value above 0.6 
accounted for 18.1% of the total plateau area.

To clarify the state of the vegetation cover in Tibet and 
the characteristics of vegetation NDVI changes over time, the 
interannual NDVI change trend was mapped (Figure  3B). The 
annual average NDVI in Tibet increased and fluctuated between 
0.31 and 0.34 at a rate of 0.0007 year−1, among which the 
vegetation NDVI exhibited a slowly fluctuating decreasing trend 
from 2001 to 2010. However, the fluctuation in the NDVI 
from 2010 to 2020 was more drastic and revealed an overall 
increasing trend, indicating that the vegetation cover conditions 
gradually improved. In 2015, the annual cumulative precipitation 
in Tibet significantly decreased, and extreme disaster weather 
events, such as severe snowfall, drought, and hailstorms, occurred 
in different areas, resulting in the lowest vegetation NDVI 
values in 20 years. In response, the Chinese government adopted 
a series of activities and policies including the construction 
of protective forest system, sand control and management, and 
return of cultivated land to forest to realize revegetation from 
2015 to 2016, resulting in a significant increase in vegetation cover.

To detect the aggregation features and local distribution 
pattern of the NDVI in Tibet, global Moran’s index and local 
Moran’s index values were calculated. From 2001 to 2020, global 
Moran’s index of the NDVI in Tibet fluctuated between 0.956 
and 0.966 (p < 0.01), indicating that the NDVI exhibits high 
spatial agglomeration (Figure  4A). In addition, global Moran’s 
index fluctuated sharply from 2001 to 2015, exhibiting a 
downward trend, indicating that the spatial agglomeration degree 
gradually decreased. Figure 4B shows that there existed obvious 
differences in the spatial distribution of the vegetation NDVI 
aggregation areas in Tibet, and the aggregation types mainly 
included the high-high and low-low types. Low-low type areas 
were mainly distributed in the west and north, and the associated 
patches were large. High-high type areas were mainly distributed 
in the east and south. The areas without significant aggregation 
were mainly concentrated in the central region, and the patches 
were relatively discontinuous. There occurred few low-high and 

high-low aggregation areas. The NDVI values in the western 
and northern regions of Tibet were generally low, while those 
in the eastern region were generally high (Figure  4B).

Stability of Vegetation NDVI Changes
The mean value of the coefficient of variation of the vegetation 
NDVI in the study area was 0.13, and the area exhibiting 
relatively high and high-fluctuation changes jointly accounted 
for 18.7% of the total area (Figure  5). The order of the areas 
considering each degree of variation was relatively low fluctuation 
change > medium fluctuation change > low fluctuation 
change > relatively high fluctuation change > high-fluctuation 
change (Table  2). Areas with a low fluctuation change in the 
NDVI mainly occurred in the southeast and northeast, where 
the climate is warm and humid, the vegetation types are 
abundant, the vegetation growth conditions are superior, and 
the vegetation NDVI was generally high and stable in the 
time series. Areas with a high-fluctuation change were scattered 
in the west, south-central, and east. The western part belongs 
to the highland area, where the ecosystem is very fragile and 
vulnerable to the natural environment. The south-central region 
exhibits a high population density and urban development 
level, leading to drastic vegetation changes, which in turn is 
reflected in the high fluctuation in the vegetation NDVI. The 
high-fluctuation area in the east is mainly the water area.

Trend Changes of the Vegetation NDVI
The NDVI trends of Tibetan vegetation revealed significant 
regional differences in the spatial distribution. The stable areas 
were mainly located in the western part of the study area, 
while the slightly degraded and significantly degraded areas 
were mainly located in the central and northern parts, respectively, 
of the study area. The NDVI trends in the central and eastern 
parts of the study area were different and more notably fragmented. 
The areas with an improved vegetation cover in Tibet over the 
past 20 years were larger than the areas with a degraded vegetation 

A B

FIGURE 3 | (A) Spatial pattern of the average values and (B) interannual variation in the NDVI in Tibet from 2001 to 2020.
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cover. The area with an improved vegetation cover accounted 
for 56.6% of the total area of the region, the area with a stable 
and unchanged vegetation cover accounted for 27.5% of the 
total area, and the area with a degraded vegetation cover 
accounted for only 15.9% of the total area (Figure  6).

Sustainability of Vegetation NDVI 
Variations
The mean Hurst exponent of the NDVI in Tibet reached 0.53. 
Areas with a Hurst exponent smaller than 0.5 accounted for 
36.6% of the total study area, and the percentage of areas 
with a Hurst exponent larger than 0.5 was 63.4%, indicating 
a strong positive persistence of the vegetation NDVI in general. 
The results of the vegetation NDVI trends were superimposed 

and coupled with the Hurst exponent to obtain vegetation 
NDVI trends and their persistence (Figure 7). The results could 
be  classified as sustainability and significant degradation, 
sustainability and slight degradation, sustainability and stable 
unchanged, sustainability and slight improvement, sustainability 
and significant improvement, and uncertain future trends.

The area of continuously improving regions account for 
41.2% of the total area, mainly distributed in the northwest 
and southeast; the area of continuously stable and unchanged 
regions accounted for 13.2% of the total area, mainly distributed 
in the central and western regions; the area of continuously 
degraded regions accounted for 9.0% of the total area, scattered 
in the central region; and the area of regions with uncertain 
future change trends accounted for 36.6% of the total area, 

A B

FIGURE 4 | (A) Global Moran’s index variation in the NDVI and (B) spatial pattern of local Moran’s index in Tibet from 2001 to 2020.

FIGURE 5 | Spatial distribution of the coefficient of variation of the NDVI from 2001 to 2020 in Tibet.
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mainly distributed in small parts of the eastern and central  
regions.

Correlation Analysis Between Drivers and 
NDVI Changes
Over the past 20 years, the average annual cumulative 
precipitation in Tibet reached approximately 396.91 mm, and 
the annual cumulative precipitation fluctuated within the 
range from 319.96 to 407.43 mm, at a rate of 0.463 mm year−1. 
The annual average temperature was approximately −2.27°C, 
fluctuating within the range from approximately −1.70°C 
to −2.61°C, at a rate of 0.0063°C year−1 (Figure  8A). The 
trend of the annual cumulative precipitation was the opposite 
to that of the annual average temperature, and the trend 
of climate change in Tibet indicated warm and dry conditions. 
Moreover, the changes in both the annual average population 
density and NDVI in Tibet over the last 20 years exhibited 
increasing trends, and the annual average population density 
increased year by year at a rate of 0.0304 persons year−1. 
The minimum value of the population density was 2.25 
persons/km2, and the maximum value was 2.81 persons/
km2 (Figure  8B).

The correlations between the annual cumulative precipitation 
and annual average temperature and the average annual NDVI 
were not significant. However, the average annual population 
density exhibited a significant positive correlation with the 
average annual NDVI with a correlation coefficient of 0.61 
(p < 0.01). These results indicated that precipitation and 
temperature imposed no significant effect on vegetation cover 
recovery and that human activities were the main drivers of 
NDVI changes in Tibet as a whole.

To capture local information on the drivers of NDVI changes 
in Tibet in more detail and precision, the correlation coefficient 
values between the NDVI and the annual cumulative 
precipitation, annual average temperature, and population 
density were calculated pixel by pixel, and spatial distributions 
were obtained (Figure  9). The correlation coefficient values 
between the NDVI and annual cumulative precipitation in 
Tibet ranged from −0.98 to 0.98, with the areas with a significant 
negative correlation accounting for approximately 1.7% of the 
total area, and those with a significant positive correlation 
accounting for approximately 8.2% of the total area, mainly 
in the western and central regions. The correlation coefficient 
values between the NDVI and annual average temperature 
ranged from −0.96 to 0.94, with the areas with significant 
positive and negative correlations accounting for approximately 
2.8% of the total area, and those with significant negative 
correlations mainly occurring in the western and central regions. 
In addition, the correlation coefficient values between the 
NDVI and population density varied between −0.93 and 0.94, 
with 1.4% of the regions exhibiting a significant negative 
correlation and 5.0% of the regions attaining a significant 
positive correlation, which were mainly distributed in the 
western region.

TABLE 2 | Coefficient of variation statistics of the NDVI from 2001 to 2020 in 
Tibet.

Coefficient of variation Degree of variation Proportion/%

Cv ≤ 0.05 Low fluctuation change 12.0
0.05 < Cv ≤ 0.10 Relatively low fluctuation change 39.2
0.10 < Cv ≤ 0.15 Medium fluctuation change 30.1
0.15 < Cv ≤ 0.20 Relatively high-fluctuation change 9.3
Cv ≥ 0.20 High-fluctuation change 9.4

FIGURE 6 | Spatial pattern of the NDVI change trends from 2001 to 2020 in Tibet.
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To further identify the impact of human activities on NDVI 
changes in Tibet, nighttime light data were used for correlation 
analysis. The results indicated that the annual average nighttime 
light intensity in Tibet fluctuated and increased with the annual 
NDVI. There existed a significant correlation between the NDVI 
and nighttime light data in most parts of western Tibet, which 
further verified that human activities represented the main 
factor promoting vegetation activities (Figure  10).

DISCUSSION

Vegetation NDVI Change Trend and Drivers
Climate change and human activities have been verified as 
the main factors causing vegetation change (Zhang et  al., 

2018; Zou et  al., 2020). Vegetation is particularly sensitive 
to climate change during its growth period, especially in high-
altitude areas with an extremely fragile ecology (Zhou et  al., 
2004; Xu et  al., 2017). The results in our study demonstrated 
that the NDVI in Tibet has slightly increased over the last 
20 years, similar to the conclusion obtained by Zhang et  al. 
(2018) regarding the overall vegetation on the Tibetan Plateau. 
However, vegetation degradation in central and northern Tibet 
cannot be  ignored. Global warming and drought are the main 
causes of vegetation degradation in northern regions, while 
human activities significantly impact vegetation recovery in 
central regions. Precipitation is not the dominant climatic 
factor of the increase in vegetation greenness in Tibet, but 
the fragile alpine grassland ecosystem is vulnerable to climate 
events, which leads to drastic changes in biodiversity and 

FIGURE 7 | Spatial distribution of the NDVI trends based on the Hurst exponent.

A B

FIGURE 8 | Variations in the (A) annual cumulative precipitation, annual average temperature, (B) NDVI, and annual population density data in Tibet from 1997 to 
2017.
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affects vegetation greening. In addition, Liu et  al. (2021) 
demonstrated that across the whole Qinghai-Tibet Plateau, 
climate warming, humidity, and livestock control contribute 
to the significant vegetation restoration. With accelerated 
urbanization, destruction of vegetation can occur in some 
areas, but measures such as ecological reforestation projects 
and natural forest protection projects in China have been 
verified to positively impact vegetation recovery in Tibet (Wu 
et  al., 2012; Zhang and Jin, 2021). Due to the significant 
decrease in precipitation and extreme catastrophic weather 
events, the vegetation NDVI in Tibet reached its lowest value 
within 20 years in 2015. In order to promote vegetation recovery, 

the Chinese government adopted a series of activities and 
policies from 2015 to 2016, including construction of protective 
forest systems, returning farmland to forest, construction of 
wildlife reserves, and protection of important wetlands, which 
led to a significant increase in NDVI (Statistical Bureau of 
Tibet, 2015, 2016).

There are various indicators for the evaluation of human 
activities, and auxiliary data, such as nighttime light data, have 
been demonstrated to be  effective in facilitating environmental 
change analysis and vegetation monitoring (Zhang and Seto, 
2011; Liu et al., 2014). With the advantages of a wide coverage, 
high efficiency, and notable visualization, nighttime lights can 

A B

C D

E F

FIGURE 9 | Spatial distribution of the correlation coefficient values and significance between the NDVI and (A), (B) annual cumulative precipitation, (C), (D) annual 
average temperature, and (E), (F) annual population density in Tibet from 2001 to 2020.
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directly reflect the extent and intensity of human activities 
and provide the potential to assess socioeconomic development, 
population migration, carbon emissions, pollution, and 
environmental monitoring data (Doll et al., 2006; Elvidge et al., 
2012; Li et  al., 2013). To further determine the causes of 
NDVI change and vegetation restoration in western Tibet, 
NPP-VIIRS time-series data were used to analyze the influence 
of nighttime light data on NDVI changes in this study. The 
results provided further evidence indicating that human activities 
were the main factor contributing to vegetation change. As 
an emerging data source, nighttime light data could be effectively 
used as an indicator of human activities for vegetation 
driver identification.

Limitations and Prospects
The validity of vegetation greenness indicators extracted from 
different sensors is inconsistent. Remote sensing data such as 
GIMMS-NDVI and NSMC-NDVI data have been widely used 
in vegetation monitoring and land change detection (Sha et al., 
2013; Wang et  al., 2021). However, these data exhibit a low 
spatial resolution, and the data are no longer updated. MODIS-
NDVI data have provided vegetation greenness products since 
2001 and exhibit a larger distribution range than that of other 
data types, which is very effective for timely monitoring of 
vegetation in large areas (Jepsen et  al., 2009). More vegetation 
indices, such as the enhanced vegetation index (EVI), which 
can reduce the impact on vegetation canopy background signals 
and atmospheric effects, exhibit the potential to improve the 
sensitivity to vegetation in high-biomass areas and have been 
used for forest parameter mapping and mangrove change 
detection purposes (Jiang et  al., 2020; Samanta et  al., 2021). 
However, in plateau areas with a low vegetation coverage, the 
NDVI can directly characterize the vegetation coverage. 
Compared to other indices, the NDVI remains the most 
commonly used and effective parameter to reflect the change 
in vegetation greenness (Eastman et al., 2013; Chen et al., 2020).

In addition, the spatial pattern and variation in vegetation 
greenness may vary drastically with elevation differences (Wang 
et al., 2021). The topography notably influences the distribution 

and growth of vegetation, and as one of the regions with the 
highest average altitude worldwide, the drastic topographic 
fluctuations and harsh climate in Tibet result in locally obvious 
differences in the vegetation distribution (Wang et  al., 2019, 
2022). Spatial autocorrelation can reveal whether and to what 
extent the attribute characteristics of neighboring elements in 
geographic space are related and has become a common 
method for the study of vegetation growth, carbon cycle, heat 
island effect, and other changes in vegetation ecology and 
the environment (Li et  al., 2021; Yang et  al., 2021). Global 
Moran’s index and local Moran’s index were used to detect 
the aggregation and local effects of the vegetation NDVI in 
Tibet, and the results revealed that the NDVI experienced 
high spatial agglomeration from 2001 to 2020. From 2001 to 
2007, global Moran’s index exhibited a fluctuating upward 
trend, while the NDVI gradually decreased. However, from 
2008 to 2020, global Moran’s index greatly fluctuated, 
demonstrating a downward trend as a whole, reaching the 
lowest value in 2018 (Figure  4). The main reason is that 
extreme weather events and disasters frequently occurred in 
Tibet in 2018, resulting in serious losses of agricultural 
production and construction facilities. Moreover, there exist 
obvious differences in the spatial distribution of NDVI 
accumulation areas in Tibet. Due to a large number of cities 
and populations, the vegetation distribution in the central 
region is relatively fragmented, so the aggregation phenomenon 
is not notable (Zhang et  al., 2018). However, the availability 
of high-resolution remote sensing data is limited by factors 
such as cloudiness and data computational efficiency, causing 
difficulties in the exploration of local distribution patterns of 
vegetation in more detail on long time scales.

The obtained NDVI growth rate was slightly lower than 
that determined by Chen et  al. (2020) because the vegetation 
restoration area of the Qinghai-Tibet Plateau was mainly located 
in Sichuan Province and Qinghai Province, which occur in 
the eastern and northern parts, respectively, of the plateau. 
These provinces experienced better vegetation recovery due to 
grazing control, reforestation, and climate change. However, 
the effect of vegetation recovery was limited in Tibet due to 
its geographical location and topography, which deserves more 

FIGURE 10 | Spatial distribution of correlation coefficients and significance between NDVI and nighttime light data in Tibet from 2013 to 2020.
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attention. In addition, regarding future trends of vegetation, 
the change trend in most vegetation areas was not notable, 
and there occurred a risk of degradation, which is similar to 
the conclusion of Chen et  al. (2020).

Global Moran’s indices of the NDVI in Tibet from 2001 
to 2020 were extremely significant, which indicated that the 
aggregation phenomenon was obvious and continuous. However, 
further validation is necessary, which yields positive implications 
for the study of the elevation gradient on the distribution and 
migration of vegetation (Walker et  al., 2014). In addition, the 
vegetation in Tibet at the local scale is fragile, and the control 
mechanisms of vegetation change are complex. The reasons 
for the influence of anthropogenic and climatic factors on 
NDVI trends should be  further investigated via quantitative  
analysis.

CONCLUSION

In this study, NDVI time-series data from 2001 to 2020  in 
Tibet were obtained based on MOD13Q1 data retrieved from 
the Google Earth Engine platform. The coefficient of variation 
method, Theil–Sen median method with the Mann–Kendall 
test, and Hurst exponent method were used to identify the 
spatial and temporal changes and future trends of the vegetation 
cover characteristics of Tibet, and the main driving forces 
affecting the changes in vegetation NDVI were analyzed. The 
main conclusions in this study were as follows: (1) the 
distribution of NDVI values in Tibet exhibited the spatial 
characteristics of high values in the southeast and low values 
in the northwest. The vegetation improvement area accounted 
for 56.6% of the total study area, the stable unchanged area 
accounted for 27.5% of the total study area, and the vegetation 
degradation area accounted for only 15.9% of the total study 
area. (2) The NDVI changes in Tibetan vegetation over the 
past 20 years were not very volatile, and the areas with relatively 
low and moderate fluctuation changes dominated. The areas 
with high-fluctuation changes were scattered in the west, 
central, and east, and the areas with low fluctuation changes 
were mainly distributed in the southeast and northeast. 

(3) Regarding future change trends, the long time series of 
the vegetation NDVI in Tibet was generally persistent, and 
the total area of continuous improvement accounted for 41.2% 
of the total area of the region, mainly distributed in the 
northwest and southeast. (4) In regard to the drivers of NDVI 
changes, overall, climatic factors and population growth did 
not significantly influence vegetation NDVI changes in Tibet 
over the last 20 years. However, precipitation and human 
activities in the west were the main drivers of localized 
vegetation cover improvement.
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