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Millets constitute a significant proportion of underutilized grasses and are 

well known for their climate resilience as well as excellent nutritional profiles. 

Among millets, foxtail millet (Setaria italica) and its wild relative green foxtail 

(S. viridis) are collectively regarded as models for studying broad-spectrum 

traits, including abiotic stress tolerance, C4 photosynthesis, biofuel, and 

nutritional traits. Since the genome sequence release, the crop has seen 

an exponential increase in omics studies to dissect agronomic, nutritional, 

biofuel, and climate-resilience traits. These studies have provided first-hand 

information on the structure, organization, evolution, and expression of 

several genes; however, knowledge of the precise roles of such genes and 

their products remains elusive. Several open-access databases have also been 

instituted to enable advanced scientific research on these important crops. 

In this context, the current review enumerates the contemporary trend of 

research on understanding the climate resilience and other essential traits in 

Setaria, the knowledge gap, and how the information could be translated for 

the crop improvement of related millets, biofuel crops, and cereals. Also, the 

review provides a roadmap for studying other underutilized crop species using 

Setaria as a model.
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Introduction

Crop productivity, limited by changing climatic conditions such as increasing 
temperature, drought, soil salinity, etc., imposes a severe threat on food security worldwide. 
Evidence suggests that expanding our study and utilizing neglected and underutilized 
cereals for sustainable agricultural production is imperative. Millets collectively form a 
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group of small-grained cereals, including several distantly related 
species. This group of crops is cultivated in adverse climatic 
conditions, such as high temperature and drought, with low 
agricultural inputs. The most widely grown small millets are finger 
millet (Eleusine coracana), pearl millet (Pennisetum glaucum), 
proso millet (Panicum miliaceum), foxtail millet (Setaria italica), 
and barnyard millet (Echinochloa crus-galli). Although less popular 
than major cereal crops, millets are a rich source of protein, 
resistant starch, micronutrients, antioxidants, and bioactive 
compounds (Kumar et al., 2018). The water use efficiency (WUE) 
and Nitrogen-use efficiency (NUE) of millets are also better than 
popular cereals. Also, the millets are gluten-free and have a low 
glycemic index (Muthamilarasan and Prasad, 2021). Foxtail millet 
is considered an alternative sustainable protein source compared 
to other cereals and millets (Sachdev et al., 2021). Being a rich 
source of zinc and iron, the consumption of millets imparts 
immunity (Kumar et  al., 2018). Altogether, small millets are 
promising cereals with the capability to ensure food security in the 
future. In the past 2 years, amid the recent COVID-19 pandemic, 
major emphasis has been shifted to the regular consumption of 
food that boosts immunity. Millets contain easily digestible 
proteins and a better essential amino acid profile than other cereal 
crops. These characteristics make millets nutritionally superior to 
other major cereals and desirable for ensuring food security amidst 
pandemics (Muthamilarasan and Prasad, 2021).

The genus Setaria, a group of panicoid grasses, belongs to the 
tribe Paniceae and is characterized by sterile bristles. This genus 
comprises more than 125 species distributed in temperate regions 
worldwide (Kellogg, 2017). However, foxtail millet (S. italica) and 
its wild progenitor green foxtail (Setaria viridis), remains the most 
studied millets in this genus. S. viridis is one of the most widely 
spread weeds. Setaria italica was domesticated from S. viridis 
~9–11,000 years back in China near the Yellow River valley. 
Further, it has been widely cultivated in arid and semi-arid regions 
(Pant et al., 2016). Tsang et al. (2017) have reported that foxtail 
millet was domesticated ~5,000 years back in Taiwan. Both 
S. viridis and S. italica (henceforth, S. italica and S. viridis will 
be collectively called Setaria) offer several advantages as compared 
to the established models viz. rice and maize, such as short life 
cycle (5–6 weeks), small diploid genome (395–500 Mb), short 
stature (10–30 cm), C4 photosynthesis. Since several millet species 
are shown to be resilient to adverse climatic conditions and biotic 
and abiotic stresses (Lata et al., 2013; Muthamilarasan and Prasad, 
2015), the study of the Setaria genus has gained popularity in the 
past decade. In particular, foxtail, pearl, and proso millet have 
been considered appealing substitutes for small grain production 
(Pant et  al., 2016). Further, C4 metabolism actuates food 
productivity by efficiently utilizing water, carbon, and nitrogen; 
therefore, elucidating the C4 metabolic pathways is important. 
Considering that Setaria is proven valuable for C4 photosynthesis 
study, it might enable the long-term goal of engineering C4 traits 
into staple crops, rice and wheat. A rapid-cycling mini foxtail 
millet mutant, xiaomi, was recently presented as a model system 
to study the C4 mechanism (Yang et al., 2020).

Altogether, the physiological as well as genetic, and climate 
resilience attributes of Setaria present it as a valuable model 
system for research (Peng and Zhang, 2021). Although there 
have been considerable advances in understanding the unique 
traits of Setaria, our interpretation of the underlying 
mechanism of its climate resilience is still in its infancy. Recent 
advances in genome sequencing, RNA-seq, and the discovery 
of unique trait-related QTLs have further provided momentum 
to millet research. Analysis of the available information for 
Setaria would lead to applying current knowledge to enhance 
our understanding of other crop species. The present review 
provides a comprehensive view of genome sequencing of 
Setaria, transcriptome and proteome analysis, publicly 
available databases, agronomically important trait-linked 
markers, and characterization of genes predicted from 
various platforms.

Setaria omics during the 
pre-genome sequencing era

Earlier foxtail millet was predominantly cultivated in the 
Chinese belts. Before the green revolution, the farmers repeatedly 
cultivated trait-specific landraces. Despite the consumption shift 
toward rice and wheat, foxtail millet was recognized for its climate 
resilience among marginal farmers. This led to the development 
of improved varieties and pure lines of foxtail millet from the “All 
India Coordinated Improvement Project for small millets” during 
the 1960s. Preceding the advent of molecular markers, the 
research in foxtail millet began with morphological markers. 
Initially, Restriction fragment length polymorphisms (RFLP) 
markers were used in foxtail millet to group accessions from 
various countries. These RFLP codominant markers detected the 
ribosomal DNA variability and grouped the foxtail millet 
genotypes into European, western European, and Asiatic lines 
(Schontz and Rether, 1998). The RFLP markers also successfully 
identified the historical recombination events with three types of 
length polymorphisms by atp6 probes in the mitochondrial 
sequences of foxtail millet (Fukunaga and Kato, 2003). Besides 
RFLP, the most prominent marker utilized in foxtail millet was 
Simple-sequence repeats (SSR). These markers were implied in 
varying populations to enumerate the Linkage disequilibrium 
(LD) values. The association analysis in S. viridis with SSR markers 
projected a higher LD decay than other cereals. Thus, the SSR 
markers exhibited novel marker-trait associations in foxtail millet 
(Wang et al., 2010). A higher diversity with a maximum LD value 
in various landraces in China’s yellow river detected the genetic 
richness in landraces than the cultivated species. Hence, these 
markers helped in understanding the effect of domestication and 
artificial selection in the cultivated lines. In this series, randomly 
amplified polymorphic DNA (RAPD) and Inter Simple Sequence 
Repeats (ISSR) markers were also utilized by Kumari et al. (2011) 
in analyzing the higher genetic variance in South Indian foxtail 
millet collections.
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In addition to diversity analysis, the molecular markers also 
resolved the ambiguities in the phylogenetic relationship of 
foxtail millet. In this aspect, a set of transposon display markers 
were utilized in the international collection. Transposon display 
is a modified form of AFLP that focuses on the long terminal 
repeats of retrotransposons (LTRs) and miniature inverted-
repeat transposable elements (MITE). These LTRs are 
concentrated in the centromeric and peri-centromeric regions. 
While MITEs are in the euchromatic regions. In foxtail millet, 
these LTRs and MITEs are identified in the mutant alleles of the 
Waxy gene (GBSS 1). These mutants have a TE insertion to 
produce a sticky endosperm and are found in the Asian 
collections. These TD markers identified in the waxy alleles were 
grouped into eight clusters by Hirano et al. (2011). In addition, 
98 novel intron length polymorphic markers (ILP) from rice 
were used in the molecular diversity analysis. Of these, 26 ILPs 
successfully classified 45 accessions in Setaria (Gupta et  al., 
2011). Further, molecular diversity with 45 SSR markers having 
di- and tri-nucleotide repeat motifs in 12 populations of Taiwan 
was shown by Lin et al. (2011). The genetic maps in foxtail millet 
have been constructed with RFLP, SSR, and SNP markers in 
trisomics, RILs, and F2 populations. The RFLP-based map with 
160 loci was generated from the trisomic lines in 
S. italica  ×  S. viridis. The total span length of this map was 
964 cM. This was the first successful attempt with 80% coverage 
across the chromosomes, revealing that S. viridis carried a gene 
for gamete fertility (Wang et al., 1998). After this, SSR markers 
were used to develop a linkage map, and their presence in the 
genome was predominant in the intergenic regions. With 100 
SSR markers in the F2 population between S. italica × S. viridis, 
this map was developed with a span length of 1,645 cM. There 
was an uneven distribution of markers in this map, with three on 
chromosome 3 and 18 on chromosome 9. The distribution 
pattern was due to the variations in high and low copy numbers 
across the genome and constructed in mapmaker version 3 using 
the kosambi mapping function (Jia et al., 2009).

The morphological traits, namely, anthocyanin pigmentation, 
length of bristles, plant height, non-glutinous seeds, seed size, and 
seed color, were used to distinguish the interspecific hybrids 
(Figure  1). The distribution of these traits in the F2 and their 
subsequent generations were involved in determining the nature 
of genes (dominance/recessive). Later, the cytological and isozyme 
markers were utilized in identifying their homologous pairing and 
the phylogeny in the related species. Using such an approach, 
S. pyconoma was found to have eight intermediate and 14 viridis 
type chromosomes, which provided information about its 
ancestry. Subsequently, molecular cytogenetics involving, 
Genomic in situ hybridization (GISH) and Fluorescence in situ 
hybridization (FISH) elaborated the similarities among the 
chromosomal structures in S. viridis and S. italica. Although the 
cultivated and wild species were morphologically different, they 
had similar cytological features. These molecular cytology tools 
also successfully distinguished the interspecific hybrids of italica 
x verticillata complex and facilitated grouping of the species in 

their respective gene pools (Benabdelmouna et al., 2001; Pallares 
et al., 2004; Brenner et al., 2015).

Further, screening of the germplasm based on their seed 
morphology using seed fluorescence imaging as per ISTA for 
varietal identification was adopted in the classical genetics’ 
characterization. Other essential biochemical markers utilized in 
the classical diversity analysis were based on the phenol test, 
ferrous sulfate test, and SDS-protein analysis. In the cluster 
analysis, the proteins quantified through SDS PAGE were implied 
as isozyme markers to group the accessions. Among all, the 
enzymes peroxidase and esterase were the crucially utilized 
isozymes for detecting polymorphism in foxtail millet. Thus, the 
pre-sequencing era in foxtail millet focused on documenting the 
wild species and sub-races of S. italica. Overall, these studies laid 
a foundation for understanding the allelic richness and the course 
of historical domestication events in the related species 
(Willweber-Kishiomoto, 1962; Khan, 1997; Haroun, 2002; 
Upadhyaya et al., 2009).

Genome sequencing and 
resequencing efforts in Setaria

The foxtail genome was decoded by Bennetzen et al. (2012) 
and Zhang et al. (2012). These two findings revealed the overall 
genetic potential of S. italica. The first draft by Bennetzen et al. 
(2012) comprised 400 Mb across nine chromosomes with a 
992-locus genetic map. The sequencing was performed by Sanger 
sequencing analysis in the seedlings of the cultivar Yugu 1 by Joint 
Genome Institute, United States. The genetic sequence revealed 
40% transposable elements in which long terminal repeat 
retrotransposons were the most abundant, and there were around 
24,000 protein-encoding genes. In addition, a genetic map based 
on these sequences representing 1,416 cM was constructed from 
the F2 of B100 ×  S. viridis. This map had 992 SNP markers 
identified by sequencing the 247 RIL progenies.

The second high-quality draft genome sequence of S. italica 
was reported by Zhang et al. (2012). The draft genome of 423 Mb 
across the nine chromosomes was sequenced by a whole-genome 
shotgun next-generation sequencing in the foxtail millet cultivar 
“Zhang gu.” The total number of genes annotated was 38,801, of 
which ~81% were expressed, and ~46% were transposable repeats 
(TE: 31.60% and DNA Transposon: 9.40%). Sequencing analysis 
revealed the presence of chromosome reshuffling events, where 
the Chr 7, Chr 9, Chr 3, and 10 of rice shared similarity with Chr 
2 and Chr 9 of foxtail millet. These results represented the course 
of domestication events and the phylogenetic relationships of 
foxtail millet with rice and other cereals. In addition, A2, a photo-
thermosensitive male sterile line, was also sequenced by Illumina 
GA II, and this was used to construct a genetic map. The 
comparative alignment of this sequence with Zhan gu identified 
542,322 SNPs, 33,587 indels, and 10,839 structural variants 
(Zhang et al., 2012). Later, the draft genome sequence was utilized 
to tap the stress-regulated gene families in foxtail millet.
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With the advancement in sequencing technologies, the 
resequenced genome assembly of foxtail millet was completed by 
Ni et al. (2017). Resequencing of 184 foxtail millet recombinant 
inbred lines updated the Zhang gu reference genome sequence. 
Approximately 16 Mb was added to the reference genome 
assembly as unanchored scaffolds, and the error correction with 
3,158 gaps in Yugu 1 reference was completed by a bin map 
construction. The study further determined QTLs for nine 
agronomic traits with two major QTLs for plant height. These 

QTLs exhibited 89% similarity to the sd1 gene in rice (Ni et al., 
2017). Further, QTL-seq analysis was performed involving whole-
genome resequencing using pair-end sequencing with bulk 
segregants of F2 obtained from Shinanotsubuhime × Yuikogne for 
heading date (Yoshitsu et al., 2017). Genome-wide comparison of 
three bulks, viz., early, late, and extremely late heading, revealed 
two associated QTLs for heading. The first QTL, qDTH2, was 
identified on chromosome 2 for late heading, whereas the second 
QTL, qDTH7, was identified on chromosome 7 for extremely late 

FIGURE 1

Genetic diversity of various seed-related traits in foxtail millet. Variation in anther color (A–D), panicle density (E–H), husk color (I–N), bristles  
(O–R), and panicle attitude (S–V) are shown. The names of the accessions are listed in Supplementary Table 1. figure not to scale.
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heading (Yoshitsu et al., 2017). Next, a map-based cloning and 
high-throughput sequencing of loose panicle 1 mutant with 
increased panicle lengths and grain size encoded a novel WRKY 
transcription factor. A single shift in the G-A transition of the fifth 
intron in LP1 resulted in three disorganized splicing events owing 
to an enlarged panicle attitude which could be  explored in 
developing bold grains in foxtail millet` (Xiang et al., 2017).

Furthermore, the sequencing effort involving dd-RAD 
sequencing of 142 foxtail millet core collection identified 844 
SNPs on chromosome 5–2,153 on chromosome 8 with an average 
SNP frequency of 25.90 per Mb. The genome-wide association 
study (GWAS) of this data revealed 81 trait-associated markers for 
10 traits across the genome (Jaiswal et  al., 2019). Recently, 
resequencing of 164 RILs generated from Longgu7 × Yugu 1 was 
also conducted to identify QTLs and SNPs. Approximately 
1,047,978 SNPs were detected between the parents. Three 
thousand four hundred thirteen bin markers were then used to 
generate a map having 3,963 recombinant breakpoints. Mapping 
and sequencing analysis depicted 47 QTLs for four traits: straw 
weight, panicle weight, grain weight per plant, and 1,000-grain 
weight. It also detected nine stable QTL clusters mapped on 
chromosomes 3, 6, 7, and 9 (Liu et al., 2020b). Deep sequencing 
was used to develop a high-density bin map with a 3,477-marker 
bin, which identified 26 QTLs associated with plant height (He 
et al., 2021).

Owing to the innovative sequencing technologies, several 
cost-effective genotyping by sequencing and RNA-seq have been 
carried out in this era (Supplementary Table 2). Such genotyping 
by sequencing 328 foxtail millet landraces and 12 green foxtail 
accessions presented a total of 5,677 single nucleotide 
polymorphisms for phylogenetic construction (Hunt et al., 2021). 
Another deep sequencing of long non-coding RNAs (lnRNA) in 
foxtail millet revealed their responses toward herbicides. Two 
thousand five hundred forty-seven lncRNAs were identified, of 
which 787 were known, whereas 1760 were novel. These lncRNAs 
were differentially expressed across the genotypes and could 
be  utilized in developing herbicide tolerance in foxtail millet 
(Wang et al., 2020).

Foxtail millet is known as a hardy crop. Deep resequencing of 
312 local landraces was performed to dissect its adaptation 
mechanism to various environmental conditions. Approximately 
3.02 million SNPs were detected in this genome-wide scan, and a 
pseudogene regulator viz., SiPRR37, for heading date was 
identified. This was produced from a Tc1-Mariner transposon 
insertion in the first intron, and it was also discovered to 
be responsible for adaptability to harsh climates in north-eastern 
ecoregions (Li et al., 2021a). These novel discoveries in foxtail 
millet accessions enhanced the curiosity to sequence new cultivars 
for dissecting key traits for manipulation by breeding. In this 
direction, the de novo genome assembly of Huagu 11 compared to 
Yugu 1 depicted the nature of imazethapyr tolerance in foxtail 
millet. The assembly size was 408.37 Mb with a scaffold N50 size 
of 45.89 Mb. About 627 protein-encoding transcripts were 
identified in Huagu11 compared to 723  in Yugu 1. Here, 

Ser-626-Aln substitution was identified in acetohydroxy acid 
synthase gene to confer imazethapyr tolerance in Hugua 1. The 
intraspecies comparison revealed 969,596 SNPs and 156,282 
indels with four chromosomal inversions (Wang et al., 2021c). The 
comprehensiveness and accurateness of genome sequence 
assemblies depend greatly on the techniques used for the task. 
Currently, Arabidopsis and rice genome sequence is the gold 
standard for other plant species and crops. Availability of gold 
standard genome sequence helps generate proper genotype and 
phenotype information for target gene discovery and 
prioritization, efficiently facilitating genome editing—however, 
most crops, including millets, lack gold standard genome 
assembly. The advancement of NGS technologies has greatly 
improved the closeness and correctness of genome assemblies 
(Kersey, 2019). In this context, the contiguity of the existing 
genome sequence of many crops has been improved through these 
NGS approaches (Belser et al., 2018). Similarly, applying advanced 
sequencing techniques might provide an improved genome 
sequence of foxtail millet, which will give a comprehensive 
understanding of genome architecture to discover agronomically 
important genes in this crop. Thus, the transition of sequencing 
technologies has paved the way to unravel the genomics of 
complex traits in foxtail millet which could be  utilized in 
developing improved varieties (Figure 2).

Omics resources in Setaria

Genetics and genomics

Molecular markers are the key tools required for assisting the 
breeding programs in crops. There are studies on molecular 
diversity with 40 SSR markers in Taiwan landraces (Lin et al., 
2012) and 77 SSR markers in green foxtail accessions (Jia et al., 
2013). These programs recorded the advantageous utility of SSRs 
in marker-assisted breeding of foxtail millet. To facilitate the 
breeders of foxtail millet, a database of markers in foxtail millet 
was also developed by Bonthala et al. (2014). This database is a 
repository for genic SSRs, genomic SSRs, and ILP markers. From 
the reference genome sequence of Yugu 1, 5,020 highly repetitive 
microsatellite motifs were successfully utilized to design 788 SSR 
primers. These primers were analyzed in S. italica and S. viridis, 
resulting in successful amplicons in 733 primers. These findings 
were used to analyze the presence of SSRs throughout its genome 
(Zhang et al., 2014).

Other than SSRs, studies on developing functional miRNA-
based markers from the conserved regions of foxtail millet and its 
related species were also developed with 100% amplification 
potential (Yadav et al., 2014). Later, implying ISSR markers in Coix 
and Setaria, their relatedness in cluster analysis was analyzed, 
suggesting that Setaria could be utilized as a model crop to tap the 
genetic potential of the non-sequenced crops (Dvořáková et al., 
2015). After the accessibility of the whole-genome sequence in 
S. italica, the GWAS in several accessions was performed to 
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formulate a haplotype map (Bennetzen et al., 2012; Zhang et al., 
2012; Jia et al., 2013). Recent studies with SNP markers and GBS 
were predominantly used in association analysis. Population 
structure analysis among the races by Upadhyaya et al. (2015) 
exhibited less diversity in the indica variety. This race was 
comparatively unique to Moharia and maxima from the 
international core collection. Chander et al. (2017) incorporated 
27 SSR and 4 EST-SSR in foxtail millet core collections.

Apart from analyzing the diversity for general traits, the CNL 
disease-resistant genes from a group of foxtail millet accessions 
were also used as markers in rice and Arabidopsis to identify their 
syntenic relationships. Among them, Si08 was similar to Os11 in 
rice for disease resistance (Andersen and Nepal, 2017a). Therefore, 
markers starting from RFLP to SNP were deployed in foxtail 
millet (Table 1), rendering it a model crop in cereals due to its 
higher transferability across species (Yadav et al., 2014). Among 
all the markers that were used in association analysis, it was found 
that the SNP markers resulted in a higher LD in germplasm. The 
association analysis with ddRAD approach in GWAS detected 844 
SNPs in chromosome 5–2,153 SNPs in chromosome 8 (Jaiswal 
et  al., 2019). Along with SNPs, segregation patterns and 
polymorphism in M2 mutants were analyzed with RAPD 

dominant markers (Anittha and Mullainathan, 2019). In addition, 
novel marker-trait analysis with ISSR markers for chlorogenic 
acid, catechin naringin, and myricetin concentrations presented a 
higher diversity for radical scavenging activity in foxtail millet, 
which could act as a base for stress breeding programs (Ghimire 
et  al., 2019). The current focus with recent studies in hybrid 
production was also conducted to diversify the male sterile 
cytoplasm in foxtail millet with cpDNA markers. Four different 
cytoplasmic groups among the populations from cytoplasmic 
genetic sequences were identified, which have to be  further 
increased in the near future to overcome cytoplasmic-specific 
pathogens (Liu et al., 2019a). Further, fingerprinting foxtail millet 
varieties using SSR and RAPD markers helped assess the genetic 
purity between CO (Te) 7 and the newly released variety, ATL1 
(Natesan et al., 2020).

A genetic map with 128 SSR markers was also successfully 
developed with a span length of 1239.90 cM in RILs (Qie et al., 
2014). Further, the reference genome sequence of Yugu 1 was used 
to develop 1,013 SSR markers. These markers were implied in F2 
to construct a high-density linkage map. This map was refined and 
produced maximum coverage of 1,035 loci across nine 
chromosomes. The total span length of the map was 1318.80 cM 

FIGURE 2

Timeline of advances in Setaria omics pre- and post-genome sequence release. The timeline of events in the breeding and genomics efforts 
completed for Setaria. The figure describes the significant achievements in classical and modern genetics.
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TABLE 1 List of markers developed in Setaria and their characteristic features.

Marker type Characteristics Population used Reference

AFLP Dominant scorable bands with PIC of 0.24 for 

drought

Genetic diversity for drought in 21 genotypes Nakhoda et al. (2020)

Dominant markers with scorable bands 14 agronomic traits in 134 genotypes for 

association analysis

Yazdizadeh et al. (2021)

AFLP/Transposon display 

markers

Variation in the insertion of TE in GBSS gene 

focuses on long terminal repeats of 

retrotransposons and miniature inverted repeat 

transposable elements

The wild and Asiatic collections for GBSS gene Hirano et al. (2011)

cpDNA marker Markers developed from chloroplast DNA from 

male sterile sources

Identifying male sterile cytoplasm Liu et al. (2019a,b,c,d)

EST-SSR Four polymorphic transferable SSRs were 

developed with 11 functional putative ESTs

Polymorphism in 12 cultivars Jia et al. (2007)

Codominant, repeatability with good generality 

between species

Korean landraces in S. italica Ali et al. (2016)

ILP ILP from rice, codominant with cross species 

amplification potential

45 accessions in S. italica for molecular diversity Gupta et al. (2011)

440 selected ILP primers with cross genera 

amplification were developed

4,049 ILP markers mapped to nine chromosomes Muthamilarasan et al. (2014a)

ISSR Co-dominant and variations between sequences Accessions from different agro-ecological regions 

of India

Kumari et al. (2011)

Co-dominant in nature with scorable and cross 

amplification potential

Comparative analysis in Coix and Setaria Dvořáková et al., 2015

Codominant markers in diversity analysis Germplasm accessions for antioxidants like 

catechin

Ghimire et al. (2019)

miRNA-based marker For identifying conserved sequences 176 pre-miRNA markers in five cultivars of S. 

italica

Yadav et al. (2014)

RAPD Dominant and scorable markers Accessions from different agro-ecological regions 

of India

Kumari et al. (2011)

Dominant markers with scorable bands Polymorphism in M2 mutants Anittha and Mullainathan, 2019

RFLP Co-dominant and length polymorphism for 

variation in repeats and restriction enzyme site 

variability

Ribosomal DNA variability in 43 accessions Schontz and Rether (1998)

RFLP-based linkage map with 160 loci and 964 cM RFLP-based map in Longgu 25 × Pagoda Wang et al. (1998)

Co-linearity of rice and foxtail millet; transferable 

cDNA clones to foxtail millet

Foxtail millet-rice comparative map Devos et al. (1998)

Co-dominant and length polymorphism 

designated as type I and III based on the 

recombination between atp6 genes

Length polymorphisms in mitochondrial 

sequences with atp6 as probes in germplasm

Fukunaga and Kato (2003)

SNP Trait-linked SNPs developed by deep sequencing Accessions of S. italica and S. viridis evaluated in 

five locations

Jia et al. (2013)

Co-dominant and single nucleotide 

polymorphisms for anthocyanin pigmentation

Land races of S. italica for stem color and leaf 

sheath

Bai et al. (2013)

Codominant and single nucleotide polymorphisms 

with high quality >50% MAF

Population structure analysis in indica, moharia 

and maxima

Upadhyaya et al. (2015)

Codominant and single nucleotide polymorphisms Association analysis by ddRAD-seq based 

approach

Jaiswal et al. (2019) 

High-depth resequencing and single nucleotide 

polymorphism

S. italica 312 accessions Li et al. (2021a,b)

mGWAS-based identification of natural genetic 

variation in the metabolites

Metabolomics analysis of 150 millet germplasm Wei et al. (2021)

(Continued)
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and mapped the position of 29 QTLs for 11 traits in join-map 4.3 
(Fang et  al., 2016). In addition to SSRs, SNP for linkage map 
construction in foxtail millet was used in various studies. Initially, 
with 992 SNP markers in RILs with a span of 1,416 cM, a linkage 
map was developed by Bennetzen et  al. (2012). Successively, 
another linkage map with SNP markers in RILs identified around 
59 QTLs. The total span length of the SNP formulated map was 
1934.60 cM. Through multiplexed shotgun sequencing, Zhang 
et  al. (2017a) performed a genome-wide marker discovery 
genotyping with MSTmap. This study also reported the location 
of the hybrid sterility gene on chromosome 6. Following this, 
next-generation sequencing methods were utilized in the reference 
genome sequence, which detected 2,668, 587 SNP loci across the 
genome. Using this data, 9,968 SNP markers in F2 were deployed 
to form a high-density SNP linkage map. Eleven major QTLs for 
eight agronomic traits were mapped on the chromosomes with 
MSTmap. The total span length in 9 linkage groups was 1648.80 cM 
(Wang et al., 2017). These constructed genetic maps could be used 
to identify candidate genes underlying key traits to carry out the 
effective marker-assisted selection in foxtail millet.

Further, map-based cloning for SiAGO1b in bulk segregation 
analysis and fine mapping with SSR and SNP markers refined its 
location in 46.30 kb region between the SNP markers 

SNP027326466 and SNP27372797 on chromosome 7 (Liu et al., 
2016a). Following this, the positional cloning of SiYGL1 for leaf 
color was performed by Li et  al. (2016a,b). Bulk segregation 
analysis in F2 for markers on chromosome 9 was focused, and it 
was mapped to a 288.50 kb region between the SSR markers 
CAAS9005 and b248. The candidate gene was refined to a 77.10 kb 
region between CAPS697 and InDel3595. Another approach for 
SisTL1 locus on chromosome 9 was performed in F2 populations 
with CAPS marker. This gene was refined to be located at a 91 kb 
interval between CAPS-8 (4,339,573 on chromosome 4) and 
CAPS-7 (4,430,449 on chromosome 4). The resequencing of this 
locus revealed three SNPs, with one in the 15th exon, the second 
in the intergenic region of chromosome 4 (4412036), and the third 
in the first exon (Tang et al., 2018). Similar studies with locus 
SisTL2 were fine mapped to a 12 Mb region from 46.80 Mb to 
58.90 Mb on chromosome 9. This gene led to the striped leaves, 
and it was located in a 1 Mb region with four putative mutants. On 
chromosome 9, this phenotype was caused due to an alteration in 
G to A and found to alter a splicing site (Zhang et al., 2017a). 
Recent studies in S. viridis located the reduced leaf angle 
phenotype in a homozygous locus at the 800 kb region on 
chromosome 5. This region contained 104 disruptive SNPs and 
687 indels. Also, it was found that the insertion of G at this locus 

TABLE 1 Continued

Marker type Characteristics Population used Reference

SNP and Indels High-Quality trait-linked markers used for map-

based cloning

To identify Jingu 21 and Yugu 1 derivatives Zhao et al. (2018)

Identification of loci linked to the following traits: 

response to climate, a “loss of shattering” trait, a 

predictor of yield in many grass crops

Genome assembly of S. viridis and de novo 

assemblies for 598 wild accessions

Mamidi et al. (2020)

Identification of SNPs and Indels and positional 

cloning of Setaria White Leaf Sheath Gene SiWLS1

S. italica genotype SSR41 Zhang et al. (2021a,b,c)

SSR Codominant and variations in repeats enriched for 

(GA)n and (CA)n. Linkage map with 81 SSR 

having 1,654 cM were constructed

Polymorphic markers in F2 between B100 (S. 

italica) × A10 (S. viridis) were used in 40 cultivars

Jia et al. (2009)

Codominant and variations in repeats Association studies for detecting LD Wang et al. (2010)

Codominant and variations in repeats for genetic 

diversity

Association studies in S. italica landraces Wang et al. (2012)

Codominant and variations in di- and tri-

nucleotide repeats

12 Populations in Taiwan Lin et al. (2011)

Codominant and variations in repeats 324 landraces of Taiwan Lin et al. (2012)

Codominant and variations in repeats 288 accessions in S. viridis for detecting LD values Jia et al. (2013)

Codominant and variations in repeats 159 markers mapped in S. italica were validated in 

8 accessions

Pandey et al. (2013)

Codominant and variations in repeats with an 

average PIC of 0.67

788 SSR in S. italica and S. viridis Zhang et al. (2014)

A high-density genetic map with SSR for QTL 

identification

F2 in Yugu 1 × Longgu 7 for genetic map 

construction

Fang et al. (2016)

Codominant and detected 63 alleles for agronomic 

and nutritional traits

Genetic variability of 30 accessions in Central 

Himalayan region

Trivedi et al. (2018)

SSR and EST-SSR Codominant, repeatability with a PIC of 0.31 Diversity in S. italica core collections Chander et al. (2017)
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Chr_5:41489494 controlled the ligule development in S. viridis 
(Mamidi et  al., 2020). These gene localizations in maps could 
be used for determining the key factors in the expression of a 
phenotype in genomics-assisted breeding (Supplementary  
Figure 1).

Following genome sequencing and annotation, identifying 
genes and their functional characterization is imperative to 
provide researchers with tools for biological research. The 
summary of gene families examined in Setaria is given in 
Supplementary Table 3. A study of transcription factor families in 
Setaria led to the identification of 147 NAC (Puranik et al., 2013), 
171 AP2/ERF (Lata et al., 2014), 209 MYB (Muthamilarasan et al., 
2014b), 149 bHLH (Wang et  al., 2018b), 124 C2H2-ZF 
(Muthamilarasan et  al., 2014a), 110 WRKY (Muthamilarasan 
et al., 2015a), 44 SCL (Liu et al., 2017a,b), 35 Dof (Zhang et al., 
2017b), 47 HD-ZIP (Chai et al., 2018) and 27 Trihelix transcription 
factors (Wang et al., 2018a). In addition to TFs, 53 members of 
SET domain-containing proteins known to catalyze histone lysine 
methylation were also identified (Yadav et  al., 2016). 
Pentatricopeptide repeat (PPR) protein and ADP-ribosylation 
factors family connected to post-transcriptional processes 
comprised 486 and 25 members, respectively (Muthamilarasan 
et al., 2016; Liu et al., 2016a). Further, gene families associated 
with RNA silencing complex viz. Dicer-like (8), Argonaute (19), 
and RNA-dependent RNA polymerase (11) were also studied 
(Yadav et al., 2015). Few of these genes showed altered expression 
in response to abiotic stress. Another genome-wide study 
identified 39 Nuclear Factor Y (NF-Y) genes in foxtail millet. Of 
these, SiNF-YA1 and SiNF-YB8 were responsive to salt and 
drought stresses (Feng et al., 2015). Genome-wide analysis of the 
14–3-3 family in foxtail millet and its downstream characterization 
revealed that Si14-3-3 proteins interact with SiRSZ21A (a 
nucleoplasmic shuttling protein) in a phosphorylation-dependent 
manner and are involved in multiple abiotic stress responses 
(Kumar et al., 2015). Analysis of different heat shock proteins, 
such as HSP100, HSP90, HSP70, HSP60, and sHSP, demonstrated 
that many of the genes were responsive during abiotic stress. In 
particular, expression of SisHSP-27 was significantly increased in 
the foxtail millet tolerant cultivar., suggesting its importance for 
further characterization (Singh et al., 2016). Also, foxtail millet 
aquaporins viz. 12 plasma membrane intrinsic proteins (PIPs), 11 
tonoplast intrinsic proteins (TIPs), 13 NOD26-like intrinsic 
proteins (NIPs), and 3 small basic intrinsic proteins (SIPs) were 
classified, and determination of their expression in response to 
various abiotic stresses highlighted the role of SiPIP3;1 and 
SiSIP1;1 in stress response (Singh et al., 2019). In addition, 11 
Cytokinin oxidase/dehydrogenases linked to hormone metabolism 
(Wang et al., 2014) and 20 Aldehyde dehydrogenases (Zhu et al., 
2014) were also identified through genome-wide analysis 
in Setaria.

Setaria is considered a valuable experimental system for gene 
discovery related to biofuel traits. In this regard, Ferreira et al. 
(2019) reported the analysis of gene families encoding for crucial 
enzymes linked to various bioenergy generation processes. 

Muthamilarasan et al. (2015b) described 13 gene families involved 
in secondary cell wall biosynthesis. In Setaria, 10 Phenylalanine 
ammonia lyase, 3 Cinnamate 4-hydroxylase, 5 4-Coumarate: CoA 
ligase, 2 Hydroxycinnamoyl CoA:shikimate hydroxycinnamoyl 
transferase, 1 p-coumarate 3-hydroxylase, 6 Caffeoyl-CoA 
3-O-methyltransferase, 10 Cinnamoyl-CoA reductase, 2 Ferulate 
5-hydroxylase, 6 Caffeic acid O-methyltransferase and 11 
Cinnamyl alcohol dehydrogenase gene family members were 
investigated (Ferreira et al., 2019). Furthermore, a recent study 
identified 56 Laccase family members linked to lignin metabolism 
(Simões et  al., 2020). In addition, various other gene families 
involved in multiple stress responses, disease resistance, seed 
storage or transport, such as WD40 (Mishra et al., 2014), 14–3-3 
(Kumar et al., 2015), ZIP (Alagarasan et al., 2017), SOD (Wang 
et al., 2018c), OASTL (Liu et al., 2019b), ATG (Li et al., 2016a,b), 
LIM (Yang et al., 2019), CDPK (Yu et al., 2018), NBS-LRR (Zhao 
et al., 2016), CNL (Andersen and Nepal, 2017b), SSP (Gaur et al., 
2018), MADS-box (Zhao et al., 2021a), BES/BZR (Liu et al., 2021), 
SNARE (Wang et  al., 2021a), and PTI1 (Huangfu et  al., 2021; 
Supplementary Table 3). Genome-wide identification and in silico 
analysis of phosphate transporter 1 gene (PHT 1) in Setaria viridis 
depicted 12 PHT 1 gene families for phosphorous uptake (Ceasar, 
2019). Karunanithi et al. (2020) identified 32 terpene synthase 
(TPS) gene family members in S. italica genome. It was also found 
that cytochrome P450 monooxygenase (CYP99A17) catalyzes the 
C19 hydroxylation of SiTPS8 to generate the corresponding 
diterpene alcohols. Recently, 94 amino acid transporters (AATs) 
have been identified and divided into 12 subfamilies in the foxtail 
millet (Yang et  al., 2021b). Further, characterization of the 
chitinase gene family in foxtail millet has identified 40 genes. Of 
these, a few genes might have a potential role in defense 
mechanisms under low temperature, drought, and osmotic stress 
conditions (Motukuri et al., 2021). Genome-wide identification 
and evolutionary analysis of the ARF gene family in foxtail millet 
revealed that duplication and purifying selection contribute to 
functional redundancy (Chen et al., 2021; Supplementary Table 3).

Transcriptomics

Studies examining the dynamics of the whole transcriptome 
have hinted at the differential expression of several classes of genes 
playing roles during condition-dependent experimental systems 
(Figure 3). Earlier, suppression subtractive hybridization (SSH) 
based transcriptome analysis of S. italica led to the identification 
of dehydration-responsive transcripts in susceptible and tolerant 
cultivars (Lata et al., 2010). Another SSH-based differential gene 
expression analysis identified a Lipid transfer protein, SiLTP, that 
showed significant involvement in drought and salt response in 
foxtail millet (Pan et al., 2016). Using reference-based and de novo 
assembly, various transcripts and simple sequence repeats (SSR) 
involved in C4 photosynthesis were identified in S. viridis (Xu 
et al., 2013). In addition, transcriptome analysis of different zones 
of S. viridis internode uncovered various genes and primary 
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metabolites involved in the transition from primary to secondary 
cell wall synthesis (Martin et al., 2016). Another transcriptome 
study of drought-tolerant S. italica cultivar “Yugu1” and drought-
sensitive “An04” revealed the altered expression of genes involved 
in phytohormone metabolism and signaling, detoxification, 
transcription factors, and stress-related proteins (Tang et  al., 
2017). RNA-seq was carried out for drought-resistant M79 and its 
parental lines to understand the relationship between drought 
stress and photosynthesis. The analysis showed that photosynthetic 
pathway-related genes were highly expressed in M79 (Shi et al., 
2018). Further, spatiotemporal transcriptome analysis of S. viridis 
inflorescence provided an overview of the regulatory network 
underlining sequential developmental stages (Zhu et al., 2018). 
Next, RNA-seq analysis of S. italica during water-deficit stress 
induced by PEG-6000 identified biological pathways involving 
ABA-response, proline and soluble sugar synthesis, reactive 
oxygen species (ROS) metabolism, channel protein genes, and 
transcription factors (Xu et  al., 2019). Leaf transcriptome of 
S. viridis during high light and low light conditions revealed that 
HL and LL affect sugar accumulation and photosynthesis in a 
contrasting manner (Henry et al., 2020). Furthermore, differential 
gene expression profiling identified various genes and pathways 
involved in the stress response mechanism during Uromyces 
setariae-italicae, and Sclerospora graminicola infection in S. italica 
(Li et al., 2015, 2020).

Genome-wide gene annotation and non-coding RNA studies for 
drought responses by deep sequencing exhibited the role of small 
interfering RNAs and long non-coding RNAs. The transcriptomic 
sequencing explored the role of 24-nt siRNA flanking genes beneath 
the upregulated genes under drought stress. The PEG stimulated 
drought samples were initially subjected to Illumina pair-end 
sequencing technology. Further RNA seq analysis identified 2,824 
genes responsive to drought expression patterns, and among them, 
48.23% were upregulated, and 51.77% were downregulated. The key 
genes expressed encoded the late embryogenesis abundant protein 
(LEA), heat shock proteins (HSP), and aquaporin phosphatase 2C 
(PP2c; Qi et al., 2013). Parallel Illumina sequencing was utilized in 
another study to decode the role of miRNA targets toward drought 
stress. Degradome sequencing of the An04-4783 inbred line 
established 81 miRNAs belonging to 28 families. Among these, 
14miRNAs were upregulated, and four were downregulated. The 
sequence information of the miRNAs revealed the role of 56 known 
genes and 26 novel, unknown genes in response to drought (Wang 
et al., 2016a,b).

Subsequently transcriptome analysis of mutants such as no 
pollen 1(NP1) characterized by defective pollen exine revealed that 
SiNP1 encodes a protein involved in carbohydrate metabolism 
and fatty acid biosynthesis (Zhang et al., 2021a,b,c). Similarly, the 
characterization of SiBOR 1 for boron accumulation in foxtail 
millet revealed a G-A transition at the seventh exon, and it is 
dominantly expressed in panicles. This mutant resulted in reduced 
boron with thicker cell walls in Setaria (Wang et al., 2021b). DNA 
methylation studies and transcriptome analysis revealed the role 
of epigenetic modifications during grain filling (Wang et  al., 

2021d). Recently, RNA-seq analysis of two mutants siaux1-1 and 
siaux-1-2 was performed to identify auxin-responsive factors 
beneath C4 root system architecture in shaping the root apical 
meristem (Tang et  al., 2022). The findings pave a domain for 
screening the mutants to understand the C4 mechanism. 
Transcriptional profiling of foxtail millet seed at different 
developmental stages depicted dynamic changes in fatty acid and 
phytosterol content (Yuan et al., 2021).

Proteomics and metabolomics

Proteomics and metabolomics have been employed to 
elucidate the protein and metabolite complement of a particular 
molecular network that regulates the biosynthetic, regulatory, and 
signaling pathways in various plant species (Figure 3). In Setaria, 
the accountability of global studies based on proteome and 
metabolome analyses is significantly less. Veeranagamallaiah et al. 
(2008) reported a 2-dimensional gel electrophoresis proteome 
analysis of S. italica during the salt stress response. Differential 
response of green foxtail and yellow foxtail has been studied 
during the application of Pyroxsulam using metabolite analysis 
(Satchivi et  al., 2017). A proteomic study of Zhangzagu3 was 
performed, which is known for its climate adaptability and disease 
tolerance, to evaluate the parental contribution to elite traits 
(derived from Zhangzagu3fu and A2). This study provided 
valuable information related to the molecular mechanism of 
heterosis in hybrid millets (Song et al., 2018). Further, Tandem 
mass tags (TMT) followed by liquid chromatography coupled 
mass spectrometry (LC–MS/MS) analysis identified 321 drought-
responsive proteins in foxtail millet (Pan et  al., 2018). In two 
recent studies, changes in the proteome of foxtail millet grains 
during drought stress led to identifying 104 and 83 differentially 
abundant proteins using 2-DE (Li et al., 2019a; Xu et al., 2020). 
Comparative proteome profiling after the foliar application of 
sodium selenite has identified 123 differentially expressed proteins 
in foxtail millet (Liang et  al., 2020). Primary and secondary 
metabolic profiling of PTGMS and hybrid foxtail millet lines and 
their comparison with rice led to identifying several species-
specific metabolites accumulated during different developmental 
stages (Li et al., 2018). Recently, metabolome analysis of S. viridis 
roots colonized with symbiotic bacteria, Herbaspirillum 
seropedicae revealed that nitrogen, starch, and sucrose metabolism 
linked metabolites were reduced compared to the uninoculated 
roots. In contrast, metabolites involved in purine, zeatin, and 
riboflavin pathways were significantly enriched (Agtuca et  al., 
2020). Using iTRAQ, 610 and 276 differentially expressed proteins 
(DEPs) in foxtail millet, Zhangzagu10 and the female/male parent 
lines were identified (Weng et al., 2020).

Using a system biology-based approach, foxtail millet has also 
been chosen as a model to gain a deeper insight into the C4 
photosynthetic pathway. Metabolic reconstruction, combined 
with transcriptome and proteome analysis, unraveled similarities 
and differences in the central metabolism of mature and immature 
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tissues in S. italica (de Oliveira Dal’Molin et al., 2016). Integrated 
transcriptome and metabolome analysis explained the 
comprehensive regulatory network underlying drought and 
salinity stress response in foxtail millet (Pan et al., 2020; Yu et al., 
2020). Quantitative determination of 62 volatile compounds has 
been performed using simultaneous distillation extraction (SDE) 
and gas chromatography–mass spectrometry (GC–MS) in four 
foxtail millet varieties, namely Jigu 42, Henggu13, Henglvgu1, and 
Heinuogu (Li et al., 2021b). Metabolome-based GWAS identified 
the basis of natural genetic variations in foxtail millet germplasm 
(Wei et al., 2021).

Functional databases and online 
resources

After decoding the whole-genome sequence of S. viridis and 
S. italica (Bennetzen et al., 2012; Zhang et al., 2012), advances 
were made to generate large-scale genomic resources. The first-
ever database for Setaria, the Foxtail millet Marker Database 

(FmMDb; http://www.nipgr.res.in/foxtail.html), was developed by 
Dr. Manoj Prasad Laboratory at the National Institute of Plant 
Genome Research (NIPGR), New Delhi, India (Bonthala et al., 
2013). It provides access to genomic-, genic-SSRs, and ILP 
markers linking basic and applied sciences in foxtail millet. 
Further, the Foxtail Millet Transcription Factor Database 
(FmTFDb; http://59.163.192.91/FmTFDb/index.html) comprised 
2,297 putative TFs belonging to 55 families (Bonthala et al., 2014). 
This database encompasses genomic location, sequence features, 
phylogeny, gene ontology (GO), and tissue-specific expression for 
all the TFs. In addition, the foxtail millet microRNA Database 
(FmMiRNADb: http://59.163.192.91/FmMiRNADb/index.html) 
provided marker information on 355 mature miRNAs, their 
secondary structure, and putative targets (Khan et  al., 2014). 
Setaria italica Functional Genomics Database, SIFGD1 was 
established to predict gene function, motif analysis, regulatory 
modules, and gene family (You et  al., 2015). This database 

1 http://structuralbiology.cau.edu.cn/SIFGD/

FIGURE 3

Multi-OMICS approach for crop improvement. Various advanced “OMICS” approaches used to understand different biological aspects in foxtail 
millet, from genotype to phenotype. These large-scale studies lead to the identification of biomarkers that paves the way for OMICS-assisted crop 
improvement.
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represents genome, transcript, and protein sequence information 
combined with data sources like Beijing Genomics Institute, 
NCBI, and Phytozome. Furthermore, considering the significance 
of transposable elements (TE) based markers, Yadav et al. (2015) 
constructed the Foxtail millet Transposable Element-based 
Marker Database (FmTEMDb; http://59.163.192.83/ltrdb/index.
html) from 30,706 TEs and 20,278 TE-based markers. In addition 
to the databases solely designed for Setaria, other public data 
sources, such as Plantgbd, Phytozome, and Gramene, also contain 
information for genome mining in millets (Duvick et al., 2008; 
Goodstein et al., 2012; Gupta et al., 2016).

Functional studies on stress tolerance 
traits

Numerous studies have reported millets adaptation and its 
molecular mechanism during the abiotic stress response. 
Investigation of foxtail millet varieties, Zhangzagu 10 and Jingu 21 
after herbicide tribenuron-methyl (TBM) treatment revealed that 
the grain yield decreased with increasing TBM concentration 
(Ning et al., 2015). In foxtail millet, high-temperature stress was 
linked to root-shoot growth and metabolism (Aidoo et al., 2016). 
Using parallel analysis of RNA ends (PARE) approach during 
drought stress, gene degradation and gene transcription data were 
combined to study uncapped mRNAs in foxtail millet (Yi et al., 
2015). Gene family identification and expression analysis of 
WRKY transcription factors indicated the putative role of 
SiWRKY066 and SiWRKY082 in dehydration and salinity stress 
response (Muthamilarasan et al., 2015a). Drought tolerance of 
foxtail millet was linked to plant growth-promoting rhizobacteria 
(PGPR), namely, Pseudomonas fluorescens, Enterobacter 
hormaechei, and Pseudomonas migulae (Niu et al., 2018). During 
low-nitrogen conditions, the root system was found to 
be decreased compared to increased biomass in foxtail millet. 
Expression of transporters, SiNRT1.1, SiNRT2.1, and SiNAR2.1 in 
root and SiNRT1.11 and SiNRT1.12  in the shoot was also 
increased, resulting in enhanced nitrate uptake and remobilization 
(Nadeem et al., 2018). Recently, an interesting study reported that 
30 mg/m3 sulfur dioxide (SO2) application leads to increased 
tolerance to drought stress by decreased stomatal apertures and a 
reduced leaf transpiration rate (Han et al., 2019a,b). Also, applying 
exogenous SO2 derivatives sodium sulfite and sodium bisulfite 
alleviates heavy metal stress in foxtail millet (Han et al., 2018). 
Sodium hydrogen sulfide (NaHS) treatment changes the proline 
content by modulating the activity of proline-5-carboxylate 
reductase (P5CR) and proline dehydrogenase (PDH) enzymes 
while combating cadmium (Cd) stress in foxtail millet (Tian et al., 
2016). In another study, adding 10 mM Ca2+ to the growth 
medium regulated superoxide dismutase and catalase expression, 
thereby increasing tolerance to salt stress (Han et al., 2019a,b). 
Quantification of polyamines in the salt-tolerant cultivar., Prasad, 
and susceptible cultivar., Lepakshi revealed that increased level of 
polyamine during salinity stress was due to enhanced activity of 

spermidine synthase and S-adenosyl methionine decarboxylase 
enzymes in the cultivar Prasad (Sudhakar et  al., 2015). Plant 
treatment with polyamines such as putrescine (Put) and 
spermidine (Spd) revealed their protective effect during salinity 
stress in foxtail millet (Rathinapriya et al., 2020). The HAK/KUP/
KT transporter family protein in S. italica, SiHAK1, was 
overexpressed in Arabidopsis to understand the K homeostasis 
during K+ deficiency and salt stress which provided the clue of the 
potassium homeostasis mechanism in foxtail millet (Zhang et al., 
2018a). Also, a study has shown the relation between an enlarged 
root system, increased expression of phosphate transporters 
SiPHT1.1, SiPHT1.4, and reduced expression of nitrate 
transporters SiNRT2.1, SiNAR2.1 in roots during phosphate 
limitation (Ahmad et al., 2018).

Transcriptome analysis of low potassium stress-tolerant 
variety Longgu 25 led to identifying 1982 DEGs and 18 candidate 
genes. Further, heterologous expression of one of the candidate 
genes, SiMYB3, in Arabidopsis promoted elongation of primary 
roots and K+ deficiency tolerance (Cao et al., 2019). Overexpression 
of SiMYB3 also increased low-nitrogen stress tolerance by 
regulating root growth in rice and Arabidopsis (Ge et al., 2019). 
Genome-wide identification of core ABA signaling components 
SvPYL1 to SvPYL8, SvPP2C1 to SvPP2C12, SvSnRK2.1 to 
SvSnRK2.11 and their expression profiling during salt, drought, 
and cold stresses have provided targets for C4 plant engineering 
(Duarte et  al., 2019). Overexpression of the SET domain-
containing protein SiSET14 in yeast unfolded its role in cold stress 
response (Yadav et  al., 2016). Liu et  al. (2019c) showed the 
relationship between stimulating rhizosheath (layer of soil 
particles adhered with root surface by root hairs and mucilage) 
formation and declining soil water content. Recently, conserved 
miR394 targeted F-box gene SiFBP6 was identified using 
RLM-RACE (RNA ligase mediated rapid amplification of 5′ cDNA 
ends), which positively regulated drought resistance in foxtail 
millet (Geng et al., 2021). Interestingly, P-solubilizing microbes 
Acinetobacter calcoaceticus EU- LRNA-72 and Penicillium sp. 
EU-FTF-6 has been shown to mitigate the effect of drought stress 
by inducing the accumulation of glycine betaine, proline, and 
sugars, and decreasing lipid peroxidation in foxtail millet (Kour 
et al., 2020). A recent study discussed various genomic designing 
approaches for foxtail millet for abiotic stress tolerance (Rana 
et al., 2021).

Among biotic stress responses, Digital gene expression (DGE) 
constructed from S. italica cultivar Shilixiang during rust 
pathogen Uromyces setariae-italicae infection shed light on the 
mechanism of rust-response in foxtail millet (Li et al., 2015). The 
transcriptional study of foxtail millet recently revealed various 
stress-responsive pathways during the early stage of S. graminicola 
infection (Li et al., 2020). Transcriptional profiling of foxtail millet 
infected with Ustilago crameri showed that SiCDPK and SiRboh 
might be positive regulators during stress response (Hao et al., 
2020). In another study, two maize insect pests, namely Spodoptera 
exigua (beet armyworm; BAW) and Spodoptera fugiperda (fall 
armyworm; FAW), were found to feed on Setaria plants as well. 

https://doi.org/10.3389/fpls.2022.892736
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://59.163.192.83/ltrdb/index.html
http://59.163.192.83/ltrdb/index.html


Aggarwal et al. 10.3389/fpls.2022.892736

Frontiers in Plant Science 13 frontiersin.org

The study further showed that while JA-induced response was 
similar in both maize and Setaria, secondary metabolites such as 
benzoxazinoids and volatiles production showed a significant 
difference in both the plants (Hunter et al., 2020). Foxtail millet 
varieties exhibit resistance against blight disease caused by 
Rhizoctonia solani Kuhn (Patro et  al., 2020). An ultra-density 
genetic linkage map identified QTLs linked to blast resistance in 
foxtail millet (Tian et al., 2021). Further, the current status of blast 
disease in foxtail millet caused by Pyricularia setariae Nishikado 
has been shown by Das et  al. (2021). Taken together, various 
studies have been performed elucidating the regulatory 
mechanisms involved in biotic and abiotic stress response in 
Setaria. A combination of OMICS-based tools can be employed 
in the future to decipher the key factors contributing to the stress 
tolerance trait in foxtail millet, drought stress in particular. This 
information would help researchers globally to understand the 
basis of stress response in plants and utilize the knowledge further 
to inculcate stress tolerance in other important cereal crops.

Functional studies on biofuel traits

The Panicoideae clade comprises commercially important 
fuel stock grasses, such as maize, sugarcane, sorghum, and 
switchgrass (Lawrence and Walbot, 2007). However, the 
polyploid genome is one of the major limiting factors for 
genetic studies and manipulation of these crops. In the past 
decade, being genetically closer to the popular fuel stock 
grasses, S. viridis and S. italica are widely accepted as a 
promising model for biofuel research (Li and Brutnell, 2011; 
Muthamilarasan and Prasad, 2015; Muthamilarasan et  al., 
2015b; Mauro-Herrera and Doust, 2016). Petti et  al. (2013) 
performed a deep analysis of S. viridis cellulose, neutral sugars, 
lignin, cellulose biosynthesis inhibitor response, and 
phylogenetic analysis of CESA genes and compared it with 
sorghum, maize, and switchgrass. Overexpression of PvMYB4 
in switchgrass (Panicum virgatum), led to increased cellulosic 
ethanol yield by suppressing the lignin deposition and phenolic 
fermentation inhibitors and balancing soluble sugars and 
pectic polysaccharides (Shen et al., 2013). In S. viridis, silencing 
of acyl-CoA transferase SvBAHD01 caused enhanced biomass 
digestibility; therefore, it was found to be a suitable candidate 
for further investigation (De Souza et al., 2018). Several gene 
families linked to biofuel traits, namely, PAL, C4H, 4CL, HCT, 
C3′H, CCoAOMT, CCR, F5H, COMT, and CAD have been 
identified in Setaria (Ferreira et al., 2019). Due to its small and 
diploid genome, Setaria, particularly green foxtail, appears to 
be a promising model to conduct future research deciphering 
its potential as a biofuel crop. Further, identifying regulatory 
pathways underlying the potential biofuel trait and an in-depth 
analysis of candidate genes using reverse genetics approaches 
have to be  done to explore the genetic determinant for the 
biofuel attribute regulation in Setaria, which can be utilized 
further for translational research.

Functional studies on photosynthetic 
traits

Fahlgren et al. (2015) developed the Bellwether Phenotyping 
Platform for automated recording of plant growth and multimodel 
phenotyping. Further, an open-source Plant Computer Vision 
(PlantCV) was developed for qualitative image analysis and used 
to detect the genotypic and environmental effect of plant height, 
biomass, water use efficiency (WUE), and architecture (Fahlgren 
et al., 2015). Various accessions have been studied to determine 
the WUE and heat stress tolerance in S. viridis (Saha et al., 2016). 
Thermal imaging and visible–near infrared spectroscopy were 
proven helpful in evaluating WUE and other physiological 
responses in S. italica (Wang et  al., 2016a,b). The relationship 
between WUE and plant growth was also determined by Feldman 
et al. (2018), and the loci linked to pleiotropic components of 
WUE were identified through linkage mapping. Forward genetics 
study in S. viridis led to the identification of the SvAUX1 (AUXIN1) 
gene responsible for sparse panicle1 (spp1) phenotype sharing 
significant homology with ZmAUX1 in maize (Huang et al., 2017). 
Depletion of β-carbonic anhydrase (β-CA) in S. viridis indicated 
that photosynthesis was not affected at normal CO2 partial 
pressure even after the decreased level of CA. Also, mesophyll 
conductance was the limiting factor with CA only during low CO2 
partial pressure (Osborn et al., 2017). In a similar report, CO2 
assimilation was enhanced, and photosynthetic efficiency was 
increased during low partial pressure due to high mesophyll 
conductance (Ubierna et al., 2018). In S. viridis and S. italica, the 
correlation between photoperiod changes and flowering time was 
studied, indicating that flowering in Setaria is quicker during 
short-day conditions. Also, long-day conditions employ secondary 
genetic regulation additional to those employed by short-day 
photoperiod (Doust et al., 2017).

Carbon isotopic signature (δ13C) from leaf was found to 
be  strongly linked to water use, transpiration rate, biomass, 
stomatal conductance, and transpiration efficiency in both 
S. viridis and S. italica (Ellsworth et  al., 2017). Further, as an 
extension to this study, genetic link elucidation of this correlation 
identified three QTLs for δ13Cleaf (Ellsworth et  al., 2020). In 
S. italica cultivar Yugu1 549 ethyl methane sulfonate-induced 
mutants were generated and screened for the disruption of Kranz 
anatomy, associated with C4 photosynthesis in many plants. About 
14 mutants with abnormal Kranz structures were identified, which 
will help elucidate genes involved in the development of the Kranz 
structure (Luo et al., 2018). SiYGL2, the homolog of AtEGY1, was 
shown to be involved in the leaf senescence and Photosystem II 
function in S. italica (Zhang et  al., 2018c). The genome-scale 
metabolic model was constructed in S. viridis that revealed the 
role of NH+

4 and NO−
3 ratio in balancing charges and 3-PGA/

triosephosphate shuttle in proton balancing (Shaw and Maurice 
Cheung, 2019). Ermakova et al. (2019) have reported that the 
overexpression of Rieske FeS protein results in higher Cytochrome 
b6f content leading to the removal of electron transportation limit 
in mesophyll and bundle sheath cells. Overall, the C4 
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photosynthesis and CO2 assimilation level were markedly 
increased (Ermakova et al., 2019). Higher photosynthetic rates 
were also observed at elevated CO2 levels, and the response was 
analogous to C3 plants (Li et al., 2019b). Foxtail millet mutant 
library was generated, proving a valuable genetic resource for 
future functional studies. Further, map-based cloning identified 
deletion mutation in the phytoene synthase encoding WP1 
exhibiting reduced chlorophyll and carotenoid in leaf and panicles 
(Sun et al., 2019). Transcriptome study of S. viridis leaves that 
serve as a source revealed that high light and low light exposure to 
a plant causes the contrasting deregulation of sugar sensors HXK 
and SnRK1 and trehalose pathway genes (Henry et  al., 2020). 
White light exposure increases H2S generation, leading to 
hypocotyl elongation in foxtail millet (Liu et al., 2019d). Due to C4 
photosynthesis, and high water and nitrogen use efficiency, foxtail 
millet is been a focus of researchers for years. However, genetic 
dissection of the photosynthetic traits to establish an in-depth 
understanding of the effect of environmental factors on yield is 
still in infancy. Advancement in the phenomics tools has provided 
high-throughput, non-destructive phenotyping platforms that 
hold the potential to be used for studying yield-related traits more 
efficiently. Further, identifying and validating molecular players 
linked to the photosynthetic traits and WUE/NUE is imperative 
to reduce the environmental impact on foxtail millet production.

Functional studies on nutritional traits

Foliar application of selenite in S. italica exhibited the 
potential of increasing Selenium and yellow pigment, thus 
increasing its dietary advantages (Ning et al., 2016). Numerous 
reports have shown the health benefits of foxtail millet, such as 
antiproliferative activity, lowering blood pressure, low glycemic 
index, glucose-lowering effect, multi-drug resistance in human 
HCT-8/Fu colorectal cancer, antioxidant properties, 
immunostimulatory activity, attenuation of Atherosclerosis 
(Zhang and Liu, 2015; Chen et al., 2017; Lestari et al., 2017; Ren 
et al., 2018a,b; Lu et al., 2018b; Marak et al., 2019; Srinivasan et al., 
2020; Liu et al., 2020a). Evaluation of phenolic antioxidants of 
foxtail millet indicated its potential in regulating postprandial 
hyperglycemia (Xiang et  al., 2019). Characteristics of various 
elements, GABA and polyphenols, β-glucan (Sharma et  al., 
2018b,c), and the effect of storage conditions on germination 
(Sharma et al., 2018a) were analyzed in S. italica. Gel forming 
ability of foxtail millet was increased significantly with the 
addition of CaCl2 and FeSO4, adding to its nutraceutical property 
(Nagaprabha and Bhattacharya, 2016). Further, physiochemical 
characterization of starch gel from green gram and foxtail millet 
was also performed by Nagaprabha et al. (2018). Terahertz time-
domain spectroscopy (THz-TDS) was employed for qualitative 
and quantitative analyses of (a) glutamic acid and glutamine from 
yellow foxtail millet, and (b) ternary amino acid from foxtail 
millet, highlighting the application of this technique for binary 
and ternary amino acids measurement as compared to other 

methods (Lu et al., 2016, 2018a). Soluble dietary fiber content 
analysis from foxtail millet bran showed several health beneficial 
properties (Dong et al., 2019; Ji et al., 2019). Aroma compound 
isolation from foxtail millet grain after boiling, freeze-drying after 
boiling, or roasting exhibited that unsaturated aldehydes, benzene, 
and alcohols surged after boiling. At the same time, freeze-drying 
lowered the content of volatile compounds linked to the aroma. 
On the other hand, roasting enhanced pyrazine content (Bi 
et al., 2019).

In a previous study, cooked millet was also shown as 
promising nutraceutical food for delaying type 2 diabetes (Ren 
et  al., 2016). Nutritional quality comparison elucidated that 
protein, fat, and fiber were higher in millet food products than in 
traditional rice products (Verma et  al., 2015). Setaria italica 
resistant starch content and effect of different treatment was 
determined to analyze the structure and digestibility (Babu et al., 
2019). In addition, the difference at the genetic level in starch 
physiochemical properties was determined in different accessions 
of Chinese foxtail millet and landraces found in Taiwan (Qi et al., 
2019; Yin et al., 2019). Further, foxtail millet has been assessed for 
yield, quality, and morpho-nutritional traits to explore the genetic 
variability (Srilatha et al., 2020; Karvar et al., 2021). Sharma and 
Sharma (2021) showed that bioprocessing, including soaking, 
germination, fermentation, and a combination of aforesaid 
treatments, reduced the antinutrients while enhancing the 
bioactive profile in foxtail millet grains. Also, different milling 
fractions of foxtail millet were analyzed for their phenolic profiles, 
antioxidant properties, and α-glucosidase inhibitory effects 
(Zhang et  al., 2021a,b,c). Further, it has been shown that the 
unsaturated fatty acids are responsible for forming volatiles, thus 
leading to an unpleasant aroma during germination in foxtail 
millet (Li et  al., 2021b). A recent study identified 18 long 
non-coding RNAs (lncRNAs) in relation to grain yield and 
predicted them to function as miRNA target mimics (Zhao et al., 
2020). The nutritional quality of foxtail millet was analyzed in 
response to elevated CO2 levels and found that eCO2 significantly 
enhanced the accumulation of K, Mn, Zn, and starch and 
promoted P accumulation. These findings advocate that foxtail 
millet holds great potential to provide food security and nutrition 
under eCO2 (Gong et  al., 2021). Collectively, these studies 
emphasize an array of health benefits and nutritional qualities of 
foxtail millet. However, most of these are only limited to 
demonstrating the effect of genetic variability, storage, and method 
of cooking on nutritional qualities. Metabolomics can be employed 
further to illustrate the primary and secondary metabolic 
compounds associated with these qualities. In addition, multi-
OMICs would help to understand the key players attributing to 
the health benefits of foxtail millet and other millets.

Functional studies on other unique traits

In situ hybridization mapping revealed that the apospory-
specific genomic region (ASGR) of Pennisetum squamulatum has 
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collinearity with chromosome 2 of S. italica (Sapkota et al., 2016). 
The anatomical study of the abscission zone (AZ) was performed 
to understand the difference in AZ development in the two closely 
related species, S. viridis and its domesticate, S. italica (Hodge and 
Kellogg, 2016). Further, the anatomy of early shoot development 
was investigated, specifically targeting Kranz anatomy initiation 
(Junqueira et al., 2018). Phenotyping assays were optimized for 
S. viridis at three developmental stages, viz. seed germination, 
early seedling, and adult plant growth, which will be helpful for 
physiological analysis of Setaria species and other panicoid species 
grasses (Acharya et al., 2017). Carbon and nitrogen isotope ratios 
in different tissues (leaves and grain) were determined to implicate 
the necessity of accounting for it further during paleodietary 
reconstructions (Lightfoot et al., 2016). Interestingly, the property 
of the foxtail millet shell as an efficient bio-sorbent was highlighted 
for the absorption of Cu, Zn, Cd, and Cr ions (Peng et al., 2018). 
Recently, variation in the utilization of N was shown at the 
seedling stage in different foxtail millet varieties (Erying et al., 
2020). Desai et al. (2018) established S. viridis as a model system 
to uncover the mechanism underlining the Time of Day of Anther 
Appearance (TAA) regulation. In situ localization study of 
phytoliths exhibited species-specific morphotypes in different 
tissues of Setaria species that could be  used for taxonomic 
characterization of Setaria (Bhat et al., 2018). Root microbiome 
examination of foxtail millet plants sampled from two 
geographically isolated locations indicated that the host plant 
assists the growth of specific bacteria in the rhizosphere (Jin et al., 
2017). Metagenomic analysis of rhizoplane and endophytic 
bacteria in wild S. viridis and domesticated S. italica also classified 
species-associated microbiome (Chaluvadi and Bennetzen, 2018). 
While studying the rhizome of dried foxtail millet, a gram-positive 
bacterial strain, Amnibacterium setariae was isolated and 
characterized (Kim et al., 2019).

Endophyte isolation from both root and panicle of S. viridis 
and S. pumila affirmed distinct and conserved microbial taxa 
across genotypes and geographical distribution (Rodríguez et al., 
2018). Aihemaiti et al. (2019) studied the effect of Vanadium (V) 
concentration on plant growth and the uptake of essential 
elements. At a concentration lower than 47.4 mg/L, V positively 
affected the accumulation of elements, such as P, Fe, Cu, Zn, and 
Mo, while at a higher concentration, accumulation was reduced. 
Root growth was more susceptible to increasing V concentration 
than shoot growth in S. viridis (Aihemaiti et al., 2019). In foxtail 
millet, it was found that Iso-potentials of PEG (used for drought 
treatment) and laundry detergent had a more adverse effect on 
seed germination and overall plant growth than PEG (Heidari 
et al., 2019). In a recent study, iron plaque (IP) formation was 
observed in the less studied grass S. parviflora which helps plants 
adapt to an iron-rich environment (Oliveira de Araujo et  al., 
2020). Transient expression in tobacco leaves revealed that foxtail 
millet PPLS1, a bHLH transcription factor associated with 
SiMYB85 controlled the purple color of pulvinus and leaf sheath 
(PPLS) trait used as an indicative characteristic of the authentic 
hybrids (Bai et al., 2020). Recently, the extract from foxtail millet 

leaves and the stem has shown an allelopathic effect on three 
different weeds (Dong et  al., 2019). Interestingly, the peptides 
derived from foxtail millet have demonstrated antioxidant and 
anti-inflammatory activity in HaCaT cells and RAW264.7 murine 
macrophages (Ji et al., 2020).

Breeding, molecular breeding, and speed 
breeding in Setaria

Foxtail millet is a diploid cereal free of gluten and has several 
nutritional emoluments. Breeding for foxtail millet to develop elite 
cultivars began in the 1950s (Paroda and Mal, 1989). Foxtail 
millet, being a self-pollinated crop with minute inflorescence, the 
pure-line selection was the most predominantly used method for 
developing superior cultivars in foxtail millet (Lata et al., 2013). 
This remained a barrier to exploiting the prevailing genetic 
richness in its gene pool. Recently, CO 6 and CO (Te) 7 were 
released as hybrid derivatives by overcoming these constraints by 
crossing using a standard hot water method of emasculation and 
approach method for dusting (Pramitha Lydia et al., 2021). Now, 
advanced molecular breeding tools are being employed to utilize 
this prevailing diversity in its gene pool. Several genetic diversity 
analyses represent the variability for all morphological, 
biochemical, and nutritional traits in its germplasm, proving a way 
to perform effective selection and hybridization techniques in 
foxtail millet to meet the key breeding objectives (Ghimire et al., 
2019). In addition, the availability of gene-specific and trait-linked 
markers from association analysis is an essential tool in developing 
high-yielding resilient varieties in foxtail millet (Vetriventhan 
et al., 2014).

After the availability of a complete genome sequence 
(Bennetzen et al., 2012; Jia et al., 2013), the breeding of foxtail 
millet has accelerated to inducing targeted mutation. Foxtail millet 
being a diploid crop, is feasible for dissecting observable mutants. 
Its smaller growth duration (95 DAS) also prefers a favorable 
condition to raise subsequent generations to develop a 
homozygous line within a year. Mutation in foxtail millet began in 
the mid of 70s (Gupta and Yashvir, 1975) and was initially used to 
develop elite cultivars of the previously released version. Recently 
with the joined venture of omics, the mutation breeding in foxtail 
millet has seen a different phase of success (Mamidi et al., 2020). 
Anittha and Mullainathan (2019) treated CO (Te) 7 with EMS and 
DES in various concentrations and visualized different chlorophyll 
and morphological mutations in M2 generation. This study 
confronted that EMS was more effective in attaining desirable 
variants in M2 generation (Anittha and Mullainathan, 2019). 
Generating mutant sources in foxtail millet serves as a new source 
for functional genomics. Recently, a library of mutants with 1,353 
independent M2 lines exhibited varying chlorophyll and 
morphological types developed from EMS. Of these, 16 M2 lines 
were resequenced, and by map-based cloning, Wp 1 gene was 
identified to have a significant role in chlorophyll accumulation. 
The results depicted an eight-base pair deletion located at the 6th 
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exon in LOC101786849. The wild Wp1 gene was studied to code 
phytoene synthase; therefore, the wp1 mutants exhibited reduced 
chlorophyll and carotenoid contents in leaves and panicles due to 
premature termination (Sun et  al., 2019). Later, advanced 
approaches as a beginning of reverse genetics were initiated by 
analyzing de novo assemblies of S. viridis. This study identified loci 
for three traits, viz., response to climate, non-shattering, and leaf 
angle, which is a major factor for yield. By incorporating 
CRISPR-Cas 9, the Less shattering 1 (SvLes 1) was validated for its 
role in controlling seed shattering. Comparative analysis of this 
gene in S. italica revealed that the same gene was non-functional 
due to an insertion of retrotransposon on domestication 
(SiLes1-TE). Thus, this trait could be manipulated in cultivars to 
prevent shattering losses in foxtail millet.

Developing mutants by spontaneous and induced mutations 
also serves to study male sterility. Although several Genic Male 
sterility (GMS), Photoperiod Genetic Male Sterile (PGMS), and 
Cytoplasmic Genetic Male Sterile (CGMS) were screened in 
China, the successful male sterile system that is still used in hybrid 
seed production is Partial Genetic male sterility (PAGMS). Using 
this, two superior cultivars, Yugu 1 and Zhaogu 1 were developed 
(Diao and Jia, 2017). Recent studies on mutagenic agents also 
revealed that lower doses of EMS were more effective in yielding 
desirable mutants, whereas higher doses resulted in meiotic 
abnormalities (Kumar and Pandey, 2021). Hence, breeding for 
desirable traits by a mutation in foxtail millet requires properly 
handling the mutagenic agents.

The recent avenue of breeding focuses on reducing the cycle 
of selection in developing superior varieties, reducing the time 
span of releasing cultivars to the farmers. Speed breeding focuses 
on inducing haploids, which could be essential in achieving rapid 
homozygosity. Such double haploid standard and haploid 
induction are yet to be manifested in foxtail millet. Overcoming 
this, an initiative for editing of SiMTL gene, which is orthologous 
to the maize haploid inducer gene, was prompted by Cheng et al. 
(2021). The study successfully achieved an average haploid 
induction rate of 2.8%. It was also found that this could 
be enhanced by developing knock-out mutants of SiMTL. Future 
approaches to inducing haploids and DH techniques will be more 
rewarding to millet breeders in developing genetic resources that 
could alter the phase of foxtail millet cultivation.

Hotspots in Setaria research

In recent years, Setaria has been considered an ideal model 
system for expanding the identification and characterization of the 
underlying mechanism of important agronomical traits (Figure 4). 
The shift in the dietary habits toward foxtail millet further focuses 
on improving its palatability and consumer preference for 
marketability. The consumer prefers a yellow-colored grain with a 
higher concentration of aldehydes which offer a sweet aroma. The 
yellow-colored grain also has a higher resistant starch content 
than other varieties. Molecular markers for selecting foxtail millet 

in rendering a preferable quality have a major thrust. Three genes 
control the color of seeds in foxtail millet, viz., B, I, and K. The 
genes B and I are mapped on chromosomes 7 and 9, while K is not 
mapped yet (He et al., 2015). In addition, a significant focus on 
reducing the amylose content to improve the cooking quality also 
plays a significant role in consumers’ choices. Following this, the 
second primary preference of the consumers is the consumption 
of unbroken grains in diets. Breeding for bold seeded types in 
foxtail millet with a maximum grain recovery during threshing is 
a major issue that must be resolved in the upcoming years. Setaria 
is highly nutritious and rich in protein and minerals, including 
iron and zinc. Inclusively, research on improving its folate and 
selenium content has been initiated to enrich its overall value (He 
et  al., 2015). The Second International Setaria Genetics 
Conference, held at the Donald Danforth Plant Science Center, St. 
Louis, MO, United States, has highlighted the progress of research 
work in Setaria till March 2017 (Zhu et al., 2017). Research in the 
past decade has uncovered several aspects of Setaria with a major 
focus on the domesticated variety, S. italica. However, considering 
the importance and present demand of foxtail millet, extensive 
work is needed to elucidate the basis of genetic variation among 
their germplasm and exploit this information further for crop 
improvement. Precisely, identification of foxtail millet cultivars 
exhibiting tolerance to multiple stress needs to be  conducted. 
Evaluation of these cultivars holds the potential of using this trait 
in climate-smart agriculture. In addition to the current reports 
presenting the transcriptome analysis of Setaria, proteomic and 
metabolomic investigation should be performed to complement 
the current information and finally draw a hypothesis. Further, 
identifying and characterizing genes involved in the biotic, abiotic, 
and combined stress response in Setaria is important to find the 
biomarker linked to stress tolerance.

Exploring the correlation between photosynthetic traits and 
different climatic conditions with the crop yield is also necessary 
for nutrient management and yield enhancement. High-resistant 
starch content is another quality that needs to be investigated in 
detail to understand how this can be utilized in the regular diet for 
health benefits and disease prevention. In a previous study, 
biofortification in millets was proposed as a promising approach 
for nutritional security (Vinoth and Ravindhran, 2017). However, 
due to the antinutrients such as phytic acid, tannins, and 
polyphenols, the bioavailability of important nutrients becomes a 
limiting factor. Therefore, reducing antinutrients using RNAi or 
genome editing tools (CRISPER, TALENs, ZFNs, etc.) and/or 
enhancing the bioavailability of nutrients with the targeted 
expression of specific promoters can be focused as the area of 
research to utilize the nutritional potential of foxtail millet 
efficiently. A major issue with millet flour is rancidity, which 
persists because of high-fat content and lipase activity. An effective 
approach should be  standardized to decrease the activity of 
rancidity-causing enzymes, leading to improved shelf life and 
long-term use of millet flour. Furthermore, our understanding of 
the biofuel traits of Setaria species has to be expanded to make this 
trait useful while engineering other crops.
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Enhancing experimental design for the 
improvement of crops under 
ever-changing climatic conditions

Several studies have been conducted at different 
developmental stages or in response to multiple stresses and have 
identified candidate genes, which could be considered markers for 
crop improvement. Overexpression and knockdown of these 
genes have been performed in the native or heterologous system 
to comprehend their function. Methods for stable and efficient 
transformation of Setaria have been established for reverse 
genetics analysis of the genes identified from various experiments 
(Martins et al., 2015a,b; Saha and Blumwald, 2016; Van Eck, 2018; 
Rathinapriya et al., 2019; Nguyen et al., 2020; Santos et al., 2020; 
Sood et al., 2020). The shoot tip-based genetic transformation 
method has also been optimized for foxtail millet (Yang et al., 
2021a). Also, the virus-mediated overexpression (VOX) vector 
based on Foxtail mosaic virus (genus Potexvirus) has been 
developed for protein expression in Setaria (Bouton et al., 2018). 
Earlier, foxtail mosaic virus (FoMV)-induced gene silencing 
(VIGS) was also established for functional genomics studies (Liu 

et al., 2016b). Further, successful attempts for gene editing and 
virus-induced flowering (VIF) have been made using the foxtail 
mosaic virus (Mei et al., 2019). Few studies have also optimized 
the reference gene for RT-PCR during developmental stages and/
or stress responses in Setaria that can be  used further for 
expression analyses (Lambret-Frotté et al., 2015; Martins et al., 
2016; Nguyen et al., 2018).

Pan et al. (2014) identified and characterized a seed-specific 
promoter pF128 in foxtail millet. During genome-wide analysis 
of the NF-Y gene family and following transcriptome study 
identified two genes (SiNF-YA1 and SiNF-YB8) were highly 
responsive to salt and drought stresses. Overexpression of SiNF-
YA1 imparted drought and salt tolerance in Arabidopsis plants by 
regulating the expression of stress-related genes (Feng et  al., 
2015). Foxtail millet Abscisic acid stress ripening protein, SiASR1 
overexpression, leads to enhanced tolerance in tobacco by 
modulating the expression of oxidation-related genes, viz. 
NtRbohA, NtRbohB, NtCAT, NtSOD and NtAPX (Feng et  al., 
2016). Functional characterization of SiASR4 elucidated that 
ABA-responsive DRE-binding protein (SiARDP) was found to 
be  upstream of the promoter region. Also, overexpression of 

FIGURE 4

Foxtail millet as a model crop to translate the information in other crops. Foxtail millet is considered an ideal model system due to its physiological, 
genetic, and climate resilience attributes.
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SiASR4 in Arabidopsis and foxtail millet imparts drought and salt 
tolerance via an ABA-dependent pathway (Li et  al., 2017). 
Similarly, SiLTP identified through Suppression subtractive 
hybridization (SSH) analysis was also regulated by SiARDP. Plants 
overexpressing SiLTP showed enhanced resistance, while RNAi 
plants exhibited sensitivity to drought and salt stress compared 
to wild-type foxtail millet plants (Pan et al., 2016). SiCDPK24 
overexpression in Arabidopsis improved plant survival rate under 
drought stress by modulating the expression of genes, viz. 
RD29A, RD29B, RD22, KIN1, COR15, COR47, LEA14, CBF3/
DREB1A, and DREB2A (Yu et  al., 2018). Double zinc finger 
sequence harboring LIM domain-containing protein analysis 
pointed toward the presence of multiple stress-related 
cis-elements in the promoter of SiWLIM2b. Overexpression of 
SiWLIM2b in rice further advocated its possible role in multiple 
stress responses (Yang et  al., 2019), making it an interesting 
candidate for future studies. In contrast, Kaur et  al. (2018) 
showed the effect of overexpression of Arabidopsis AGG3 gene in 
S. viridis that positively mediate stress response and yield. During 
the genome-wide study of autophagy-associated genes gene 
family, a novel gene SiATG8a was identified whose heterologous 
expression led to improved drought and nitrogen starvation 
stress in Arabidopsis and rice (Li et  al., 2016a). Expressing 
SiMYB3 in the heterologous system caused enhanced 
low-nitrogen stress tolerance by regulating root growth (Ge et al., 
2019). Transgenic S. viridis plants overexpressing Brachypodium 
distachyon MATE gene showed increased tolerance to aluminum 
stress and higher root citrate exudation (Ribeiro et al., 2017). 
Overexpression of SiMYB3 in Arabidopsis promoted elongation 
of primary roots and K+ deficiency tolerance (Cao et al., 2019).

Aquaporins, SvPIP2;1 and SvNIP2;2, were expressed in 
Xenopus laevis oocyte to determine their water permeability. 
It was observed that during cell expansion in the stem, 
SvPIP2;1 serves as a water channel, and SvNIP2;2 mobilizes 
water and solutes from mature internodes (McGaughey et al., 
2016). Map-based cloning identified a gene SiYGL1 linked to 
yellow leaf mutation that regulates a set of genes involved in 
photosynthesis, thylakoid development, and chloroplast 
signaling in S. italica (Li et al., 2016b). Characterization of 
Argonaute mutant, siago1b, followed by RNA-seq based 
comparison of wild-type and mutant plants, highlighted 
SiAGO1b function in energy metabolism, cell growth, 
programmed death, and abiotic stress responses in foxtail 
millet (Liu et  al., 2016c). Another gene involved in the 
developmental process, SiTTG1, was also found to regulate 
salinity and high glucose stress response in foxtail millet (Liu 
et al., 2017a,b). Mutation in the Loose panicle 1 (LP1) gene in 
S. italica exhibited aberrant branch morphology, semi-
dwarfism, and enlarged seed size (Xiang et  al., 2017). 
Interestingly, brassinosteroid biosynthesis plays an essential 
role in the underlining alteration in inflorescence architecture 
(Yang et  al., 2018). The transcription factor, SiNAC1, 
positively regulates leaf senescence in Arabidopsis in an 
ABA-dependent manner (Ren et  al., 2018a,b). Loss of 

function mutation in both SiSTL1 and SiSTL2 genes leads to 
growth retardation, reduced chloroplast biogenesis, and leaf 
vein distances in an irregular manner in foxtail millet (Zhang 
et al., 2018b; Tang et al., 2019). Phosphate transporter SiPHT1 
silencing in foxtail millet promoted several lateral roots and 
root hair, whereas decreased total and inorganic P 
accumulation in root and shoot (Ceasar et al., 2017). Further, 
the expression of PHT1 family genes leads to low phosphate 
stress tolerance in foxtail millet (Roch et al., 2020). RNAi of 
SvBAHD01 causes reduced feruloylation of the cell wall in the 
stem, thus increasing biomass digestibility in S. viridis (De 
Souza et  al., 2018). Identification and characterization of 
BRASSINOSTEROID INSENSITIVE 1 (BRI1) showed the 
conserved role of SiBR1 in BR signaling in foxtail millet 
(Zhao et al., 2021b).

Conclusion

Most of the current research in Setaria focuses on genetic 
analysis-based QTL identification and transcriptome studies. 
However, proteome and metabolome analyses, key gene 
identification, and their characterization are still in infancy. 
Setaria, an annual diploid, offers scientists amenable features 
to explore as a model crop for tapping the hidden potential in 
underexplored crops. Current trends in foxtail millet also 
focus on its C4 mechanism. Identifying the regulatory genes 
beneath the C4 system establishes foxtail as a mini C4 model 
species. A collaborative effort with advanced breeding and 
phenotyping approaches for various agronomically essential 
traits is required to develop novel varieties of foxtail millet. 
There is also a crucial need to further explore the genetic 
resources of foxtail millet to identify several key molecular 
markers for performing trait genetics and association 
mapping. These findings would lead to marker-associated 
crop improvement in foxtail millet, and analogous markers 
can be studied in other related crops. Thus, applying advanced 
omics approaches will unravel the natural genetic variation in 
foxtail millet germplasm collection and open new 
opportunities for crop improvement in other crops. Also, 
foxtail millet could be used as a reference crop to understand 
the evolutionary relationship among other millet crops. The 
advancement of research and generated information helps 
study other panicoid grasses and related food and 
bioenergy crops.
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