
Frontiers in Plant Science | www.frontiersin.org 1 July 2022 | Volume 13 | Article 893017

ORIGINAL RESEARCH
published: 14 July 2022

doi: 10.3389/fpls.2022.893017

Edited by: 
Yong-Bi Fu,  

Agriculture and Agri-Food Canada, 
Canada

Reviewed by: 
Deqiang Zhang,  

Beijing Forestry University, China
 Peter Harrison,  

University of Tasmania, Australia

*Correspondence: 
Francois du Toit  

fdutoit@student.ubc.ca

Specialty section: 
This article was submitted to  

Plant Breeding,  
a section of the journal  

Frontiers in Plant Science

Received: 09 March 2022
Accepted: 10 June 2022
Published: 14 July 2022

Citation:
du Toit F, Coops NC, Ratcliffe B and 

El-Kassaby YA (2022) Generating 
Douglas-fir Breeding Value Estimates 

Using Airborne Laser Scanning 
Derived Height and Crown Metrics.

Front. Plant Sci. 13:893017.
doi: 10.3389/fpls.2022.893017

Generating Douglas-fir Breeding 
Value Estimates Using Airborne 
Laser Scanning Derived Height and 
Crown Metrics
Francois du Toit 1*, Nicholas C. Coops 1, Blaise Ratcliffe 2 and Yousry A. El-Kassaby 2

1 Department of Forest Resources Management, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada, 
2 Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, 
Canada

Progeny test trials in British Columbia are essential in assessing the genetic performance 
via the prediction of breeding values (BVs) for target phenotypes of parent trees and their 
offspring. Accurate and timely collection of phenotypic data is critical for estimating BVs 
with confidence. Airborne Laser Scanning (ALS) data have been used to measure tree 
height and structure across a wide range of species, ages and environments globally. 
Here, we analyzed a Coastal Douglas-fir [Pseudotsuga menziesii var. menziesii (Mirb.)] 
progeny test trial located in British Columbia, Canada, using individual tree high-density 
Airborne Laser Scanning (ALS) metrics and traditional ground-based phenotypic 
observations. Narrow-sense heritability, genetic correlations, and BVs were estimated 
using pedigree-based single and multi-trait linear models for 43 traits. Comparisons of 
genetic parameter estimates between ALS metrics and traditional ground-based measures 
and single- and multi-trait models were conducted based on the accuracy and precision 
of the estimates. BVs were estimated for two ALS models (ALSCAN and ALSACC) representing 
two model-building approaches and compared to a baseline model using field-measured 
traits. The ALSCAN model used metrics reflecting aspects of vertical distribution of biomass 
within trees, while ALSACC represented the most statistically accurate model. We report 
that the accuracy of both the ALSCAN (0.8239) and ALSACC (0.8254) model-derived BVs 
for mature tree height is a suitable proxy for ground-based mature tree height BVs (0.8316). 
Given the cost efficiency of ALS, forest geneticists should explore this technology as a 
viable tool to increase breeding programs’ overall efficiency and cost savings.

Keywords: airborne laser scanning, breeding value, tree phenotyping, tree crown characteristics, field trials

INTRODUCTION

Planted forests cover over 294 million hectares worldwide, an increase of 123 million hectares 
since 1990 (FAO and UNEP, 2020). These forests are primarily established for productive 
purposes, and are rapidly becoming the principal source of industrial wood production (Evans, 
2009; FAO and UNEP, 2020). Plantation development has increased in importance since the 
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mid-20th century, and it has been shown that using genetically 
improved seeds has helped in realizing substantial financial 
gains when compared to unimproved planting stock (Chang 
et al., 2019). However, unlike agricultural crops, breeding woody 
plants is more complex, takes longer, and is more expensive 
due to the delayed sexual maturity, large physical size of trees, 
and test site heterogeneity (Lebedev et  al., 2020).

Tree improvement is the application of quantitative genetic 
principles and the art of breeding, with the aim of developing 
genetically improved trees to increase the economic value of 
a planted forest (White et  al., 2007). Programs can reduce 
rotation times and improve the efficiency and reliability of 
reforestation, as well as increase industry competitiveness (Stoehr 
et  al., 2004; BC FLNRO, 2018). For example, in Scandinavia, 
Scots pine (Pinus sylvestris L.), Norway spruce [Picea abies 
L. (Karst)], and silver birch (Betula pendula Roth) volume 
growth has been shown to increase from 10% to 25% over 
unimproved stock (Jansson et  al., 2017), while in British 
Columbia (BC), Canada, the volume gain for improved coastal 
Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] is currently 
between 20% and 30% (Isaac-Renton et  al., 2020).

In BC, progeny test trials are used to estimate genetic 
parameters such as heritability and breeding values to select 
elite trees for deployment (White and Hodge, 1989; Fu et  al., 
1999; Stoehr et  al., 2010). Breeding values are a measure of 
the genetic worth of an individual, as a parent, relative to the 
breeding population (Xie and Yanchuk, 2003). To obtain accurate 
breeding values, the quality and quantity of phenotypic data 
are of high importance; large datasets representing many trees 
and across several locations representative of the breeding zone 
are necessary (Dhakal et  al., 1996). Diameter, height, and 
volume measurements at several time intervals are required 
to predict breeding values correctly and reliably, as well as 
evaluate individual tree performance, and to determine whether 
specific target gains are being met (e.g., St. Clair et  al., 2004; 
Stoehr et al., 2010). A significant amount of resources is required 
for data collection when measurements rely on field crews 
and the frequency of measurements required increases. 
Additionally, measurement error reduces the reliability of 
breeding values as lower precision implies lower heritability 
and higher variance of family mean estimation (White and 
Hodge, 1989). The labor-intensive and time-consuming nature 
of field data collection, costs, and difficulties in accurately 
measuring large, mature trees are major limitations in the 
traditional phenotyping methodology, and represent a known 
bottleneck in the tree improvement cycle (Araus et  al., 2018; 
Dungey et  al., 2018).

A new and innovative technology which holds significant 
promise as an efficient method to rapidly obtain accurate phenotypes 
for breeding value estimation is Airborne Laser Scanning (ALS). 
ALS is an active remote-sensing technology using a Light Detection 
and Ranging (LiDAR) sensor, where the range or distance from 
the sensor to a target is measured. The sensor emits a laser 
pulse, and measures the time taken for the energy from that 
pulse to be  reflected and returned (Baltsavias, 1999). At relatively 
low densities of data collection (1–5 pulses/m2), ALS was initially 
used for area-based measurements of forest volume and biomass 

(Næsset, 2002); however, with increased data density, individual 
tree crown approaches have become more commonplace 
(Jakubowski et  al., 2013). In an operational context, ALS has 
been used extensively to characterize large forested areas (Kaartinen 
et al., 2012; Wulder et al., 2012; White et al., 2013), while individual 
tree characterization has been extensively studied but not yet 
widely used forest management practices (Kaartinen et  al., 2012; 
Wallace et al., 2014). The use of remotely sensed data for phenotyping 
individual trees was proposed as early as the 1970s (Mitchell, 
1975). Technological improvements of remote-sensing systems 
mean that phenotyping platforms for whole forests using individual 
tree measurements such as those proposed by Dungey et  al. 
(2018) may soon be  realized, but currently few studies on this 
type of “high throughput” phenotyping exist (Lebedev et al., 2020).

To characterize individual trees, researchers have developed 
ALS-based metrics to reflect tree parameters (phenotypes). 
Measurements representing tree height, crown size, diameter at 
breast height (DBH), and stem volume have been derived, and 
assessed against reference trees to quantify their consistency. Several 
types of metrics have been developed, representing different 
strategies for summarizing tree features (see Yin and Wang (2016) 
for a comprehensive review). For example, point-based metrics 
related to tree height and density were used by Maltamo et  al. 
(2009) to predict tree attributes of Scots pine, while Bouvier et al. 
(2015) used ALS data to predict leaf area density. Shape-based 
metrics have been used to summarize vertical canopy structure 
(e.g., Coops et al., 2007), while ‘voxels” (three-dimensional cubes) 
have been used to describe the spatial organization of vegetation 
and empty space within forest canopies (Lefsky et  al., 1999). 
Metrics representing height from sufficiently dense ALS have the 
potential to produce more accurate breeding value estimates than 
ground-measured data, as they have been shown to be  more 
accurate than field measurements (Ganz et  al., 2019). In fact, 
errors in field measurements of tree height in dense forest canopies 
have been shown to be  up to two meters (Coops et  al., 2007), 
which is a significant issue in a plantation setting where canopy 
closure occurs relatively early in the rotation cycle (Ye et al., 2010).

Remote-sensing technologies are becoming well-established 
tools for phenotyping in plant and crop breeding (e.g., Shakoor 
et al., 2017; Crain et al., 2018), and these methods can be adapted 
to tree breeding to take advantage of the increased frequency 
and number of measurements made by remote-sensing platforms 
such as ALS. Currently, studies on the use of ALS data for 
measuring trees have occurred across a range of ages in the tree 
improvement cycle. Some studies have, for example, focused on 
the estimation of tree attributes, and data collection platforms. 
Estornell et al. (2021) determined structural parameters of walnut 
trees using ALS in a plantation setting in Spain in order to 
improve management. They found that crown and stem diameter 
and stem volume could be determined with reasonable accuracy, 
and concluded that the generated information could be  used to 
monitor and analyze changes in tree form, as well as biomass 
estimation. Camarretta et al. (2020) investigated quantitative genetic 
variation using high-density ALS data collected using a remotely 
piloted aerial system (RPAS). In their study, two eucalypt species 
were phenotyped and 25 productivity and architectural tree traits 
were calculated. These traits were analyzed for differences between, 
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and within species, with results highlighting the genetic-based 
diversity for traits such as crown density and structural complexity.

Phenotyping of individual Douglas-fir trees in a realized 
gain tree improvement trial was carried out by du Toit et  al. 
(2020, 2021), where they showed that genetically improved 
trees have statistically different crown characteristics than wild 
trees. Genetically superior trees were found to typically be taller, 
with a higher crown base height, leading to shorter, and also 
denser crowns. Branching aspects of these trees were also 
significantly different. Metrics created in these studies have 
the potential to describe trees beyond simple height 
measurements, and can be  used as selection criteria if they 
are able to differentiate trees from one another consistently 
and the variation is heritable. Additionally, these metrics can 
be  linked to physical tree measurements, which can assist tree 
breeders in adapting to a new form of phenotypic information.

To date, the majority of ALS phenotyping studies have been 
conducted primarily in younger forests focusing on tree height 
(e.g., Liziniewicz et  al., 2020). While DBH and height provide 
a reasonable estimate for growth and yield, researchers have 
highlighted that expected gains may decrease or disappear due 
to competition as trees near rotation age (Ye et  al., 2010). As 
such, tracking breeding values to rotation age is critical given 
the value of the timber of these stands is reached at time of 
harvest. As ALS-derived metrics can be  used to describe tree 
structure from planting to rotation age, additional research is 
required to focus on estimating the breeding value of mature 
stands close to rotation when inter-tree competition is at its 
maximum and trees are much larger than at the juvenile stage. 
Further, the creation of these novel correlated metrics provides 
the opportunity to increase the accuracy of estimated breeding 
values of the target traits by incorporating them into a multi-
trait genetic analysis (Mrode, 2014). The boost in accuracy 
seen in multi-trait models is dependent primarily on the absolute 
difference in genetic and residual correlations between the traits 
(Thompson and Meyer, 1986).

Here, we analyzed a Coastal Douglas-fir (P. menziesii) progeny 
test trial located in British Columbia, Canada. The objectives 
of this research were to (i) compare narrow-sense heritability 
and estimated breeding values (EBV) of ALS-derived mature 
tree height and traditional ground-based measured mature tree 
height, (ii) examine genetic parameter estimates and genetic 
correlations for the 35 studied traits, seven ground-based 
phenotypes and 29 ALS metrics, (iii) determine whether the 
inclusion of additional ALS metrics using a pedigree-based 
multi-trait linear model can improve the accuracy of ALS-derived 
mature tree height EBV, and (iv) conclude whether ALS-derived 
mature tree height EBV can replace ground-based estimates, 
when factoring in cost efficiencies.

MATERIALS AND METHODS

Study Area Description
The Lost Creek (49.37° N, 122.23° W) Douglas-fir progeny 
trial site is a typical test site in BC tree improvement programs 

(Figure  1), located within the Douglas-fir maritime breeding 
zone (Woods, 1993). The site is part of the Douglas-fir third-
generation progeny trials, which were established from 1976 
to 1986 on 88 test sites; Lost Creek was established in 1977 
(Yanchuk, 1996; Fu et  al., 1999). Climate at this site is mild, 
with temperatures typically between −3°C and 20°C, and the 
majority of precipitation falling in winter (Wang et  al., 2016). 
Lost Creek consists of 165 full-sib families planted in four-tree 
row plots in four replications (N = 2,640). When the site was 
measured in 2010, 2,041 trees were still alive. The climate 
attributes as well as relevant planting information are summarized 
in Table  1.

Field Data
In Douglas-fir progeny trials in BC, every tree is given a 
unique identification number. Positional and genetic 
information for trees are recorded; trees are planted with 
known local x/y coordinates in a numbered grid (including 
positions deemed “unplantable”). The female parent, male 
parent, cross, and replicate are also known. Phenotypic data 
are then recorded for individual trees, which include height, 
diameter, volume, and wood quality measurements for a 
number of years, as well as survival assessments. The field 
data used for comparison with ALS metrics were collected 
by the BC Ministry of Forests, Lands, Natural Resource 
Operations and Rural Development (BCFLNRORD) in 1982, 
1984, 1989, and 2010 when the trees were 5, 7, 12, and 
35 years old, respectively. Mature tree height at rotation age 
is one of the primary target traits for selection in Coastal 
Douglas-fir trials. However, with the purpose of increasing 
tree breeding program efficiency, selections are made using 
age 12 tree height EBV. This is feasible due to strong genetic 
correlations between juvenile and mature tree height (r > 0.7) 
and is seen as a worthwhile compromise between reduced 
selection accuracy and increased program efficiency (Stoehr 
et  al., 2010). All field measurements used in this analysis 
are summarized in Table  2.

ALS Data and Pre-processing
ALS data were acquired in the summer of 2018 using a 
Teledyne Optech ALTM Galaxy T1000 Sensor. The data were 
acquired with an approximate density of ~200 points per m2 
and up to seven returns per pulse. The final point cloud 
contained multiple flight lines, resulting in some variation of 
point density across the site. Data were pre-processed using 
LAStools (Isenburg, 2019) as well as the lidR package (Roussel 
et  al., 2020) implemented in R (R Core Team, 2021) and 
CloudCompare (Girardeau-Montaut, 2019) to visualize outputs. 
The data were classified into “ground” and “non-ground” by 
the vendor (McElhanney Consulting Services Ltd), and inspected 
manually for accuracy. Flight lines were then tiled (using the 
“lastile” function), before the “lasnoise” function (step = 1, 
isolated = 9) was used to classify and remove noise. A digital 
elevation model (DEM) was created using the “las2dem” 
function (step = 0.25, kill = 200) in order to normalize the 
point cloud.
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Individual Tree Detection and Metric 
Creation
To detect trees, the normalized point cloud was used to create 
a pit-free canopy height model (CHM), with a resolution of 
0.20 m (Khosravipour et  al., 2014). The Dalponte and Coomes 
(2016) segmentation routine in the lidR package was used to 
detect treetops using a local maxima filter with a 2.15 m window 
size and a minimum tree height of 10 m. These treetops were 
then used in a decision tree to grow individual crowns around 
the local maxima. Final algorithm parameters were selected 
based on visual inspection of multiple segmented point clouds 
using a variety of combinations for both window size and 
local maxima.

Metric creation was guided by du Toit et  al. (2020), with 
the intention to create multiple metrics that describe vertical 

structure in a tree, as well as height. Height percentiles (e.g., 
the 95th percentile) are commonly used as a proxy for field-
measured tree height (Kane et al., 2010; Goodbody et al., 2017; 
Jarron et  al., 2020). The vertical distribution of foliage which 
is linked to biomass, crown length, and branchiness can 
be  described by a variety metrics, calculated in a number of 
different ways (Van Leeuwen et  al., 2011). Point-based metrics 
such as the cumulative percentage of ALS returns in a certain 
layer, shape-based metrics such as a vertical probability 
distribution, or voxel-based metrics can all be used to describe 
different aspects of this foliage profile.

Candidate metrics describing different aspects of individual 
tree crowns including height and density-based metrics, as well 
as leaf area index, canopy gap profiles, and a vertical complexity 
index were produced using the lidR package (Roussel et al., 2020).  

FIGURE 1 | Lost Creek progeny trial showing ALS-detected trees matched with ground locations by repetition (Rep). A canopy height model (CHM) shows the 
configuration of trees within the trial. The location of the study area in BC, Canada is shown on the left.
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Shape and scale parameters for a Weibull Probability Distribution 
(WPD) were created as a proxy form canopy structure using 
the fitdistrplus package (Delignette-Muller and Dutang, 2015). 
When calculating shape and scale, tree heights were normalized 
between 0 and 1 to ensure that only crown shape (i.e., canopy 
structure) was investigated. Additionally, point clouds were 
voxelized at a resolution of 0.5 m using the VoxR package 
(Lecigne et al., 2018). Following voxelization, methods outlined 
by Lefsky et  al. (1999) were used to create vertical canopy 
structure metrics. A full list of metrics used in this analysis 
is found in Table  3. Height-based metrics correspond directly 
to the breeding objective of producing trees with greater volume, 
while other metrics produced correspond with secondary breeding 
objectives. Trees with larger amounts of clear wood (i.e., fewer 
branches/branch-free bole section) can be  characterized by the 
shape and scale parameter of the WPD, as a distribution with 
a narrow, high peak would represent a shorter tree crown. 
Additionally, voxel metrics and canopy gap metrics are related 
to canopy depth, which can be  a measure of branchiness as 
well as foliage density. An example of what these metrics 
represent is shown in Figure  2.

Linking ALS and Genetics Data
ALS-detected treetops (ALS treetops) were imported and buffered 
by 1.5 m. Ground tree locations from a planting tree grid that 
fell within the buffered ALS treetops were considered a match. 
Due to the nature of tree planting, the actual planting position 
of trees varied across the site and required manual correction 
to be  linked to the ALS treetops. In these cases, ground-
measured tree heights (at age 35) were compared with 
ALS-detected heights in order to ensure rational tree matches 
(i.e., ground-measured trees should always be  shorter than 
ALS-measured trees due to time lag between field campaigns). 
In some instances, trees could not be matched with confidence 
and were discarded. Upon completion of matching ground 
tree and ALS locations, the two datasets were joined to combine 
genetic information for each tree with ALS-derived metrics. 
The final number of progeny trees included in this analysis 
is 1,440 (out of a possible 2,041), from the crossing of 78 
parents. The number of progeny per parent ranged from 4 to 
65 with an average of 37.

Genetic Analysis
Estimates of variance components, breeding values, narrow-
sense heritability, genetic correlations, and their associated 
standard errors were conducted using the breedR package 
(Muñoz and Sanchez, 2021) in R (R Core Team, 2021). The 
“remlf90” function, which relies on the blupf90 family of 
programs (Misztal et  al., 2018), was used to fit single- and 
multi-trait models using the expectation maximization algorithm 
(EM) until convergence, followed by a single iteration of the 
average information algorithm (AI) to obtain approximate 
standard errors of the EM variance components estimates 
(Chateigner et  al., 2020). Default starting parameter estimates 
were used for single-trait analyses, while the multi-trait analyses 
used variance estimates from single-trait and covariance estimates 
from bivariate trait models. Prior to the final genetic analysis, 
the residuals of univariate models of all traits were tested for 
normality. Traits were transformed (log, square root, or inverse) 
where necessary to improve normality of the residuals of single-
trait models, and are appended with “.log,” “.sqrt,” and “.inv.,” 
respectively. A total of 11 metrics required a transformation; 
isd, zkurt, and lad_sd (log transformed), d10_35yr, iskew, 
zpcum7, shape, gfp_sd, lad_m, and lad_IQR (square-root 
transformed). Additionally, ikurt was inverse transformed.

The single-trait linear mixed models were fitted as

 = + +ay X Z a eβ  (1)

where, y  is the scaled and centered (mean = 0, variance = 1) 
response vector of phenotypic data, ββ  is the vector of fixed 
effects for replicate; a  is the vector of random additive genetic 
effects following ( ), σ20 aa ~ N A , where A  is the average 
numerator relationship matrix (A-matrix) based on the recorded 
pedigree and σ2

a  is the additive genetic variance; and e  is 
the vector of the random residual effects following ( ), σ20 ea ~ N I ,  
where I is the identity matrix and 2

eσ is the residual error 

TABLE 1 | Progeny trial summary for the Lost Creek Douglas-fir progeny tests in 
British Columbia, Canada, including experimental design and climate information.

Location 49.37° N, 122.23° W

Planting date Nov-77
# of crosses 165
Diallels 16–24
Total # of cross trees planted 2,640
Total # of site positions 3,244
# of trees alive (2010) 2,057
Spacing (m) 3 × 3
# of trees per cross 4
Approximate stems per Ha 748
Elevation (m asl) 424
Mean annual temp. (°C) 8
Warmest month temp. (°C) 16.2
Coldest month temp. (°C) 0.4
Mean annual precipitation (mm) 3,037
Mean summer precipitation (mm) 667

TABLE 2 | Ground-based measurements used in this analysis along with 
measurement units, measurement abbreviation, narrow-sense heritability (h2) 
estimates, and heritability standard error (SE).

Measurement Unit Abbreviation Heritability 
(h2)

Heritability 
SE

Height at age 35 (2010) cm ht10_35yr 0.406 0.073
Height at age 12 (1989) cm ht89.12 yr 0.238 0.053
Height at age 7 (1984) cm ht84.7 yr 0.146 0.041
Height at age 5 (1982) cm ht82.5 yr 0.139 0.039
Diameter at age 35 (2010) mm d10_35yr.sqrt 0.178 0.047
Diameter at age 12 (1989) mm d89.12 yr 0.109 0.034
Average of two pilodyn 
measurements at age 12

mm pil.avg 0.357 0.068

Height, heights measured from the ground for at a given age (year of measurement in 
brackets); diameter, diameter at breast height of trees for a given age (year of 
measurement in brackets); and pilodyn, wood density proxy.
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variance. X  and Za  are incidence matrices relating fixed 
and random effects to measurements in vector y.

The multi-trait linear mixed models were fitted as
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(2)

where i j′ ′  y y  is the matrix of scaled and centered 
phenotypes for all traits included in the model (i to j); 

i j′ ′  β β  is the fixed replicate effects for each trait; 

′ ′ a ai j

 is the random additive genetic effects for all 
the traits, and ′ ′ e ei j  is the residual error effects.

The incidence matrices X Xi j⊕ ⊕ ,  and Z Za ai j
⊕ ⊕  

relate the observations in ′ ′ y yi j  to elements of i j′ ′  β β  

and a ai j
′ ′



|| || , respectively. The symbols ⨁ and ‘specify 

the direct sum of matrices and the transpose operation, 
respectively. Finally, the expected value and variance–covariance 

TABLE 3 | Summary of candidate metrics and their abbreviations produced for ALS-derived trees, including relevant R packages.

Point-based metrics

Class Metric Abbreviation Notes R Package

Standard Height Percentile heights zq(X), where X = a percentile, 
e.g., 95

Percentiles of the canopy height 
distributions

lidR

Normalized mean height zmean
Standard deviation of height distribution zsd Description of variance
Skewness of height distribution zskew Description of variance
Kurtosis of height distribution zkurt Description of variance
Cumulative percentage of return in the 
xth layer

zpcum(X), where X = a 
percentile

Proportion of points above a quantile

Standard Crown Density Percentage of returns classified as 
“ground”

pground

Percentage of returns above the mean 
height of each tree

pzabove mean

Percentage of 1st - 5th returns p(X)th, where X = return number Based on a 5 return system
Mean leaf area density lad_m Calculated for 1 m thick layers through 

the tree
Vertical Canopy Structure Standard deviation of leaf area density lad_sd Description of variance

Mean gap fraction profile gfp_m Calculated for 1 m thick layers through 
the tree

Standard deviation of gap fraction profile gfp_sd Description of variance
Interquartile range of gap fraction profile gfp_IQR Description of variance
Vertical complexity index vci Normalization of the Shannon Diversity 

Index
Standard Intensity Maximum intensity of ALS returns imax lidR

Mean intensity of returns imean
Standard deviation of intensity returns isd Description of variance
Skewness of intensity returns iskew Description of variance
Kurtosis of intensity returns ikurt Description of variance
Percentage of intensity returned below 
the Xth height percentile

ipcumzq(X)

Shape-based metrics
Class Metric Abbreviation Notes R Package
Vertical Canopy Structure Weibull probability distribution Shape, scale Estimate of canopy structure using a 

shape (alpha) and a scale (beta) 
parameter

n/a

Voxel-based metrics
Class Metric Abbreviation Notes R Package
Vertical Canopy Structure Open gap zone Open Voxels containing no ALS points above 

the canopy
n/a

Closed gap zone Closed Voxels containing no ALS points below 
the canopy

Euphotic zone Euphotic Voxels in the uppermost 65% of cells 
that contain ALS points of a column

Oligophotic zone Oligophotic Voxels in the lower 35% of cells that 
contain ALS points in a column

Metrics are grouped as being point based, shape based, or voxel based.
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matrix of the genetic effects in Equation 2 are, respectively, 
equal to:
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where, σaii
2  and σa jj

2  are the genetic variances for traits i and 
j, respectively; and, σaij  is the genetic covariance between 
traits i and j. The symbol ⊗  indicates the Kronecker products 
of matrices. The expected value and variance–covariance matrix 
of e were equal to:
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The residual variances for traits i and j were σei
2 , and σe j

2 ,  
respectively, and σeij  was the residual covariance between traits 
i and j.

The estimated additive genetic ( 2ˆ aσ ,) and residual errors ( 2σ̂e )  

variances were used to calculate narrow-sense heritability ( 2ĥ ) 

and genetic correlations ( âr ) between traits i and j, following:
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where 2ˆ aσ  and 2ˆ eσ  are the respective estimated additive genetic 
and residual error variance components of a trait from the 
single-trait model (Equation 1) and ,

σ̂
i ja , ,

2σ̂
i ia , ,

2σ̂
j ja  are the 

respective estimated additive genetic covariance, and additive 
genetic variances for traits i and j from a bivariate model 
(Equation 2). Genetic correlations were visually produced using 
corrplot R package (Wei and Simko, 2021) and were ordered 
using the default parameters of the corReorder function from 
the lessR R package (Gerbing, 2022). The theoretical accuracy 
of breeding values (random additive genetic effects) was 
calculated as:

 
( )2 2ˆ1 / ar SE= − σ

 
(5)

where SE2  is the squared standard error of the individual 
breeding value, and 2ˆ aσ  is the estimated additive genetic 
variance component of a trait from the single-trait model 
(Equation 1).

Model Selection
To investigate potential increases in the theoretical breeding 
value accuracy of ALS-derived mature tree height “zq95,” 
the inclusion of three additional ALS metrics in the pedigree-
based multi-trait linear model was explored. All possible 
three-trait combinations (n = 1,330) of non-intensity-based 
ALS metrics with narrow-sense heritability estimates 2ˆ 0.05h ≥  
(n = 21) were fit with zq95 as response variables in quadrivariate 
models (Equation 2). Intensity-based metrics were not 
considered for model selection as intensity measurements 
are sensor specific and require calibration when being applied 
to multiple sites. The 1,330 models were then ranked based 
on averaging the parental and progeny breeding value accuracies 
for the zq95 trait.

A high-ranking candidate model containing metrics that 
reflect different aspects of the vertical distribution of biomass 
within trees (ALSCAN), as well as the top model ranked by 
accuracy (ALSACC), was included with additional juvenile 
field-measured phenotypes to perform a full evaluation of 
the progeny test site and compared to a similar baseline 
model using juvenile and mature field-measured phenotypes 
only (ground model).

The R scripts for the full genetic analysis and model selection 
are available in the Supplementary Material.

FIGURE 2 | A single tree point cloud with example ALS-derived traits. These 
metrics provide information regarding the vertical canopy structure of a tree 
and how it can vary between trees.
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FIGURE 3 | Comparison of univariate estimated breeding values (Equation 1) for the 95th percentile of height-derived from ALS taken in 2018 and field-measured 
height at 35 years in 2010. The black line represents a 1:1 fit.

RESULTS

Single-Trait Model Genetic Parameter 
Estimates
A final merged table of ALS metrics with associated genetics 
information for individual trees is included as a 
Supplementary Table S1 (pedigree data included as 
Supplementary Table S2). Narrow-sense heritability estimates 
for ground-based measurements are shown in Table  2, while 
the narrow-sense heritability estimates for ALS-based metrics 
are shown in Supplementary Table S3. Heritability estimate 
for the ground measured age 35 height was 0.406, with a 
standard error of 0.073. This compares to the ALS-derived 
95th height percentile, which had a heritability of 0.360, and 
a standard error of 0.068. Most ALS metrics other than the 
95th percentile of height (zq95) showed significant (based on 
standard error) low-to-moderate narrow-sense heritability 
estimates (range: 0.014–0.315). ALS metrics with moderate 
narrow-sense heritability tended to relate to metrics summarizing 

the entire point cloud (mean intensity of returns; imean, mean 
height or returns; zmean), their variance, and the percentage 
of certain returns. ALS metrics with low and non-significant 
heritability tended to be  those related to leaf area density and 
gap fraction profiles.

A Pearson correlation of 0.95 (0.95 Spearman) was seen 
between EBVs for ground-measured height at age 35 and the 
95th percentile of ALS height (Figure  3). EBVs for ground-
measured height at age 12 compared to the 95th percentile 
of ALS height had a Pearson correlation of 0.75 (0.73 Spearman 
correlation), compared to 0.76 Pearson correlation (0.74 
Spearman) of ground-measured height at age 12 compared to 
ground-measured height at age 35 (shown in Figures  4A,B).

Additive genetic correlations are presented in Figure 5 which 
illustrates a distinct structure of two negatively correlated clusters 
of traits, while within each cluster the traits are mostly positively 
correlated (see Supplementary Figure S1 for more detail). 
The first cluster (top left, group A in Supplementary Figure S1) 
primarily contains metrics related to canopy structure, whereas 
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the second cluster (bottom right, group B in 
Supplementary Figure S1) contains traits and metrics related 
to tree growth and the vertical distribution of points in the 
individual point clouds. Age 35 height and zq95 have a high 
positive additive genetic correlation (0.983), while zmean is 
also highly correlated with both (0.932 and 0.963, respectively). 
The euphotic zone (Euphotic) and cumulative percentage of 
return in the ninth layer (zpcum9) metrics are the most 
negatively correlated with age 35 height and zq95, with 
correlations of −0.721, and −0.730 for age 35 height and 
correlations of −0.805 and −0.776, respectively.

Multiple Traits Models
The mean of parental and progeny EBV accuracies from all 
quadrivariate models was 0.8106 and 0.7396 for zq95an 
improvement over the single-trait model for zq95 where the 
same accuracies were 0.8094 and 0.7377. The most influential 
ALS metrics associated with increasing the zq95 parental and 

progeny EBV accuracies were open gap zone (Open) and 
cumulative percentage of return in the eighth layer (zpcum8). 
Models containing Open or zpcum8 had mean zq95 parental 
and progeny EBV accuracies of 0.8124 and 0.7425 and 0.8115 
and 0.7410, respectively. When considering two-metric 
combinations, quadrivariate models containing both Open and 
zpcum8 had the highest mean parental and progeny zq95 EBV 
accuracies of 0.8172 and 0.7492. Open and zpcum8 showed 
negative genetic correlation with zq95 (−0.59 and −0.77) and 
have narrow-sense heritability estimates of 0.08 and 0.14.

The top  15 quadrivariate models are presented in 
Supplementary Table S4. These top  15 models display the 
highest mean parental and progeny EBV accuracies. The two 
models selected for inclusion as final models are shown in 
italics and bold, respectively. A comparison of the final 
selected models is presented in Table  4. The parental EBV 
accuracy for age 35 tree height in the ground model was 
0.8316, while the progeny EBV accuracy was 0.7807. This 

A B

FIGURE 4 | (A) Comparison of univariate estimated breeding values (Equation 1) for the 95th percentile of height-derived from ALS taken in 2018 and field-
measured height at 12 years in 1989. The black line represents a 1:1 fit. (B) Comparison of univariate estimated breeding values (Equation 1) of field-measured 
height at 35 years in 2010 and field-measured height at 12 years in 1989. The black line represents a 1:1 fit.

TABLE 4 | Summary of parental (rpar) and progeny (rpro) mean breeding value accuracies for different models.

Model rpar rpro Metrics included

Ground based 0.8316 0.7807 ht10_35yr, d10_35yr.sqrt, ht89.12 yr., d89.12 yr., and pil.avg
Single-trait ALS 0.8094 0.7377 zq95
Best quadrivariate 0.8185 0.7508 zq95, zpcum8, zpcum7.sqrt, and Open
Candidate quadrivariate 0.8176 0.7496 zq95, zpcum8, Scale, and Open
Most accurate ALS model (ALSACC) 0.8254 0.7682 zq95, zpcum8, zpcum7.sqrt, Open, ht89.12 yr., d89.12 yr., and pil.avg
Candidate ALS model (ALSCAN) 0.8239 0.7666 zq95, zpcum8, Scale, Open, ht89.12 yr., d89.12 yr., and pil.avg

Metric abbreviations from Tables 2, 3.
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compares to the most accurate ALS model which has a 
parental EBV accuracy for zq95 of 0.8254, and progeny EBV 
accuracy of 0.7682. The parental EBV accuracy for zq95 of 
the candidate ALS model was 0.8239, and the progeny EBV 
accuracy was 0.7666.

The EBVs for the final ground-based model and the final 
ALS-based models are compared in Figures  6A,B, while the 
ALS models are compared with one another in Figure 6C. The 
Pearson correlation between ground-based model and the 
most accurate ALS model (ALSACC) is 0.93 (0.93 Spearman 
correlation), while the Pearson correlation between the ground-
based model and the candidate ALS model (ALSCAN) is 0.93 
(0.93 Spearman). The Pearson correlation between ALSACC 
and ALSCAN is 1.00.

Parental rankings of the ground-based model were compared 
to the ALSCAN and the ALSACC model. Most trees ranked in 
the top  20 positions maintain their positions across all three 
models, as seen in Figure  7. Congruence in parent rankings 

between the ALSCAN and ALSACC models was high, with only 
one parent (15) changing place by more than five ranking places.

DISCUSSION

Model Results and Comparisons
The candidate ALS model contains zq95, zpcum8, Scale, and 
Open. The metrics are associated with a height variable (zq95), 
and three different descriptions of vertical complexity: a point-
based metric (zpcum8), a shape-based metric (scale), and a 
voxel-based metric (Open). Cumulative percentage of return in 
the eighth layer (zpcum8) is a strong representation of the 
density of the crown, describing where biomass is located in 
the crown and how much the laser is penetrating the crown. 
The scale metric is based on a Weibull Probability Density 
function and represents the vertical scaling and position of the 
distribution (Coops et al., 2007). This metric helps to determine 

FIGURE 5 | Correlation plot of additive genetic correlations (r) between all metrics included in the analysis. Correlations with ALS metric zq95 are outlined in black. 
Metrics with correlations that are not significant (p = 0.05) are shown in grey. Metric abbreviations from Table 3.
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if the biomass within the tree is more concentrated or spread 
throughout the tree. The “Open” metric represents voxels 

containing no ALS points above the individual tree canopy, but 
below the highest ALS return (Lefsky et al., 1999); this indicates 
that crown shape might be  important, as the metric only takes 
into account open space below the highest ALS return.

In choosing the candidate model from the top-performing 
quadrivariate models (Table  4), zpcum8 and Open metrics 
were present in all of the top-performing models. The scale 
was chosen as the final metric as it was shown to be  an 
important metric in differentiating between Douglas-fir of 
differing genetic levels in du Toit et  al. (2020). This method 
provides a breeder with complete control of the modelling 
process, and allows them to incorporate metrics that they deem 
important or more intuitive to understand. In this approach, 
it would be  possible to switch out metrics as new ones are 
created that describe different aspects of trees. For example, 
it is known that branch angle is an important wood quality 
attribute (Osborne and Maguire, 2015); if a metric that described 
this quality was created, it could easily be included in the model.

The inclusion of the most accurate model (ALSACC) is 
important as it represents a different approach to modelling 
(i.e., dredging), which leverages the availability of computing 
power available today. The inclusion of both zpcum7.sqrt and 
zpcum8  in the ALSACC model, while similar metrics (genetic 
correlation = 0.951), is justified by achieving the highest accuracy 
of the target trait (zq95). In this approach, the breeder is not 
interested in linking metrics to crown traits, but rather finding 
the optimal combination of response variables that maximizes 
the EBV accuracy for the target trait(s) of interest, while using 
data transformations as necessary to meet linear modeling 
statistical assumptions. While this study only concerns a single 
progeny test site, we  realize the limitations of our approach 
in a multi-environment trial where the number of parameters 
to estimate increases greatly and comes with increasing high 
computational costs.

Both models performed very well relative to the ground 
model (Pearson correlation of 0.93, Figure  6), indicating that 
they should be  considered as suitable replacements for a fully 
ground-based model. The improvements from the quadrivariate 
models to the final models (Table  4) also indicate that the 
inclusion of historical or juvenile data is of high importance 
for achieving optimal EBV accuracy for the target trait(s). 
This also suggests that inclusion of historical ALS data may 
improve models in a similar manner. The high correlation 
between the ALS-based models also indicates that it may 
be  possible to achieve suitably high estimated breeding value 
accuracies while still including more intuitive metrics that may 
be  linked with physical tree structure directly.

The high genetic correlation between ground-based height 
measurements at age 35 and ALS-derived height (zq95) 
indicates a common genetic architecture between the two 
traits and that we  can reliably use ALS as a proxy for tree 
height. Given the significant time lag between the 
measurements (8 years), it is unsurprising that the narrow-
sense heritability estimates differ and that there are some 
differences in the congruence between the EBVs in Figure 3. 
Additionally, the comparison of univariate EBVs in Figure 4 
confirms that there will be  differences in breeding value 

A

B

C

FIGURE 6 | (A) Comparison of estimated breeding values (Equation 2) for 
the final ground-based model and the most accurate ALS-based model 
(ALSACC). (B) Comparison of estimated breeding values (Equation 2) for the 
final ground-based model and the candidate ALS-based model (ALSCAN). 
(C) Comparison of estimated breeding values (Equation 2) for both ALS 
models. The black line represents a 1:1 fit.
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estimates over time regardless of measurement technique. 
Multiple ALS acquisitions would allow us to track EBV 
rank change over time, and attempt to address the bias 
that appears to occur in Figure  4.

Remote Sensing in Tree Improvement 
Trials
The significant heritable variation detected in the ALS 
measurements (Supplementary Table S4) suggests novel 

FIGURE 7 | EBV ranking changes for the parents in the trial from the ground-based model (left) to the candidate ALS model (ALSCAN, center), and the most 
accurate ALS-based model (ALSACC, right). Green lines indicate a ranking improvement of 5 or greater, red lines indicate ranking decreases of 5 or greater between 
the ground-based and candidate models. Black lines indicate changes of less than five ranking places.
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and meaningful traits could be  derived and added to tree 
breeding programs. Low standard error estimates attest to the 
robustness of the measurements. Several heritability estimates 
for ALS intensity metrics were moderate which indicates that 
the use of intensity metrics in these models needs to 
be  investigated further in multi-environment trials. Mean 
intensity (imean) had the second-highest narrow sense heritability 
among all ALS metrics (0.315, Supplementary Table S3), and 
may be useful in selecting superior trees. Intensity-based metrics 
are related to reflectance properties of trees, and have been 
used for tree species classification (Shi et  al., 2018). As such, 
there is the potential to link intensity metrics to variations in 
the foliage reflectance of trees within target breeding trials. 
As noted, intensity-based metrics are sensor specific; an analysis 
across multiple testing sites could allow for calibration and 
lend evidence for the repeatability of these metrics, allowing 
for their inclusion in future studies. Future research using 
multiband imagery or known vegetation indices should be used 
to understand differences in foliage between trees in a breeding 
trial, and to assess spectral response variations between trees 
with high EBVs.

Accurate phenotypic data are crucial for successful breeding 
programs; the harm from including a substandard parent in 
the breeding and production population is not insignificant. 
While Solvin et  al. (2020) and Liziniewicz et  al. (2020) used 
photogrammetrically derived height with varying degrees of 
success in their research, Ganz et  al. (2019) have shown that 
tree heights derived from ALS are extremely accurate. In 
fact, Puliti et  al. (2020) argued that the accuracy of RPAS-LS 
was high enough that additional field data were not necessary. 
The efficient nature of remote-sensing systems allows researchers 
to acquire data for a greater number of trees than previously 
possible, which in a tree improvement context can give 
breeders a greater number of observations, thereby improving 
the accuracy of their breeding value estimates. Additionally, 
frequent assessment helps in observing the dynamic trajectory 
of tested trees and their parents, as well as avoiding the 
irreversible inclusion of wrong parents in breeding and 
production populations.

Douglas-fir breeding trials in BC are entering their fourth 
generation, and secondary aspects beyond height and diameter 
(such as wood quality and branch angle) are becoming more 
important (Isaac-Renton et al., 2020). Using the models provided 
here, we can estimate breeding values that include traits linked 
to wood quality. Additionally, Filipescu et  al. (2018) showed 
that certain Douglas-fir families exhibit higher growth and 
good lumber properties; our methodology presents the 
opportunity to use ALS to phenotype these specific trees, and 
identify which metrics are the most diagnostic between these 
trees and their peers. Estimating breeding values in this way 
will allow breeders to incorporate more characteristics into 
their models, while still controlling for bias retaining height 
as an important selection tool.

The estimation of breeding values using remotely sensed 
metrics offers the possibility for creating a crop ideotype for 
Douglas-fir ideal for reforestation in British Columbia. Crop 
ideotypes were described by Karki and Tigerstedt (1985) as 

trees that can produce high-quality timber and high yield per 
hectare. Joo et al. (2020) explored the concept of crop ideotypes 
and competition ideotypes in Douglas-fir specifically. Competition 
ideotypes tend to produce higher tree level-volume, while crop 
ideotype trees produce higher stand level volume. Their findings 
concluded that ‘elite’ trees might have characteristics of a 
competition ideotype, as crop ideotype trees are suppressed 
in progeny test settings. ALS can be  used to select trees at a 
young age, and track their trajectory at frequent intervals to 
observe whether they display a crop or competition ideotype.

The use of ALS for phenotyping is advantageous due to 
the digital nature of the data collected. Since ALS provides a 
three-dimensional forest scene, data can be  retrospectively 
re-processed to create new metrics as algorithms become 
available. This means that we  can continue to create metrics 
to describe various aspects of a tree structure and apply them 
to our point clouds. For example, metrics created to describe 
branching structure by du Toit et  al. (2021) could be  applied 
in this framework. As noted above, secondary traits are becoming 
more important for Douglas-fir selection in British Columbia; 
these fine-scale traits may provide more direct proxies for 
desirable traits to be  selected for, such as branch angle. 
Additionally, metrics that are negatively correlated with height, 
such as euphotic zone (Euphotic) and cumulative percentage 
of return in the ninth layer (zpcum9), should be  investigated 
further to establish biological links, as the nature of their 
correlation suggests genetic-based trade-offs in growth strategies. 
It is important to note that the traits created using ALS data 
are not direct replacements for field-measured traits, and as 
such the distribution of each trait should be  investigated, as 
this can have impacts on the modeling procedures when creating 
breeding value estimates.

If multiple acquisitions are taken over time, we  can also 
measure “longitudinal” traits, which can inform breeders of 
the genetic mechanisms underlying physiological responses to 
environmental stresses and developmental processes (Moreira 
et  al., 2020). This also allows breeders to design models for 
estimating breeding value using the appropriate metrics for a 
given stage of development. Multi-temporal acquisitions can 
further allow phenotypic plasticity investigations. du Toit et  al. 
(2020) posited that elite Douglas-fir trees may exhibit greater 
phenotypic plasticity in how they react to a variety of different 
planting spacings. Using a multi-temporal approach would allow 
breeders to track trees in various trials over time and observe 
whether this is the case.

The developed approach, however, does have some caveats. 
While the phenotyping pipeline would ideally be  automated, 
we  found that the tree delineation algorithm still needed to 
be  tested and modified to best delineate trees, and that the 
matching procedure with ground-based data required significant 
supervision. These issues could be  somewhat alleviated when 
measuring younger trials before crown closure, allowing for 
greater confidence in tree delineation. Additionally, new trials 
can use high accuracy GPS units to demarcate plot boundaries 
and also important physical features (e.g., unplantable tree 
locations). The time lag between ground-based measurements 
and the ALS data collection also meant that there will 
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be uncertainty introduced in our comparisons. Future researchers 
should look to time their ALS acquisitions with ground-based 
data collection to maximize the confidence in the established 
relationships. Finally, a single site analysis means that drawing 
conclusions regarding tree selection is very difficult. Ideally, 
multiple sites would be  included to account for genotype x 
environment interaction. However, this study demonstrates the 
validity of using ALS to derive breeding value estimates, and 
how it can be  applied to future projects.

Cost and Future Outlook
The cost of data collection is an important factor when budgeting 
for tree improvement trials. ALS data collection compares 
favorably to traditional field campaigns in this regard. Trials 
containing 3,000 trees cost between $0.5–1 (Canadian dollars) 
per tree when the site is 3 years old, rising to $4–5 for a 
25-year-old site. In comparison, ALS can be  collected for 
approximately $1 per tree, regardless of trial age (J. Degner, 
personal communication, 3 February 2022). In addition, 
measuring a site using ALS does not scale in the same way 
as manual field collection; flying a 5,000-tree site for example, 
does not take significantly more time than a 1,500 tree site. 
When ALS is collected by airplane, it is possible to fly multiple 
sites across hundreds of kilometers per day, while an RPAS 
can easily capture a site in a few hours (typically at higher 
density than airborne acquisitions). While there are still costs 
to be incurred when collecting validation datasets, the simplicity 
of collecting repeat acquisitions over several years and the 
ability to develop novel traits that do not require destructive 
sampling indicate that overall costs of ALS acquisitions are 
valuable in the long term.

The cost savings associated with ALS data can be  used in 
a variety of ways. Typically, as sites get older and more expensive 
to measure, either fewer sites are measured, or sites are measured 
less frequently. ALS acquisitions mean that these sites can 
be  routinely flown for a relatively low and stable price, and 
the savings can be  used to plant more progeny trials, which 
are vital for understanding the environmental contribution to 
phenotypes of interest. In addition, as RPAS technology improves, 
it is increasingly common to see true color or multi-spectral 
imagery being collected alongside ALS. This imagery provides 
an opportunity to produce even more information per tree, 
such as mortality and vigor assessments. It is also important 
to acknowledge that these new technologies can help to eliminate 
the bottleneck created by traditional phenotyping methods. 
RPAS platforms provide a step in this direction, as hundreds 
of plants can be  efficiently phenotyped in a single acquisition. 

In turn, there is great potential for increasing yields through 
improved forest management, and accelerating genomics-based 
tree improvement (Bian et  al., 2022).

DATA AVAILABILITY STATEMENT

The ALS data underlying this article will be shared  
on reasonable request to the corresponding author.  
The script for genetic analysis is available in the 
Supplementary Material.

AUTHOR CONTRIBUTIONS

FdT was the primary author of the manuscript, processed ALS 
data, and developed crown metrics. BR provided code for 
genetics analyses, input into model selection, result interpretation, 
and manuscript edits. NC assisted with hypothesis generation, 
result interpretation, and editing. YE-K provided feedback 
regarding genetic testing as well as reviewing and editing the 
manuscript. All authors contributed to the article and approved 
the submitted version.

FUNDING

This research was funded through the Natural Sciences and 
Engineering Research Council of Canada (NSERC; 
STPGP  506286–17).

ACKNOWLEDGMENTS

Special thanks to Samuel Grubinger and Paul Hacker for their 
field expertise, as well as the team from BC Ministry of Forests, 
Lands, Natural Resource Operations and Rural Development 
for their data collection efforts. Additionally, we  would like to 
acknowledge Tristan Goodbody for his ALS and technical guidance 
and McElhanney Consulting Services Ltd. for data acquisition.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fpls.2022.893017/
full#supplementary-material

 

REFERENCES

Baltsavias, E. P. (1999). Airborne laser scanning: basic relations and formulas. ISPRS 
J. Photogramm. Remote Sens. 54, 199–214. doi: 10.1016/S0924-2716(99)00015-5

BC FLNRO (2018). Tree Seed. BC Ministry of Forests, Lands, Natural Resource 
Operations and Rural Development. Available at: https://www2.gov.bc.ca/
gov/content/industry/forestry/managing-our-forest-resources/tree-seed 
(Accessed June 21, 2022).

Bian, L., Zhang, H., Ge, Y., Čepl, J., Stejskal, J., and El-kassaby, Y. A. (2022). 
Closing the gap between phenotyping and genotyping: review of advanced, 

image-based phenotyping technologies in forestry. Ann. For. Sci. 79, 1–21. 
doi: 10.1186/s13595-022-01143-x

Bouvier, M., Durrieu, S., Fournier, R. A., and Renaud, J. P. (2015). Generalizing 
predictive models of forest inventory attributes using an area-based approach 
with airborne LiDAR data. Remote Sens. Environ. 156, 322–334. doi: 10.1016/j.
rse.2014.10.004

Camarretta, N., Harrison, P. A., Lucieer, A., Potts, B. M., Davidson, N., and 
Hunt, M. (2020). From drones to phenotype: using UAV-LiDAR to detect 
species and provenance variation in tree productivity and structure. Remote 
Sens. (Basel) 12, 1–16. doi: 10.3390/rs12193184

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://www.frontiersin.org/articles/10.3389/fpls.2022.893017/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2022.893017/full#supplementary-material
https://doi.org/10.1016/S0924-2716(99)00015-5
https://www2.gov.bc.ca/gov/content/industry/forestry/managing-our-forest-resources/tree-seed
https://www2.gov.bc.ca/gov/content/industry/forestry/managing-our-forest-resources/tree-seed
https://doi.org/10.1186/s13595-022-01143-x
https://doi.org/10.1016/j.rse.2014.10.004
https://doi.org/10.1016/j.rse.2014.10.004
https://doi.org/10.3390/rs12193184


du Toit et al. Generating Douglas-fir Breeding Value Estimates

Frontiers in Plant Science | www.frontiersin.org 15 July 2022 | Volume 13 | Article 893017

Chang, W.-Y., Wang, S., Gaston, C., Cool, J., An, H., and Thomas, B. (2019). 
Economic evaluations of tree improvement for planted forests: a systematic 
review. BioProducts Business 4, 1–14. doi: 10.22382/bpb-2019-001

Chateigner, A., Lesage-Descauses, M. C., Rogier, O., Jorge, V., Leplé, J. C., 
Brunaud, V., et al. (2020). Gene expression predictions and networks in 
natural populations supports the omnigenic theory. BMC Genomics 21:416. 
doi: 10.1186/s12864-020-06809-2

Coops, N. C., Hilker, T., Wulder, M. A., St-Onge, B., Newnham, G., Siggins, A., 
et al. (2007). Estimating canopy structure of Douglas-fir forest stands 
from discrete-return LiDAR. Trees 21, 295–310. doi: 10.1007/
s00468-006-0119-6

Crain, J., Mondal, S., Rutkoski, J., Singh, R. P., and Poland, J. (2018). Combining 
high-throughput Phenotyping and genomic information to increase prediction 
and selection accuracy in wheat breeding. Plant Genome 11:170043. doi: 
10.3835/plantgenome2017.05.0043

Dalponte, M., and Coomes, D. A. (2016). Tree-centric mapping of forest carbon 
density from airborne laser scanning and hyperspectral data. Methods Ecol. 
Evol. 7, 1236–1245. doi: 10.1111/2041-210X.12575

Delignette-Muller, M. L., and Dutang, C. (2015). fitdistrplus: An R package 
for fitting distributions. J. Stat. Softw. 64, 1–34. doi: 10.18637/jss.v064.i04

Dhakal, L. P., White, T. L., and Hodge, G. R. (1996). Realized genetic gains 
from slash pine tree improvement. Silvae Genetica, 45, 190–197.

du Toit, F., Coops, N. C., Goodbody, T. R. H., Stoehr, M., and El-Kassaby, Y. A. 
(2021). Deriving internal crown geometric features of Douglas-fir from 
airborne laser scanning in a realized-gain trial. Forestry 94, 442–454. doi: 
10.1093/forestry/cpaa046

du Toit, F., Coops, N. C., Tompalski, P., Goodbody, T. R. H., El-Kassaby, Y. A., 
Stoehr, M., et al. (2020). Characterizing variations in growth characteristics 
between Douglas-fir with different genetic gain levels using airborne laser 
scanning. Trees 34, 649–664. doi: 10.1007/s00468-019-01946-y

Dungey, H. S., Telfer, E. J., Dash, J. P., Pont, D., Clinton, P. W., and Watt, M. S. 
(2018). Phenotyping whole forests will help to track genetic performance. 
Trends Plant Sci. 23, 854–864. doi: 10.1016/j.tplants.2018.08.005

Estornell, J., Hadas, E., Martí, J., and López-Cortés, I. (2021). Tree extraction 
and estimation of walnut structure parameters using airborne LiDAR data. 
Int. J. Appl. Earth Obs. Geoinf. 96:102273. doi: 10.1016/j.jag.2020.102273

Evans, J. (2009). “Planted forests: uses, impacts and sustainability,” in Planted 
Forests: Uses, Impacts and Sustainability and Cab International. ed. J. Evans 
(CABI Publishing).

FAO and UNEP (2020). The State of the World’s Forests 2020. Forests, Biodiversity 
and People. FAO’s Office for Corporate Communication.

Filipescu, C. N., Stoehr, M. U., and Pigott, D. R. (2018). Variation of lumber 
properties in genetically improved full-sib families of Douglas-fir in British 
Columbia, Canada. Forestry 91, 320–326. doi: 10.1093/forestry/cpy011

Fu, Y.-B., Yanchuk, A. D., and Namkoong, G. (1999). Spatial patterns of tree 
height variations in a series of Douglas-fir progeny trials: implications for 
genetic testing. Can. J. For. Res. 29, 714–723. doi: 10.1139/x99-046

Ganz, S., Käber, Y., and Adler, P. (2019). Measuring tree height with remote 
sensing-a comparison of photogrammetric and LiDAR data with different 
field measurements. Forests 10. doi: 10.3390/f10080694

Gerbing, D. W. (2022). lessR: Less Code, More Results. Available at: https://
cran.r-project.org/package=lessR (Accessed June 21, 2022).

Girardeau-Montaut, D. (2019). CloudCompare (2.10.2). Available at: http://www.
cloudcompare.org/ (Accessed June 21, 2022).

Goodbody, T. R. H., Coops, N. C., Marshall, P. L., Tompalski, P., and 
Crawford, P. (2017). Unmanned aerial systems for precision forest 
inventory purposes: A review and case study. For. Chron. 93, 71–81. 
doi: 10.5558/tfc2017-012

Isaac-Renton, M., Stoehr, M., Bealle Statland, C., and Woods, J. (2020). Tree 
breeding and silviculture: Douglas-fir volume gains with minimal wood 
quality loss under variable planting densities. For. Ecol. Manage. 465:118094. 
doi: 10.1016/j.foreco.2020.118094

Isenburg (2019). LAStools. Available at: http://lastools.org (Accessed June 21, 
2022).

Jakubowski, M. K., Li, W., Guo, Q., and Kelly, M. (2013). Delineating individual 
trees from lidar data: A comparison of vector- and raster-based segmentation 
approaches. Remote Sens. (Basel) 5, 4163–4186. doi: 10.3390/rs5094163

Jansson, G., Hansen, J. K., Haapanen, M., Kvaalen, H., and Steffenrem, A. 
(2017). The genetic and economic gains from forest tree breeding programmes 

in Scandinavia and Finland. Scand. J. For. Res. 32, 273–286. doi: 
10.1080/02827581.2016.1242770

Jarron, L. R., Coops, N. C., MacKenzie, W. H., Tompalski, P., and Dykstra, P. 
(2020). Detection of sub-canopy forest structure using airborne LiDAR. 
Remote Sens. Environ. 244:111770. doi: 10.1016/j.rse.2020.111770

Joo, S., Maguire, D. A., Jayawickrama, K. J. S., Ye, T. Z., and St. Clair, J. B. 
(2020). Estimation of yield gains at rotation-age from genetic tree improvement 
in coast Douglas-fir. For. Ecol. Manage. 466:117930. doi: 10.1016/j.
foreco.2020.117930

Kaartinen, H., Hyyppä, J., Yu, X., Vastaranta, M., Hyyppä, H., Kukko, A., et al. 
(2012). An international comparison of individual tree detection and extraction 
using airborne laser scanning. Remote Sens. (Basel) 4, 950–974. doi: 10.3390/
rs4040950

Kane, V. R., McGaughey, R. J., Bakker, J. D., Gersonde, R. F., Lutz, J. A., and 
Franklin, J. F. (2010). Comparisons between field- and LiDAR-based measures 
of stand structural complexity. Can. J. For. Res. 40, 761–773. doi: 10.1139/
X10-024

Karki, L., and Tigerstedt, P. M. A. (1985). “Definition and exploitation of forest 
tree ideotypes in Finland,” in Attributes of trees as crop Plants. eds. M. G. 
R. Cannel and J. E. Jackson (Huntington, UK: Institute of Terrestrial Ecology), 
103–109.

Khosravipour, A., Skidmore, A. K., Isenburg, M., Wang, T., and Hussin, Y. A. 
(2014). Generating pit-free canopy height models from airborne lidar. 
Photogramm. Eng. Remote. Sens. 80, 863–872. doi: 10.14358/PERS.80.9.863

Lebedev, V. G., Lebedeva, T. N., Chernodubov, A. I., and Shestibratov, K. A. 
(2020). Genomic selection for forest tree improvement: methods, achievements 
and perspectives. Forests 11, 1–36. doi: 10.3390/f11111190

Lecigne, B., Delagrange, S., Messier, C. (2018). Exploring trees in three 
dimensions: VoxR, a novel voxel-based R package dedicated to analysing 
the complex arrangement of tree crowns. Ann. Bot. 121, 589–601. doi: 
10.1093/aob/mcx095

Lefsky, M. A., Cohen, W. B., Acker, S. A., Parker, G. G., Spies, T. A., and 
Harding, D. (1999). Lidar remote sensing of the canopy structure and 
biophysical properties of Douglas-fir western hemlock forests. Remote Sens. 
Environ. 70, 339–361. doi: 10.1016/S0034-4257(99)00052-8

Liziniewicz, M., Ene, L. T., Malm, J., Lindberg, J., Helmersson, A., and Karlsson, B. 
(2020). Estimation of genetic parameters and selection of superior genotypes 
in a 12-year-old clonal Norway spruce field trial after phenotypic assessment 
using a UAV. Forests 11. doi: 10.3390/f11090992

Maltamo, M., Peuhkurinen, J., Malinen, J., Vauhkonen, J., Packalén, P., Tokola, T., 
et al. (2009). Predicting tree attributes and quality characteristics of scots 
pine using airborne laser scanning data. Silva Fenn. 43, 507–521. doi: 
10.14214/sf

Misztal, I., Tsuruta, S., Lourenco, D., Masuda, Y., Aguilar, I., Legarra, A., et al. 
(2018). Manual for BLUPF90 family of programs. Available at: http://nce.
ads.uga.edu/wiki/doku.php?id=documentation (Accessed June 21, 2022).

Mitchell, K. J. (1975). Stand description and growth simulation from low-level 
stereo photos of tree crowns. J. For. 73, 12–45.

Moreira, F. F., Oliveira, H. R., Volenec, J. J., Rainey, K. M., and Brito, L. F. 
(2020). Integrating high-throughput phenotyping and statistical genomic 
methods to genetically improve longitudinal traits in crops. Front. Plant 
Sci. 11, 1–18. doi: 10.3389/fpls.2020.00681

Mrode, R. (ed.) (2014). Linear Models for the Prediction of Animal Breeding 
Values. CABI Publishing.

Muñoz, F., and Sanchez, L. (2021). breedR: Statistical Methods for Forest Genetic 
Resources Analysts (R package version 0.12-5). Available at: https://github.
com/famuvie/breedR (Accessed June 21, 2022).

Næsset, E. (2002). Predicting forest stand characteristics with airborne scanning 
laser using a practical two-stage procedure and field data. Remote Sens. 
Environ. 80, 88–99. doi: 10.1016/S0034-4257(01)00290-5

Osborne, N. L., and Maguire, D. A. (2015). Modeling knot geometry from 
branch angles in Douglas-fir (Pseudotsuga menziesii). Can. J. For. Res. 46, 
215–224. doi: 10.1139/cjfr-2015-0145

Puliti, S., Breidenbach, J., and Astrup, R. (2020). Estimation of forest growing 
stock volume with UAV laser scanning data: Can it be done without field 
data? Remote Sens. 12. doi: 10.3390/RS12081245

R Core Team (2021). R: A Language and Environment for Statistical Computing. 
R Foundation for Statistical Computing. Available at: https://www.r-project.org/ 
(Accessed June 21, 2022).

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://doi.org/10.22382/bpb-2019-001
https://doi.org/10.1186/s12864-020-06809-2
https://doi.org/10.1007/s00468-006-0119-6
https://doi.org/10.1007/s00468-006-0119-6
https://doi.org/10.3835/plantgenome2017.05.0043
https://doi.org/10.1111/2041-210X.12575
https://doi.org/10.18637/jss.v064.i04
https://doi.org/10.1093/forestry/cpaa046
https://doi.org/10.1007/s00468-019-01946-y
https://doi.org/10.1016/j.tplants.2018.08.005
https://doi.org/10.1016/j.jag.2020.102273
https://doi.org/10.1093/forestry/cpy011
https://doi.org/10.1139/x99-046
https://doi.org/10.3390/f10080694
https://cran.r-project.org/package=lessR
https://cran.r-project.org/package=lessR
http://www.cloudcompare.org/
http://www.cloudcompare.org/
https://doi.org/10.5558/tfc2017-012
https://doi.org/10.1016/j.foreco.2020.118094
http://lastools.org
https://doi.org/10.3390/rs5094163
https://doi.org/10.1080/02827581.2016.1242770
https://doi.org/10.1016/j.rse.2020.111770
https://doi.org/10.1016/j.foreco.2020.117930
https://doi.org/10.1016/j.foreco.2020.117930
https://doi.org/10.3390/rs4040950
https://doi.org/10.3390/rs4040950
https://doi.org/10.1139/X10-024
https://doi.org/10.1139/X10-024
https://doi.org/10.14358/PERS.80.9.863
https://doi.org/10.3390/f11111190
https://doi.org/10.1093/aob/mcx095
https://doi.org/10.1016/S0034-4257(99)00052-8
https://doi.org/10.3390/f11090992
https://doi.org/10.14214/sf
http://nce.ads.uga.edu/wiki/doku.php?id=documentation
http://nce.ads.uga.edu/wiki/doku.php?id=documentation
https://doi.org/10.3389/fpls.2020.00681
https://github.com/famuvie/breedR
https://github.com/famuvie/breedR
https://doi.org/10.1016/S0034-4257(01)00290-5
https://doi.org/10.1139/cjfr-2015-0145
https://doi.org/10.3390/RS12081245
https://www.r-project.org/


du Toit et al. Generating Douglas-fir Breeding Value Estimates

Frontiers in Plant Science | www.frontiersin.org 16 July 2022 | Volume 13 | Article 893017

Roussel, J. R., Auty, D., Coops, N. C., Tompalski, P., Goodbody, T. R. H., 
Meador, A. S., et al. (2020). lidR: An R package for analysis of airborne 
laser scanning (ALS) data. Remote Sens. Environ. 251:112061. doi: 10.1016/j.
rse.2020.112061

Shakoor, N., Lee, S., and Mockler, T. C. (2017). High throughput phenotyping 
to accelerate crop breeding and monitoring of diseases in the field. Curr. 
Opin. Plant Biol. 38, 184–192. doi: 10.1016/j.pbi.2017.05.006

Shi, Y., Wang, T., Skidmore, A. K., and Heurich, M. (2018). Important 
LiDAR metrics for discriminating forest tree species in Central Europe. 
ISPRS J. Photogramm. Remote Sens. 137, 163–174. doi: 10.1016/j.
isprsjprs.2018.02.002

Solvin, T. M., Puliti, S., and Steffenrem, A. (2020). Use of UAV photogrammetric 
data in forest genetic trials: measuring tree height, growth, and phenology 
in Norway spruce (Picea abies L. karst.). Scand. J. For. Res. 35, 322–333. 
doi: 10.1080/02827581.2020.1806350

St. Clair, J. B., Mandel, N. L., and Jayawickrama, K. J. S. (2004). Early realized 
genetic gains for coastal Douglas-fir in the northern Oregon Cascades. West. 
J. Appl. For. 19, 195–201. http://www.scopus.com/inward/record.url?eid=2-s2. 
0-4344660673&partnerID=40&md5=f77a4044c7787dee23f07a432574cee1

Stoehr, M., Bird, K., Nigh, G., Woods, J., and Yanchuk, A. D. (2010). Realized 
genetic gains in coastal Douglas-fir in British Columbia: implications for 
growth and yield projections. Silvae Genet. 59, 223–233. doi: 10.1515/sg-2010-0027

Stoehr, M., Webber, J., and Woods, J. (2004). Protocol for rating seed orchard 
seedlots in British Columbia: quantifying genetic gain and diversity. Forestry 
77, 297–303. doi: 10.1093/forestry/77.4.297

Thompson, R., and Meyer, K. (1986). A review of theoretical aspects in the 
estimation of breeding values for multi-trait selection. Livest. Prod. Sci. 15, 
299–313. doi: 10.1016/0301-6226(86)90071-0

Van Leeuwen, M., Hilker, T., Coops, N. C., Frazer, G., Wulder, M. A., 
Newnham, G. J., et al. (2011). Assessment of standing wood and fiber 
quality using ground and airborne laser scanning: a review. For. Ecol. Manage. 
261, 1467–1478. doi: 10.1016/j.foreco.2011.01.032

Wallace, L., Lucieer, A., and Watson, C. S. (2014). Evaluating tree detection 
and segmentation routines on very high resolution UAV LiDAR ata. 
IEEE Trans. Geosci. Remote Sens. 52, 7619–7628. doi: 10.1109/
TGRS.2014.2315649

Wang, T., Hamann, A., Spittlehouse, D., and Carroll, C. (2016). Locally downscaled 
and spatially customizable climate data for historical and future periods for 
North America. PLOS ONE 11:0156720. doi: 10.1371/journal.pone.0156720

Wei, T., and Simko, V. (2021). R package “corrplot”: Visualization of a Correlation 
Matrix. Available at: https://github.com/taiyun/corrplot (Accessed June 21, 2022).

White, T. L., Adams, W. T., and Neale, D. B. (2007). Forest Genetics. Oxfordshire, 
UK: CABI Publishing.

White, T. L., and Hodge, G. R. (1989). Predicting Breeding Values with Applications 
in Forest Tree Improvement (1st Edn.). Springer, Dordrecht.

White, J. C., Wulder, M. A., Varhola, A., Vastaranta, M., Coops, N. C., 
Cook, B. D., et al. (2013). A best practices guide for generating forest 
inventory attributes from airborne laser scanning data using an area-based 
approach. Information Report FI-X-010.

Woods, J. H. (1993). “Breeding programs and strategies for Douglas-fir in 
North America,” in Breeding Strategies of Important Tree Species in Canada. 
eds. Y. S. Park and G. W. Adams, 1–12. Department of Natural Resources 
Canada  - Information Report M-X-186E: Canadian Forest Service.

Wulder, M. A., White, J. C., Nelson, R. F., Næsset, E., Ørka, H. O., Coops, N. C., 
et al. (2012). Lidar sampling for large-area forest characterization: a review. 
Remote Sens. Environ. 121, 196–209. doi: 10.1016/j.rse.2012.02.001

Xie, C. Y., and Yanchuk, A. D. (2003). Breeding values of parental trees, genetic 
worth of seed orchard seedlots, and yields of improved stocks in British 
Columbia. West. J. Appl. For. 18, 88–100. doi: 10.1093/wjaf/18.2.88

Yanchuk, A. D. (1996). General and specific combining ability from 
disconnected partial diallels of coastal Douglas-fir. Silvae Genet. 45, 
37–45.

Ye, T. Z., Jayawickrama, K. J. S., and St. Clair, J. B. S. T. (2010). Realized 
gains from block-plot coastal Douglas-fir trials in the northern oregon 
cascades. Silvae Genet. 59, 29–39. doi: 10.1515/sg-2010-0004

Yin, D., and Wang, L. (2016). How to assess the accuracy of the individual 
tree-based forest inventory derived from remotely sensed data: a review. 
Int. J. Remote Sens. 37, 4521–4553. doi: 10.1080/01431161.2016.1214302

Conflict of Interest: The authors declare that the research was conducted in 
the absence of any commercial or financial relationships that could be  construed 
as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product that may 
be evaluated in this article, or claim that may be made by its manufacturer, is 
not guaranteed or endorsed by the publisher.

Copyright © 2022 du Toit, Coops, Ratcliffe and El-Kassaby. This is an open-access 
article distributed under the terms of the Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction in other forums is permitted, provided 
the original author(s) and the copyright owner(s) are credited and that the original 
publication in this journal is cited, in accordance with accepted academic practice. 
No use, distribution or reproduction is permitted which does not comply with 
these terms.

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://doi.org/10.1016/j.rse.2020.112061
https://doi.org/10.1016/j.rse.2020.112061
https://doi.org/10.1016/j.pbi.2017.05.006
https://doi.org/10.1016/j.isprsjprs.2018.02.002
https://doi.org/10.1016/j.isprsjprs.2018.02.002
https://doi.org/10.1080/02827581.2020.1806350
http://www.scopus.com/inward/record.url?eid=2-s2.0-4344660673&partnerID=40&md5=f77a4044c7787dee23f07a432574cee1
http://www.scopus.com/inward/record.url?eid=2-s2.0-4344660673&partnerID=40&md5=f77a4044c7787dee23f07a432574cee1
https://doi.org/10.1515/sg-2010-0027
https://doi.org/10.1093/forestry/77.4.297
https://doi.org/10.1016/0301-6226(86)90071-0
https://doi.org/10.1016/j.foreco.2011.01.032
https://doi.org/10.1109/TGRS.2014.2315649
https://doi.org/10.1109/TGRS.2014.2315649
https://doi.org/10.1371/journal.pone.0156720
https://github.com/taiyun/corrplot
https://doi.org/10.1016/j.rse.2012.02.001
https://doi.org/10.1093/wjaf/18.2.88
https://doi.org/10.1515/sg-2010-0004
https://doi.org/10.1080/01431161.2016.1214302
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Generating Douglas-fir Breeding Value Estimates Using Airborne Laser Scanning Derived Height and Crown Metrics
	Introduction
	Materials and Methods
	Study Area Description
	Field Data
	ALS Data and Pre-processing
	Individual Tree Detection and Metric Creation
	Linking ALS and Genetics Data
	Genetic Analysis
	Model Selection

	Results
	Single-Trait Model Genetic Parameter Estimates
	Multiple Traits Models

	Discussion
	Model Results and Comparisons
	Remote Sensing in Tree Improvement Trials
	Cost and Future Outlook

	Data Availability Statement
	Author Contributions
	Funding

	References

