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X-ray micro-computed tomography (X-ray µCT) has enabled the

characterization of the properties and processes that take place in

plants and soils at the micron scale. Despite the widespread use of this

advanced technique, major limitations in both hardware and software

limit the speed and accuracy of image processing and data analysis.

Recent advances in machine learning, specifically the application of

convolutional neural networks to image analysis, have enabled rapid

and accurate segmentation of image data. Yet, challenges remain in applying

convolutional neural networks to the analysis of environmentally and

agriculturally relevant images. Specifically, there is a disconnect between

the computer scientists and engineers, who build these AI/ML tools,

and the potential end users in agricultural research, who may be unsure

of how to apply these tools in their work. Additionally, the computing

resources required for training and applying deep learning models are unique,

more common to computer gaming systems or graphics design work,

than to traditional computational systems. To navigate these challenges,

we developed a modular workflow for applying convolutional neural

networks to X-ray µCT images, using low-cost resources in Google’s

Colaboratory web application. Here we present the results of the workflow,

illustrating how parameters can be optimized to achieve best results
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using example scans from walnut leaves, almond flower buds, and a soil

aggregate. We expect that this framework will accelerate the adoption

and use of emerging deep learning techniques within the plant and

soil sciences.

KEYWORDS

X-ray computed tomography, deep learning, machine learning and AI, soil science,
plant science, soil aggregate analysis, soil health, plant physiology

Introduction

Researchers have long been interested in analyzing the in-
situ physical, chemical, and biological properties and processes
that take place in plants and soils. To accomplish this,
researchers have widely adopted the use of X-ray micro-
computed tomography (X-ray µCT) for 3D analysis of flower
buds, seeds, leaves, stems, roots, and soils (Petrovic et al., 1982;
Crestana et al., 1985, 1986; Anderson et al., 1990; Brodersen
et al., 2010; Hapca et al., 2011; Mooney et al., 2012; Helliwell
et al., 2013; Cuneo et al., 2020; Théroux-Rancourt et al., 2020;
Xiao et al., 2021; Duncan et al., 2022). In plants, researchers
have used X-ray µCT to visualize the internal structures of
leaves, allowing for the quantification of CO2 diffusion through
the leaf based on path length tortuosity from the stomata to
the mesophyll (Mathers et al., 2018; Théroux-Rancourt et al.,
2021). Other applications of X-ray µCT in plants include the
visualization of embolism formation and repair in plant xylem
tissue, allowing for the development of new models to better
understand drought stress recovery, along with non-destructive
quantification of carbohydrates in plant stems (Brodersen et al.,
2010; Torres-Ruiz et al., 2015; Earles et al., 2018). In soils,
X-ray µCT was used to visualize soil porosity, soil aggregate
distribution, and plant root growth (Tracy et al., 2010; Mooney
et al., 2012; Helliwell et al., 2013; Mairhofer et al., 2013; Ahmed
et al., 2016; Yudina and Kuzyakov, 2019; Gerth et al., 2021;
Keyes et al., 2022). Despite the wide use of advanced imaging
techniques like X-ray µCT and imaging more generally in
agricultural research, major limitations in both hardware and
software hinder the speed and accuracy of image processing
and data analysis.

Historically X-ray µCT data collection was extremely time
consuming, and resource intensive as individual scans can
exceed 50 Gb in size. Data acquisition rates were limited by the
ability of X-ray detectors to transfer data to computers, limited
hard drive storage capacity once the data was transferred, and
intensive hardware requirements that limited the size of files that
could be analyzed at any given time. Many of these constraints
have been removed as detector hardware has improved, hard
drive storage transfer speed and space has increased, and
computing hardware has advanced. Now a major limiting

step to the widespread use of X-ray µCT in the agricultural
sciences is data analysis; while data can be acquired in hours
to seconds, the laborious task of hand segmenting images can
lead to analysis times of weeks to years for large data sets
(Théroux-Rancourt et al., 2020).

Recent advances in machine learning, specifically the
application of convolutional neural networks to image analysis,
have enabled rapid and accurate segmentation of image data
(Long et al., 2015; Ronneberger et al., 2015; Chen et al., 2018;
Smith et al., 2020; Raja et al., 2021; von Chamier et al., 2021).
Such applications have met with great success in medical
imaging analysis, outperforming radiologists for early cancer
diagnosis in X-ray µCT images (Lotter et al., 2021). However,
challenges remain to applying convolutional neural networks
to the analysis of agriculturally relevant X-ray µCT images.
Specifically, training accurate models for image segmentation
requires the production of hand annotated training datasets,
which is time consuming and requires specialized expertise to
properly annotate training image data (Kamilaris and Prenafeta-
Boldú, 2018). Further, the computing resources required for
training and applying deep learning models are unique, more
common to computer gaming systems or graphics design work,
rather than traditional computational systems (Gao et al., 2020;
Ofori et al., 2022).

To navigate these challenges, we developed a modular
workflow for image annotation and segmentation using open-
source tools to empower scientists that use X-ray µCT in
their work. Specifically, image annotation is done in ImageJ;
while this does not prevent the need for experts to annotate
images, it does allow experts to annotate their images without
using proprietary software. The semantic segmentation of X-ray
µCT image data is accomplished using Google’s Colab to run
PyTorch implementations of a Fully Convolutional Network
(FCN) with a ResNet-101 backbone (He et al., 2015; Long et al.,
2015; Ronneberger et al., 2015; Chen et al., 2017; Paszke et al.,
2019). The FCN architecture, while older, allows for model
development on variable size images due to the exclusion of
fully connected layers in the FCN architecture (Long et al.,
2015; Ronneberger et al., 2015). In addition to X-ray µCT
datasets, the workflow is flexible enough to work on virtually
any image dataset, as long as corresponding annotated images
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are available for model training. Additionally, by developing
and deploying the code in Google’s Colaboratory, users have
access to free or low-cost GPU resources that might otherwise
be cost prohibitive to access (Rippner et al., 2022b). If users have
access to better hardware than is available through Colaboratory,
the notebooks can be run locally to utilize advanced hardware.
Additional code is also available to use this workflow on
high performance computing systems using batch scheduling
(Rippner et al., 2022b). This method for analyzing X-ray µCT
data allows users to rapidly extract information on important
biological, chemical, and physical processes that occur in plants
and soils from complex datasets without the need to learn to
code extensively or invest in expensive computational hardware.

Materials and methods

In the following section we will describe the parameters
under which our CT data was collected, how the CT image
data was annotated for model training, and the parameters
used to train the various models. The actual workflow and
corresponding training video can be found on Github (Rippner
et al., 2022b). For reproducibility purposes, the data sets
used for training the models featured in this paper can be
found a repository hosted by the United States Department
of Agriculture, National Agricultural Library (Rippner et al.,
2022a).

Computed tomography data
acquisition

Six individual leaf sections (3 mm × 7 mm) from 6 unique
accessions of English walnuts (Juglans regia) and an air dried soil
aggregate collected from the top 15 cm of a Yolo silt loam (Fine-
silty, mixed, superactive, non-acid, thermic Mollic Xerofluvents)
at the UC Davis Russel Ranch Sustainable Agricultural Facility
were scanned at 23 keV using the 10× objective lens with a pixel
resolution of 650 nanometers on the X-ray µCT beamline (8.3.2)
at the Advanced Light Source (ALS) in Lawrence Berkeley
National Laboratory (LBNL), Berkeley, CA, United States.
Additionally, an almond flower bud (Prunis dulcis) was scanned
using a 4× lens with a pixel resolution of 1.72 µm on the same
beamline. Raw tomographic image data was reconstructed using
the TomoPy tomographic image reconstruction engine (Gürsoy
et al., 2014). Reconstructions were converted to 8-bit tif or png
format using ImageJ or the PIL package in Python before further
processing (Figure 1; Schindelin et al., 2012; Kemenade et al.,
2022).

Image annotation

Leaf images were annotated in ImageJ following Théroux-
Rancourt et al. (2020) (Figure 1). Flower bud and soil

aggregate images were annotated using Intel’s Computer Vision
Annotation Tool (CVAT) and ImageJ (Figure 1; Schindelin
et al., 2012). Both CVAT and ImageJ are free to use and
open source. To annotate the flower bud and soil aggregate,
images were imported into CVAT. The exterior border of the
bud (i.e., bud scales) and flower were annotated in CVAT and
exported as masks. Similarly, the exterior of the soil aggregate
and particulate organic matter identified by eye were annotated
in CVAT and exported as masks. To annotate air spaces in
both the bud and soil aggregate, images were imported into
ImageJ. A Gaussian blur was applied to the image to decrease
noise and then the air space was segmented using thresholding.
After applying the threshold, the selected air space region was
converted to a binary image with white representing the air
space and black representing everything else. This binary image
was overlaid upon the original image and the air space within the
flower bud and aggregate was selected using the “free hand” tool.
Air space outside of the region of interest for both image sets
was eliminated. The quality of the air space annotation was then
visually inspected for accuracy against the underlying original
image; incomplete annotations were corrected using the brush
or pencil tool to paint missing air space white and incorrectly
identified air space black. Once the annotation was satisfactorily
corrected, the binary image of the air space was saved. Finally,
the annotations of the bud and flower or aggregate and organic
matter were opened in ImageJ and the associated air space mask
was overlaid on top of them forming a three-layer mask suitable
for training the FCN.

Training general Juglans leaf
segmentation model

Images and associated annotations from 6 walnut leaf scans
were uploaded to Google Drive (Figure 1). Using Google’s
Colaboratory resources, a PyTorch implementation of a FCN
with a ResNet-101 backbone was used to train 10 models
using 5 image/annotation pairs from 1, 2, 3, 4, and 5 leaves
(5, 10, 15, 20, and 25 images/annotation pairs, respectively)
(Figure 1, Supplementary Tables 1, 2 and Supplementary
Figures 1, 2; He et al., 2015; Paszke et al., 2019). Models pre-
trained on the COCO train 2017 dataset were imported and
the original classifier was substituted for a new classifier based
on 6 potential pixel classes: background, epidermis, mesophyll
tissue, air space, bundle sheath extension tissue, or vein tissue.
The pre-trained model weights were modified using an Adam
optimizer for stochastic optimization with the learning rate
set to 0.001 and a binary cross-entropy loss function (Kingma
and Ba, 2017). To help avoid overfitting the training data,
the data was augmented using Albumentations package in
Python to flip and rotate a subset of the images during model
training (Buslaev et al., 2020). Half of the image/annotation
pairs were used for training and half were used for validation
of the model during training. The batch size was set at 1 for
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FIGURE 1

A schematic of the segmentation workflow from image reconstruction, image annotation, model training, model use, and data extraction. Blue
indicates a process that is done at the instrumentation site, green is a process done on local computers using a subset of the data in ImageJ or
CVAT, purple indicates a process done in Google’s Colaboratory, on a high-performance computing cluster, or locally.

training due to graphics processing unit (GPU) constraints
in Colaboratory. A mixture of NVIDA T4, P100, V100 GPUs
were used for training depending on the allocation assigned by
Google Cloud Services. Such GPU’s are available when using
the free version of Google’s Colaboratory, or the low cost
($9.99/month) subscription based Colaboratory Pro (Mountain
View, CA, United States). A benefit of limiting the batch size to
1 was the ability to train on variably sized images.

The accuracy, precision, recall, and F1 score of these models
were calculated after testing on 5 images from the 6th leaf that
was not involved in training or validation of the generated
models in any way. In our work accuracy, precision, recall, and
f1 scores are defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
(TP + 1E− 9)

(TP + FP + 1E− 9)
(2)

Recall =
(TP + 1E− 9)

(TP + FN + 1E− 9)
(3)

F1 =
(TP + 1E− 9)

(TP + 1E− 9)+ 1
2 (FP + FN)

(4)

Where TP = true positive prediction on a pixelwise basis,
FP = false positive prediction on a pixelwise basis, TN = true
negative prediction on a pixelwise basis, and FN = false negative
prediction on a pixelwise basis. A correction factor of 1E-9 was
included in Equations 2–4 to prevent Not a Number errors
in python when the denominator of the equations is 0 due
to the lack of TP, FP, or FN values when no prediction is
made for a non-existent material class in a particular image
(Powers, 2020).

The evaluation results for each of the 10 models generated
after training on 1, 2, 3, 4, and 5 leaves were compiled using
the Panda’s library in Python and visualized using the Seaborn
library (Supplementary Table 1; Oliphant, 2007; McKinney,
2011; Waskom, 2021).

The number of training epochs (i.e., iterative learning passes
through the complete data set) to train a satisfactory model was
also evaluated using the 25 image/annotation pairs taken from
5 annotated leaves. This number of training images was found
to give the best results with a fixed number of epochs for model
training. Ten models were generated after training for 10, 25,
50, 100, and 200 epochs. The accuracy, precision, recall, and
F1 scores for these models were calculated after evaluating the
same 5 images from the 6th leaf that was not used for model
training and validation. Binary image outputs for each material
type generated for the leaves were stacked and rendered in
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3-dimensions using ORS Dragonfly (Object Research Systems,
Montréal, Canada).

Training models for segmenting flower
buds and soil aggregates

A mixture of NVIDA T4, P100, V100, and A100 GPUs
were used for training models for segmenting an almond
flower bud and a soil aggregate. Such GPU’s are available when
using the free version of Google’s Colaboratory, the low cost
($9.99/month) subscription based Colaboratory Pro, or the
higher cost ($49.99) subscription based Colaboratory Pro +
(Mountain View, CA, United States). Training and validation
images for both the almond flower bud and the soil aggregate

had to be downscaled to 50% size in the x and y dimensions to fit
on the T4, P100, and V100 video cards due to VRAM limitations
(16 Gb VRAM) (Supplementary Table 1). When using the
A100 GPU (40 Gb VRAM) available through Colaboratory
Pro +, images used for model training and validation from
the flower bud and soil aggregate were only downscaled to
85% in the x and y dimensions, representing a large gain in
image data for training and validation (Supplementary Table 1).
Again, models pre-trained on the COCO train 2017 dataset
were imported and the original classifier was substituted for a
new classifier based on 4 potential pixel classes. For the soil
aggregate, these were background, mineral solids, pore space
and particulate organic matter; for the almond bud there were
background, bud scales, leaf tissues, and air space. The pre-
trained model weights were modified using an Adam optimizer

FIGURE 2

Accuracy, precision, recall, and F1 scores as a function of uniquely annotated leaf number (5 annotated images per leaf) used to predict tissue
classes in X-ray µCT images from an independent leaf on which the models were not trained or validated. Circles represent unique predictions
from 10 uniquely generated models per leaf number; dark gray lines represent the mean value of the 10 models while thick light gray lines
represent the 95% confidence interval of the values.
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for stochastic optimization with the learning rate set to 0.001 and
a binary cross-entropy loss function (Kingma and Ba, 2017). To
help avoid overfitting the training data, the data was augmented
using Albumentations package in Python to flip and rotate a
subset of the images during model training (Buslaev et al., 2020).
Models were trained for 200 epochs as model loss for these data
was previously found to plateau between 100 and 200 epochs.
Model accuracy, precision, recall and F1 scores were calculated
as above after testing on 5 independently annotated images from
the same flower bud and soil aggregate that were not used for
model training or validation. Binary image outputs for each

material type generated for the almond bud and soil aggregate
were stacked and rendered in 3d using ORS Dragonfly (Object
Research Systems, Montreal, Canada).

Results

Accuracy, precision, recall, and F1 scores for a general
model to identify and segment specific walnut leaf tissues on
a pixel-wise basis plateaued after training and validation on at
least 3 annotated leaves. For epidermis and mesophyll tissues,

FIGURE 3

Visual representation of the model outputs for a single walnut leaf image; top image is a X-ray CT scan taken from a leaf that was not used for
training or validation of the applied models; next is the hand annotated image of the scan followed by the outputs from the best performing
model trained on 1, 3, and 5 leaves, respectively. For the walnut leaf segmentations the background is light gray, the epidermis is dark gray, the
mesophyll is black, the air space is white, the bundle sheath extensions are middle gray, and the veins are lightest gray.
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prediction F1 scores were > 80% while prediction F1 scores
were generally > 75% for bundle sheath extensions and > 70%
for airspaces. The lowest prediction F1 scores were achieved for
veins tissues (∼60%) and the highest for the background class
(>95%) (Figures 2, 3). Precision scores were generally higher
than recall scores except in the case of vein tissue identification,
where the models tended to over-predict the occurrence of the
vein tissue class. F1 score variability across all prediction classes
decreased as the number of leaves used during training and
validation increased. Model F1 score variability was highest
for the bundle sheath extension and vein tissue classes, likely
due to colocation of the two tissue classes. When evaluating
generalized walnut leaf model performance with increasing
training epochs, model F1 scores plateaued after 50 epochs.
Model F1 score variability was consistent after 50 epochs, with

no improvement after additional training time (Figures 4, 5).
This was particularly true for the vein tissue class which took the
most training for consistent identification.

Model performance for the segmentation of an almond
flower bud and a soil aggregate was hindered by the downscaling
necessary to fit the training and validation data on video cards
with 16 Gb of VRAM. When downscaled to 0.5 size in the x
and y dimensions (25% size), the best model F1 scores were
99.8, 99.1, 92.4, and 71.5% for the background, bud scale,
flower, and air space classes, respectively. At the same scaling
for the soil aggregate, the best model F1 scores were 99.4, 83.7,
55.6, and 71.3% for the background, solid, pore, and organic
matter classes, respectively. With access to the A100 GPU with
40 Gb of VRAM, training images were only downscaled to
0.85 size in the x and y dimensions (72% size). This yielded

FIGURE 4

Accuracy, precision, recall, and F1 scores as a function increasing epoch number for models trained on annotated images from 5 leaves (5
annotated images per leaf) used to predict tissue classes from X-ray µCT images from an independent leaf on which the models were not
trained or validated. Circles represent unique predictions from 10 uniquely generated models per epoch number; dark gray lines represent the
mean value of the 10 models for each tissue type while thick light gray lines represent the 95% confidence interval of the values.
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FIGURE 5

Visual representation of the model outputs for a single walnut leaf image cross-section; top image is a X-ray CT scan taken from a leaf that was
not used for training or validation of the applied models; next is the hand annotated image of the scan followed by the outputs from the best
performing model trained for 10, 100, and 200 epochs, respectively. For the walnut leaf segmentation, the background is light gray, the
epidermis is dark gray, the mesophyll is black, the air space is white, the bundle sheath extensions are middle gray, and the veins are lightest gray.

best model F1 scores of 99.9, 99.4, 94.5, and 74.4% for the
background, bud scale, flower, and air space classes, respectively.
At the same scaling for the soil aggregate the best model F1
scores were 99.4, 91.3, 76.7, and 74.9% for the background,
solid, pore, and organic matter classes, respectively. While the
improvements in model performance with increased scaling
were modest for the flower bud, they were large for the soil
aggregate, likely due to the intricacy of the aggregate that was
lost with downscaling (Figure 6).

Model outputs are binary 2-dimensional data from
which information like material area, perimeter or other
morphological traits can be extracted using downstream image

analysis functions. These data are saved as sequences of arrays
which allows for the 3d visualization of the segmented materials
(Figure 7). Additionally, 3d data can be extracted from the
array sequences using Python libraries like NumPy or using
other programming languages like R or MATLAB.

Discussion

Generalized models for image segmentation are typically
generated after training on hundreds to millions of images
(Belthangady and Royer, 2019; O’Mahony et al., 2020;
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Shahinfar et al., 2020; Khened et al., 2021). Due to the limited
availability of leaf, bud, or soil x-ray CT scans, such a
training image library simply doesn’t exist (Moen et al., 2019).
However, we found that we can generate accurate models
using 5 annotated slices from at least 3 unique leaf scans.
This discrepancy is likely the result of the consistent image
collection settings (resolution) on the same imaging platform
(Beamline 8.3.2) which simplifies the learning process (Fei et al.,
2021; Silwal et al., 2021). Our results are comparable to those
previously achieved by Théroux-Rancourt et al. (2020) on X-ray
CT images of plant leaves. That method, based on random forest
classification, requires hand annotating 6 images from every
single scan and is designed for extracting data from leaf X-ray
CT images exclusively. Specifically, the precision and recall
scores for the background (>95%), mesophyll tissue (>80%),
epidermis tissue (>80%), and bundle sheath extension (>75%)
classes were equal to those achieved by Théroux-Rancourt
et al. (2020). The current approach had lower precision and
recall scores (>75%) for air space identification compared to
Théroux-Rancourt et al. (2020) (>90%), but higher precision
and recall scores for vein tissue identification (>60% vs. < 55%,
respectively). Despite similarities in the quality of results, the
current method decreases segmentation time from hours to
minutes compared to Théroux-Rancourt et al. (2020) and can
be applied to any X-ray CT image data set.

Our training batch size was limited to 1 by a combination
of factors including variably sized training images for the leaf
scans and hardware limitations for the almond bud and soil
aggregate scans. Typically, batch size selection is constrained
by a combination of hardware and the number of images used
for training; the smaller the batch size, the longer training takes
(Smith et al., 2017). This presents a significant barrier when
training using millions of images but is not an issue when only
tens of training images are available.

Epoch selection is an important component of maximizing
model accuracy, precision, recall, and F1 scores. Training
models for too few epochs leads to substandard model
performance while over training with too many epochs wastes
time and can lead to overfitting (Li et al., 2019; Baldeon
Calisto and Lai-Yuen, 2020; Pan et al., 2020). Typically models
trained with small batch sizes require more training epochs for
satisfactory performance compared to models trained on large
batch sizes (Smith, 2018). This can greatly increase training
times if many images are required for training to achieve
satisfactory model performance (von Chamier et al., 2021).

Beyond batch size and epoch number, image size plays a
significant role in model performance. Large images take up
more GPU memory than smaller images (Sabottke and Spieler,
2020). GPU memory can be conserved by decreasing batch size,
but once batch size has been reduced to 1, the only option is
to downscale images for training. However, this results in a
significant loss of information in the images, hindering model
performance as fine details are lost (Sabottke and Spieler, 2020).

FIGURE 6

Visual representation of the model outputs for an almond flower
bud and a soil aggregate; top images are X-ray CT scans of the
flower bud and soil aggregate; next are the hand annotated
images of the scans followed by the outputs from the best
performing models trained at 0.5 and 0.85 scale, respectively.
For the almond flower bud, background is black, bud scales are
dark gray, flower tissue is light gray, and air spaces are white. For
the soil aggregate, background is black, mineral solids are dark
gray, pore spaces are white, and organic matter is light gray.

This was particularly problematic with the soil aggregate scans
which contained fine pore spaces which were lost when the
images were downscaled to 0.5 in the x and y dimensions to
fit on GPUs with 16 Gb of VRAM. Downscaling to this degree
results in a loss of 75% of the image information. Only when
GPUs with more VRAM were used could images be downscaled
less, resulting in improved performance for models trained on
these higher resolution images.

By stacking the sequences of data arrays produced by
the model, novel information can be gained about processes
that occur over 3 dimensions. Taking this approach, Théroux-
Rancourt et al. (2017) previously showed that mesophyll surface
area exposed to intercellular air space is underestimated when
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FIGURE 7

3D visual representation of the stacked model outputs for a walnut leaf, an almond flower bud, and a soil aggregate; top images are X-ray CT
scans of the bud and soil aggregate; next are the hand. In the walnut leaf images, the background is black, the epidermis is dark green, the
mesophyll is light green, the air space is white, the bundle sheath extensions burnt orange, and the veins are brown. In the almond bud images,
background is black, bud scales are brown, flower tissue is pink, and air spaces are white. For the soil aggregate, background is black, mineral
solids are dark gray, pore spaces are blue, and organic matter is brown.

using 2D rather than 3D approaches. Similarly, Trueba et al.
(2021) found that the 3D organization of leaf tissues had a
direct impact on plant water use and carbon uptake. In soils,
it well understood that pore tortuosity plays a key role in
understanding processes like water infiltration and O2/CO2

diffusion. As Baveye et al. (2018) highlighted in their review,
the rapid segmentation of soil X-ray µCT data has long been
a major hurdle to understanding these processes. Our workflow
simplifies and accelerates this process, enabling researchers to
rapidly extract information from their X-ray µCT data. Our
approach is similar to those developed by Smith et al. (2020)

and von Chamier et al. (2021), but is more flexible as it
works with variably sized images and allows for multi-label
semantic segmentation.

Conclusion

With the current work, we present a workflow for using
open-source software generate models to segment X-ray
µCT images. These models can be specific to an image set
(segmenting a single soil aggregate or almond bud) or be
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generalized for a specific use case such as segmenting leaf scans.
We demonstrated that a limited number of annotated images
can achieve satisfactory results without excessively long training
time. The workflow can be run locally, in Google’s Colaboratory
Notebook, or adapted for use on high performance computing
platforms. By using GPU resources, the rate of segmentation can
be dramatically increased, taking less than 0.02 s per image. This
allows users to segment scans in minutes, a significant speed
gain compared to other methods with similar precision and
recall (often > 90%) across a variety of sample scans (Arganda-
Carreras et al., 2017; Théroux-Rancourt et al., 2020). This will
allow researchers to gain novel insights into the role that 3d
architecture of soil and plant samples plays in a variety of
important processes.
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