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Plant phenotyping is essential in plant breeding and management.

High-throughput data acquisition and automatic phenotypes extraction

are common concerns in plant phenotyping. Despite the development

of phenotyping platforms and the realization of high-throughput

three-dimensional (3D) data acquisition in tall plants, such as maize, handling

small-size plants with complex structural features remains a challenge. This

study developed a miniaturized shoot phenotyping platform MVS-Pheno V2

focusing on low plant shoots. The platform is an improvement of MVS-Pheno

V1 andwas developed based onmulti-view stereo 3D reconstruction. It has the

following four components: Hardware, wireless communication and control,

data acquisition system, and data processing system. The hardware sets the

rotation on top of the platform, separating plants to be static while rotating.

A novel local network was established to realize wireless communication

and control; thus, preventing cable twining. The data processing system

was developed to calibrate point clouds and extract phenotypes, including

plant height, leaf area, projected area, shoot volume, and compactness.

This study used three cultivars of wheat shoots at four growth stages to test

the performance of the platform. The mean absolute percentage error of

point cloud calibration was 0.585%. The squared correlation coe�cient R2

was 0.9991, 0.9949, and 0.9693 for plant height, leaf length, and leaf width,

respectively. The root mean squared error (RMSE) was 0.6996, 0.4531, and

0.1174 cm for plant height, leaf length, and leaf width. The MVS-Pheno V2

platform provides an alternative solution for high-throughput phenotyping of

low individual plants and is especially suitable for shoot architecture-related

plant breeding and management studies.
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MVS-Pheno, multi-view stereo reconstruction, three-dimensional point cloud,
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Introduction

Multi-omics research is currently a hotspot in plant science,

as shown by the emerging genomics–phenomics studies (Yang

et al., 2013). Although a rapid advancement in genomics

has achieved a high-throughput and predictable cost of

gene sequencing, phenomics has become the bottleneck of

plant multi-omics research (Furbank and Tester, 2011). Plant

phenomics is based on obtaining high-quality and reproducible

phenotypic traits in a high-throughput manner to quantitatively

analyze the genotype and environment interactions and their

effects on yield, quality, stress resistance, and other relevant traits

(Jin et al., 2020). Satisfactory phenotypic platforms can promote

the development of plant phenomics (Jin et al., 2020), enhancing

the breeding process and providing data for accurate agricultural

management decisions (Shakoor et al., 2017).

Plant phenotyping can be divided into several scales from

macro tomicro, including regional, population, individual plant,

organ, and micro scales. However, ensuring the accuracy and

throughput of plant phenotyping at different scales remains a

challenge (Zhao et al., 2019; Jin et al., 2021). Many studies have

conducted high-throughput phenotyping at the individual plant

and organ scales due to the high demand for morphological

and structural phenotyping in shoot architecture crop breeding

and decision-making in agriculture management (Wu et al.,

2019; Xiang et al., 2019; Xiao et al., 2021). Moreover, LiDAR

(Wu et al., 2019), depth camera (McCormick et al., 2016;

Teng et al., 2021), and high-resolution cameras (Bernotas et al.,

2019; Li et al., 2020) are the common data acquisition sensors

for morphological and structural phenotyping at individual

plant and organ scales. For instance, multi-view stereo (MVS)

image three-dimensional (3D) reconstruction is widely used

to study morphological and structural phenotyping. It is

considered to be the optimal solution to build a high-throughput

and low-cost phenotyping platform for individual plants. The

previous studies have shown that the phenotypes retrieved from

MVS reconstruction can match the accuracy of LiDAR and

reconstruct a high-quality 3D point cloud with vertex colors

(Wang et al., 2019). How to quickly obtain high-quality plant

multi-view images is the core of high-throughput acquisition

of MVS-based phenotyping. Based on the relative motion

relationship between the target plant and the camera sensor,

plant multi-view image acquisition technology can be classified

into two modes, i.e., “plant to camera” and “camera to plant”

(Fiorani and Schurr, 2013).

In the “plant to camera” mode, the target plant is put on

a rotating turntable, rotated, then cameras are fixed to obtain

multi-view images of the plant (Zhu et al., 2020b). The number

of cameras installed depends on the size of the plant and camera

angle of view (Nguyen et al., 2016; Zhang et al., 2016; Gibbs et al.,

2018). The first step involves removing the background and

retaining only the plant in MVS images. Black or high-contrast

colors with green are usually used as the background (Lu et al.,

2020). However, tall plants or plants with flexible organs are

easily shaken when rotating on the turntable, resulting in poor

reconstruction point clouds, such as fuzzy edges of plant leaves

and thicker stems than the actual ones. Therefore, it is mostly

used to reconstruct 3Dmodels of small plants, seedlings, or plant

organs (He et al., 2017; Liu et al., 2017; Syngelaki et al., 2018).

In the “camera to plant” mode, the target plant is maintained

at a static position, then one or more cameras are rotated

around the plant to obtain multi-view images. The number

of cameras required depends on the plant size. The overlap

of adjacent images on the same layer should be more than

60%, and that of adjacent images on different layers more than

50%. Multi-view images for low plants such as pepper, eggplant,

and cucumber, can be manually obtained without automating

the acquisition process (Rose et al., 2015; Hui et al., 2018).

However, a manual acquisition cannot ensure the uniformity of

image acquisition location and overlap requirements of images;

thus, not suitable for large-scale phenotyping applications. As

a result, researchers have mounted cameras on flexible rocker

arms to achieve automatic data acquisition, improving the

automation level of data acquisition and meeting the needs of

high-throughput data acquisition (Cao et al., 2019). A motor

was needed to drive the rotating arm for tall plants, such as

maize, and cameras were installed on the rotating arm to acquire

shoot images while rotating (Wu et al., 2020). Since the target

plants must remain static while the cameras take images, a

higher reconstruction accuracy is obtained using this mode than

the “plant to camera” mode. The “camera-to-plant” mode also

supports in situ, continuous, and non-destructive measurement

of individual plants or populations. The operators can directly

take images around plants in the field (Walter et al., 2018;

Xiao et al., 2020; Zhu et al., 2020a) or install the camera on

the phenotypic vehicle (Sun et al., 2020) or mount it on an

unmanned aerial vehicle (Zermas et al., 2019; Di Gennaro and

Matese, 2020; Wang et al., 2021). Researchers compared the 3D

reconstruction effects of the two MVS modes under the same

image acquisition environment and they showed that “camera

to plant” mode has higher accuracy and robustness than “plant

to camera” mode (Gao et al., 2021).

Presently, “camera to plant” mode is used for 3D point

cloud reconstruction and phenotypes extraction of plants with

relatively simple morphological structure of single stem and

large leaves, such as maize. A phenotyping platform MVS-

Pheno V1 was developed for maize shoots using “camera

to plant” mode (Wu et al., 2020). This platform allows

for automatic multi-view images acquisition and structural

phenotypes extraction approaches are integrated into the

data processing system. However, the platform takes large

space to deploy, and the turntable causes the target plant to

tremble slightly while rotating. During image acquisition, light

and airflow control are not taken into account. Despite of
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these shortcomings, MVS-Pheno was an advanced platform

for automatic obtaining multi-view images of plants. None

literature was found to improve MVS-Pheno platform.

For plants with many tillers, slender leaves, and serious

shielding, such as wheat and rice, the reconstructed 3D point

cloud using multi-view images is usually incomplete, with

missing points on leaves and tips (Pound et al., 2014; Duan et al.,

2016). Plants with complex morphological structures require

enhancedmulti-view image data acquisition and reconstruction.

The limitations and challenges in the previous MVS-based

plant phenotyping studies can be summarized as follows: (1)

Manual acquisition of multi-view images for plants is difficult

to ensure the overlapping of incident images and achieve

high-throughput acquisition. Automatic acquisition devices that

require limited spaces to deploy are urgently needed. (2) Images

acquired in open environment conditions are greatly affected

by lights and winds, resulting in unsatisfactory reconstruction

point clouds. Controlled imaging condition is favorite for

such devices. (3) The rotation in “camera to plant” mode is

easy to produce cable surrounded, resulting in the inability

of continuous and automatic acquisition. (4) Point clouds

obtained through multi-view image reconstruction are scaled

with different size, automatic scale calibration has to be resolved

for further batched phenotypes extraction. (5) The structure and

detailed morphology of wheat are more complicated than maize

plants, which puts forward higher requirements of acquired

images for point cloud reconstruction.

Herein, a miniaturized shoot phenotyping platform MVS-

Pheno V2 was developed for low plants, by optimizing the

previous platform MVS-Pheno V1 (Wu et al., 2020). Besides,

an automatic data acquisition and data processing pipeline for

wheat has been constructed and evaluated. Therefore, MVS-

Pheno V2 can provide a high-throughput and cost-effective

solution for small-scale plant phenotyping of individual plants

and organs.

Materials

This study used three winter wheat cultivars, FengKang13

(FK), JiMai44 (JM), and XiNong979 (XN), with different

shoot architectures. The experiment was performed at the

experimental field of Beijing Academy of Agricultural and

Forestry Sciences (39◦56′N, 116◦16′E). Wheat was planted on 25

September 2020 with a density of 66,666 plants/ha and a row

spacing of 16 cm. Sufficient water and fertilizer were supplied

during the entire growth period. The field shoots were sampled

from the beginning of returning to green stage to booting

stage on 23 March 2021, 2 April 2021, 13 April 2021, and 19

April 2021 (three replicates per cultivar). Wheat shoots with

different tiller numbers were selected during sampling to test the

performance of the platform and verify the adaptability of data

processing approaches to different tiller densities. The detailed

measured tiller numbers of each sampled shoot are shown in

Table 1. The sampled shoots were quickly transplanted to pots,

and appropriate water was added to the pots to prevent leaf

wilting. The MVS-Pheno V2 platform was used to obtain multi-

view images of the shoots. After multi-view image acquisition,

a 3D digitizer Fastrak (Polhemus, Colchester, VT, USA) was

used to acquire morphological feature points of leaves of several

shoots and tillers (Wang et al., 2019), which was used for data

verification to evaluate point cloud reconstruction accuracy of

MVS-Pheno V2 platform. Moreover, the multi-view images of

pepper and eggplant shoots at the seeding stage, tomato, beet,

lettuce, chamomile shoots, maize tassel and ears, and roots were

acquired using the platform to test its performance on other

plants and plant organs.

Methods

Platform overview

The MVS-Pheno V2 platform has four components:

hardware, wireless communication and control, data acquisition

system, and data processing system (Figure 1). (1) The hardware

comprised a supporting framework, driving motor, camera

sensors, and computers. (2) The wireless communication and

turntable control among controllers and operating computers

were established by building a local wireless network to reduce

the number of physical transmission cables and improve the

ease of use and stability of the equipment. (3) The data

acquisition systemwas used to realize automatic data acquisition

and provide real-time working conditions to monitor the data

acquisition process. (4) The pipeline data processing system was

deployed on the server to realize 3D point cloud reconstruction

and phenotypes extraction from the acquiredmulti-view images.

Hardware

TheMVS-Pheno V1 platform (Wu et al., 2020) was designed

to automatically acquire multi-view images of tall plants; thus,

its hardware is relatively tall and large (Figure 2A). After a

target plant is placed in the center of the platform, a supporting

arm with several cameras rotates around the target plant to

obtain images.

The MVS-Pheno V2 is an improvement of the MVS-Pheno

V1, with the most important improvement being the mode

of driving. Since the V2 platform is designed for low plants,

the V2 is relatively smaller than the V1, and the driving

system is set above the target plant (Figures 2B,C), while the

V1 platform drives the supporting arm and cameras near the

ground (Figure 2A). The hardware of the V2 platform has seven

units, including the shoot transportation unit, supporting unit,
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TABLE 1 Tiller numbers of each sampled wheat shoot in four growth

stages. Each cultivar involves three sample replicates.

Cultivar FK JM XN

Sample ID 1 2 3 1 2 3 1 2 3

2021/03/23 6 4 6 5 8 10 4 4 2

2021/04/02 6 6 8 7 8 10 4 6 4

2021/04/13 7 8 6 5 7 9 4 7 4

2021/04/19 8 4 3 8 3 5 4 8 7

rotating unit, data acquisition unit, top unit, operating terminal,

and computing server unit (Figure 2D, Supplementary Video 1).

The transportation unit (Figure 2D, Part-A) has a parallel

rail, a stepping motor, and a tray for laying plants and transports

the target plant to the center of the hardware. A marker

plate should be laid near target plant for further point cloud

calibration, while not be too close to the target plant during

image acquisition to avoid sheltering by leaves. The supporting

unit (Figure 2D, Part-B) has four retractable support columns

and a cloth fence to construct a wind-shield module (Figure 2B).

It supports the upper turntable and blocks additional lights and

airflow. The adjustment height of the support columns is 100–

160 cm. An opaque and non-reflective double-layer flannelette

was adopted as the wind-shield. The rotating unit (Figure 2D,

Part-C) has a turntable with the ring gear, a stepping motor,

and a position switch. It is placed on the support unit to drive

the acquisition unit to rotate around the target plant. The

turntable has an inner radius of 60 cm and is customized based

on specific requirements. The data acquisition unit (Figure 2D,

Part-D) consists of a vertical arm, a data acquisition computer,

and one or more cameras. The upper part of the vertical arm

is mounted on the turntable and rotates with the turntable.

The vertical arm has a height of 100 cm, and at most, three

cameras can be installed on the arm. Canon77D cameras with

24-mm half-frame fixed focus lenses are used. An acquisition

computer is installed at the bottom of the vertical arm to

connect easily to the cameras through data cables. Herein, NUC,

a mini-computer produced by Intel, was used. The computer

is small and light (size: 11 × 11 × 5 cm, weight: 300 g) and

can be mounted on the vertical arm to rotate synchronously

with the turntable. The top unit (Figure 2D, Part-E) has a light

supplement, electric control, and network modules. The LED

light sources are installed in two layers. The upper layer four

light sources (10-mm diameter, 20W white light source) are

in the cross-structure of the top unit, and the second layer

four light sources (6-mm diameter, 16-W white light source)

are on the support columns of the supporting unit. The light

sources are inclined downward to avoid the backlight caused

by being opposite to the cameras. A router is installed on the

upper part (providing LAN network for NUC and operating

terminal). This unit also has a motor control circuit board of

the platform. The operating terminal (Figure 2D, Part-F) can be

wirelessly separated from the platform for the effective operation

of the equipment. A mobile phone, iPad, or laptop can also

serve to setup the operation terminal (Figures 2B,D, Part-F). The

computing server unit (Figure 2D, Part-G) is optional and is

connected with the NUC through the network to receive the

acquired multi-view images for phenotypes estimation.

Wireless communication and control

Routing strategy for signal and data transmission is

complex in the MVS-Pheno V1 platform. Therefore, a wireless

communication network among computers, controllers, and

operation terminals established in MVS-Pheno V2 prevents

winding among cables during turntable rotation. A detailed

physical circuit diagram of network communication and

signal control of the platform is shown in Figure 3. Wireless

communication has three parts, i.e., WiFi serial communication,

LAN, and network channel as discussed in the following:

(1) The WiFi serial communication (USB to wireless serial

communication, XMS, China) is used to realize the wireless

connection between the electronic drive unit and NUC. (2) A

LAN is located between the NUC and the operating terminal

through a wireless router (wireless Gigabit router, Huawei,

China), and facilitates the operating terminals; thus, remotely

controlling the NUC. (3) A network channel is established

between NUC and a high-performance computing server to

transmit the acquired multi-view images in a fixed time.

The platform realizes automatic control through switches.

Limit switches are set at the end of the transportation unit and

side of the turntable, to detect the motion state of the plant

on the rail in the transportation unit and the rotating state

of the turntable in rotating unit in real-time. When triggered,

the limit switch of the transportation unit sends an electrical

signal to the control board to start rotation of the turntable. It

triggers the NUC to start image acquisition. The limit switch

of the turntable sends an electrical signal to inform the control

board to stop the rotation of the turntable and inform the

NUC to finish data acquisition when triggered. Moreover, the

turntable alternately rotates forward and reverse to prevent the

power supply cable twining on the rotating arm (the NUC and

cameras provide a 220-V power supply). The load balancing and

signal synchronous triggered acquisition mechanism are used

to achieve synchronous acquisition and data transmission of

multiple cameras.

Data acquisition system

The data acquisition system on the NUC acquires data

automatically, allowing for real-time monitoring of working

conditions. The system adopts a linear working flow and
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FIGURE 1

Composition of MVS-Pheno V2 platform.

involves five steps, sample preparation, labeling, sample

incoming, data acquisition, and sample outgoing as detailed in

the following: (1) Sample preparation. Target plant shoots are

planted or transplanted in pots, then placed on the tray of the

transportation unit one after another. (2) Labeling. Each shoot

has an identifier (ID). The ID can be entered using the keyboard

or scanned using a code scanning gun on a prepared bar code.

A corresponding data storage directory is then established.

(3) Sample incoming. The transportation unit transports each

plant to the end of the rail (the central position of the device)

at a constant speed. (4) Data acquisition. The limit switch sends

a command to the NUC. Then the acquisition system sends

a rotation command to the turntable after a delay of 3 s to

synchronously drive the camera to acquire multi-view images.

The delay prevents the vibration of plants once transportation

stops. The turntable rotates at a constant speed, and the camera

takes images at same time intervals. The limit switch sends a

command to the NUC, then the turntable stops rotating, and the

camera stops taking images after the turntable rotates one cycle.

(5) Sample outgoing. The transportation unit drives the plant

out of the equipment. The multi-view image acquisition cycle is

continuous, and each cycle usually takes 90 s. Around 28 images

cloud be taken in each cycle with 60% overlapping between

consecutive images. The data acquisition system was developed

using the QT platform (a cross-platform C++ graphical user

interface application development framework developed by QT

company) and was tested on a workstation with a Win10

operating system (3.2-GHz processor and 8 GB memory).

Data processing system

The data processing system mainly includes MVS-based 3D

point cloud reconstruction, point cloud calibration, shoot point

cloud segmentation, and phenotype extraction. The system was

developed using OpenGL and PCL (Point Cloud Library) and

was tested on a workstation with a Win10 operating system (3.2

GHz processor and 64 GB memory).

MVS-based 3D point cloud reconstruction

For data processing, the acquired multi-view images are first

turned into 3D point clouds. The 3D point cloud reconstruction

includes sparse reconstruction based on SFM (structure from

motion) algorithm and dense reconstruction based on the MVS

algorithm. Here, batch reconstruction of acquired plants was

realized by integrating open-source library OpenMVG and

OpenMVS (Locher et al., 2016; Moulon et al., 2016). Vertices

in the reconstructed point cloud involve both space coordinates

and colors. Before denoising and sampling, the point number of

a single scene should be >30 million (Figure 4A). In addition,

a commercial software ContextCapture (Bentley, v.4.4.9), was
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FIGURE 2

Hardware of MVS-Pheno V2. (A) Structural composition of MVS-Pheno V1. (B) Overall appearance of MVS-Pheno V2. (C) The actual scene inside

the platform when acquiring multi-view images of wheat shoots. (D) Detailed hardware composition of MVS-Pheno V2 platform.

used for 3D point cloud reconstruction to estimate the quality

and usability of acquired image in commercial software.

Point cloud calibration and shoot segmentation

Unlike the sensors such as LiDAR or depth camera, the

size of point clouds generated based on MVS technology

is affected by plant size, shooting position, camera angle,

and camera configuration. Besides, it has a different global

coordinate system and scale of point cloud. Therefore, it is

necessary to calibrate generated point cloud and correct the

positive direction of the point cloud to transform the point

cloud to their real size with the XOY-plane as the reference

plane and the Z-axis as the positive direction. Furthermore,

plant shoots should be segmented to facilitate further phenotype

extraction. Therefore, the reconstructed point cloud should

undergo calibration and segmentation.

Coarse-point-cloud-cropping

The center part of the reconstructed scene with the target

shoot should be roughly segmented, and the initial point cloud

should be down-sampled to improve computational efficiency.
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FIGURE 3

Physical circuit diagram of network communication and signal control in MVS-Pheno V2 platform.

In center part cropping, the central point of point cloud was used

as center of a cylinder. The point cloud was projected on the

XOY-plane, and two-third diameter of the circumcircle of the

projected point cloud, which empirically covers the wheat points

and excludes the cloth fence points, is used as the diameter

of the cylinder to construct the cropping cylinder and remove

the point cloud outside the cylinder (Figure 4B). The points

lower than 10% height in the Z-axis direction were removed to

obtain the point cloud (Figure 4C). The number of remaining

points after cropping was about 0.8∼2 million. The point cloud

was further simplified using random sampling to obtain 10%

points (Figure 4D), which is promising for phenotype estimation

accuracy and efficiency.

Calibration

The point cloud size was calibrated using plane attribute and

circle radius of the marker plate set near the target plant in the

scene. The color threshold was used to segment the marker plate

since the surface color of the marker plat was known (red). The

hue, saturation, and lightness (HSL) space can intuitively present

the hue, saturation, and lightness compared with red, green, and

blue (RBG) space. Therefore, the HSL color space was used to

extract the point cloud of marker plate. The conversion from

RGB to HSL space is shown in Equation (1).

h =































0◦ ifmax = min

60◦ × g−b
max+min + 0◦ ifmax = r and g ≥ b

60◦ × g−b
max+min + 360◦ ifmax = r and g < b

60◦ × b−r
max+min + 120◦ ifmax = g

60◦ × r−g
max+min + 240◦ ifmax = b

l = (max+min)/2

s =











0 if (max = min) or (l = 0)
max−min

2−max−min if l ≥ 0.5
max−min
max+min if l < 0.5

(1)

where max = max(r, g, b), min = min(r, g, b), and r, g, b ∈
[0, 1]. The point was regarded as a point of the marker plate

if the color of a point satisfied h > 340, s > 0.6, and l >

0.3 (Figure 4E). The boundary points were detected, and the

circumcircle of the marker plate was estimated (Figure 4E). The

diameter ratio between the estimated circumcircle and the real

size of themarker plate was used as the scaling factor of the shoot

point cloud.

The scaling accuracy of the marked plate point cloud

after calibration was evaluated by comparing it with manual

measurements obtained by measuring the diameter of the

marker plate point cloud after scaling using an open-source

software CloudCompare (http://www.cloudcompare.org/). Each

measurement was repeated 5 times and averaged to eliminate
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FIGURE 4

Point cloud calibration and shoot segmentation. (A) Reconstructed initial point cloud of scene inside MVS-Pheno V2 platform using the acquired

multi-view images. (B) Point cloud cropping via cylinder. (C) Ground point cloud removal. (D) Down sampling of shoot point cloud. (E) Marker

plate extraction and radius estimation for point cloud calibration. (F) Shoot point cloud segmentation. (G) Shoot point cloud denoising.

the manual error. The error between the estimated and actual

diameter was quantitatively evaluated using indicator mean

absolute percentage error (MAPE) as shown in Equation (2),

where d̃i is the estimated diameter from the point cloud, and di

is the real size of the plate (6 cm).

MAPE = 100%
1

n

n
∑

i=1

∣

∣

∣

d̃i − di

∣

∣

∣

di
(2)

Shoot-point-cloud-cropping

The spatial coordinates of the marker plate were extracted.

It was easy to calculate the height of the upper edge of the

pot since the height of the marker plate and the height of pots

were known. The points below the upper edge of the pot were

removed, and a plant point cloud was obtained (Figure 4F).

Statistical denoising (Rusu and Cousins, 2011) removed small

point clusters in the retained points to realize plant point cloud

denoising (Figure 4G).

The 3D phenotype extraction

The extracted and calibrated point clouds were used to

estimate the 3D phenotyping parameters of plant shoots,

including plant height, projected area, multi-layer projected

area, leaf area, convex volume, and compactness.

Plant-height

The height difference between the maximum and minimum

value of the point cloud on the Z-axis was considered the

plant height.

Projected-area-and-multi-layer-projected-area

The shoot point cloud was first projected on the XOY-

plane (Figure 5A), and the projected point cloud was then

sparsely sampled using voxel filtering (Figure 5B). The greedy

triangulation was used to generate mesh from the sparsely

sampled points (Figure 5C). Finally, the sum area of the

triangulation mesh was considered the projected area of the

input shoot. The shoot point cloud was divided into several

segments (equal height) for multi-layer projected area, and the
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FIGURE 5

The projected area and multi-layer projected area. (A,D) Projected point cloud on XOY-plane of a shoot and layers. (B,E) Sparsely sampled

points in the XOY-plane of the shoot and corresponding layer in (A,D). (C,F) Generated 2D triangle mesh of points in (B,E) for area estimation.

multi-layer projected area was calculated as the projected area

(Figures 5D–F).

Leaf-area

Wheat has thin stems, narrow and long leaves with flat and

smooth surface features. As a result, meshing the whole plant

point cloud can effectively retain the leaf while removing stem

points to calculate leaf area. First, plant point cloud (Figure 6A)

was down sampled using the voxel grid method to improve the

next-stage computational efficiency and ensure the uniformity

of point cloud density (Figure 6B). The point cloud was then

smoothened using the moving least square method (Alexa et al.,

2003) (Figure 6C). Practically, the fitting polynomial in the

smoothing procedure was set at 3 to maintain the bending

and twisting stage of the blade (Figures 6C,D). Furthermore,

the greedy triangulation was used to generate mesh from the

smoothened point cloud. Most stem points were removed after

smoothing and meshing (Figure 6E). Finally, the sum of all

triangular facet areas was calculated as the shoot leaf area. The

merged visualization of the generated mesh and original colored

point cloud is shown in Figure 6F.

Shoot-convex-volume-and-compactness

The shoot convex volume was estimated by calculating the

convex hull of plant point cloud (Figure 7A). The compactness

of a shoot was considered as the ratio of the projected area

(Figure 7B) to the convex hull area. The shoot wasmore compact

when the compactness was larger.

Results

Performance and applicability of
MVS-Pheno V2 platform

The MVS-Pheno V2 is an improvement of the MVS-

Pheno V1 based on hardware structure and software system for

high-precision phenotype acquisition of small plant individuals

or plant organs. The platform parameters and performance

comparison of the two version platforms are shown in Table 2.

The volume and height of V2 platform after disassembling

are about quarter and one-third of those of the V1 version,

respectively; thus, very portable. The light supplement andwind-

shield modules were added to the V2 platform to reduce the

disturbance of reconstructed data by inconsistent light and
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FIGURE 6

The leaf area estimation. (A) Wheat shoot point cloud. (B) Down sampled point cloud. (C) A leaf before and after point cloud smoothing. (D)

Point cloud of a shoot after smoothing. (E) Triangulated mesh from the point cloud (D). (F) Merged visualization of generated mesh and original

colored point cloud.

FIGURE 7

The shoot convex volume and compactness calculation. (A) Convex hull volume of a wheat shoot. (B) Convex hull area of projected plant points

on a plane.
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TABLE 2 The MVS-Pheno platform parameters and performance comparison between V1 and V2.

MVS-Pheno platform version V1 V2

Platform size after setup (m) 4.0× 4.0× 3.0 2.0× 1.5× 1.5

Platform size after disassembling (m) 2.0× 1.0× 1.0 1.5× 1.2× 0.3

Weight (kg) 180 60

Light supplement module ×
√

Windshield module ×
√

Cost (USD) 7,560 7,210

Measuring plant height range [0.5, 2.5] [0.1, 1.0]

Measuring plant width range [0.3, 1.8] [0.1, 0.8]

Automatic data acquisition ×
√

MVS-Reconstruction Commercial software Open-source system integration

Automatic post-processing ×
√

Applicable plants Maize, Sorghum, cotton, hanging tomato, etc. Wheat, rice, leafy vegetables, plants at the seeding stage, plant organs.

wind, but the overall cost did not increase. Moreover, the

transportation structure was added to the V2 platform to make

the multi-view data acquisition process more automatic. The V2

platform also systematically integrates with an open-sourceMVS

reconstruction system, a robust calibration system, automatic

point cloud phenotype calculation module, and network

module. Consequently, a pipeline for automatic calculation

of 3D plant phenotyping parameters from multi-view images

was constructed.

The data acquisition and processing efficiency (wheat shoot)

using the MVS-Pheno V2 platform is shown in Table 3. The

multi-view images of each shoot were acquired within 60 s,

excluding the shoot incoming and outgoing time. The time

interval of cameras was 2 s. The rotating speed is adjustable with

a range from 0.5 to 2 rpm (rotations per min), and was set to

1 rpm in practice. The data was then automatically uploaded

to a high-performance server for subsequent batch data

processing. A point cloud reconstruction was the most time-

consuming procedure. The point cloud pre-processing (point

cloud calibration and denoising) and phenotype extraction

were completed in seconds. The number of points obtained

after denoising and down-sampling was within 20,000 for one

camera and 80,000 for double camera acquired images, ensuring

the point cloud quality; thus, improving phenotype extraction

efficiency in later stages.

Three potted wheat plants were randomly selected and

multi-view images were acquired using MVS-Pheno V1 and

V2, respectively, to intuitively demonstrate the improvement of

MVS-Pheno platform. Figure 8 shows the visualized comparison

results of the reconstructed point clouds. The MVS-Pheno V2

platform significantly improves the point clouds quality. Point

clouds reconstructed using V1 platform are not clear in leaf

edges, and adjacent organs are connected. Points missing can be

observed in many organs. However, point clouds reconstructed

using V2 platform was relatively complete with clear edges,

and adjacent organs were accurately connected. The comparison

demonstrates the improvement of the platform was necessary

and effective, especially for complex and small-size plants.

Point cloud calibration results

Automatic segmentation, extraction, and measurement

marker plate in the reconstructed point cloud were realized

when the plate was not in contact with the target plant. Marker

plate point cloud was extracted from the reconstructed scene,

and the circumcircle was estimated using the cultivar wheat

plant sample scenes at different growth stages (Figure 9A). Even

if the equipment and sensor positions were fixed, the generated

point clouds were not reconstructed in equal scales under

different acquisition scenarios. The manually measured radius

conducted in CloudCompare of the marker plate point cloud

under different plant scenes ranged from 0.02 cm to 0.2 cm,

while the actual radius of the marker plate was 3 cm (Figure 9B).

The 36 samples had different measured values of each marker

plate, explaining why scale calibration was needed for each

multi-view reconstruction scene, instead of just once calibration

before measurement. Furthermore, the radius of the marker

plate in each scene after scale calibration was also manually

measured to evaluate the reliability of the scale calibration

method. The measurement results are shown in Figure 9C.

Except for sample No. 7 (FK-2 obtained on 13 April 2021),

where the measured value discrepancies were considerable due

to the marker plate being partly covered by wheat leaves during

multi-view image capture, the difference between estimated and

measured values for the other samples was minimal. The mean

absolute percentage error (MAPE) and maximum error were

0.585 and 3.3%, respectively, indicating that the scale calibration

method was accurate.
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TABLE 3 Data acquisition and processing e�ciency using MVS-Pheno V2 platform.

Date Camera number Shoot height (cm) t1 (s) n1 t2 (s) n2 t3 (s) n3 t4 (s)

2021/03/23 1 <30 60 28 1,260 5.6 million 3 17,200 5

2021/04/02

2021/04/13 2 <80 60 56 3,360 9.8 million 4 78,811 8

2021/04/19

*t1 : time of data acquisition, t2 : time of MVS reconstruction, t3 : time of pre-processing, indicating time cost for point cloud calibration and shoot segmentation, t4 : time of phenotype

estimation in section 3.5.3, n1 : multi-view image number, n2 : point number of the reconstructed scene, n3 : shoot point number.

FIGURE 8

Visualized comparison of reconstructed point clouds from the acquired multi-view images using two version MVS-Pheno platforms of randomly

selected potted wheat plants. For each subfigure, the left and right ones were reconstructed from images acquired using MVS-Pheno V1 and V2,

respectively.

Point cloud reconstruction results

Point cloud visualization

The point cloud visualization of the reconstructed wheat

shoots of the three cultivars at four growth stages is shown

in Figure 10. The reconstructed wheat shoot point cloud at

different stages was satisfactory, as discussed in the following

results: Tillers of all shoots were completely reconstructed and

had clear edges. The edge of the leaf points was not missing,

the leaf tips were retained, and no holes exist (a few holes were

observed in leaves at the lower part of the internal tillers) from

the small leaf with a width of 0.5 cm and a length of 5 cm at the

seedling stage, to big leaf with a width of 2.5 cm and a length

of 25 cm at the booting stage. The reconstruction results for

wheat plants with more tillers and compact shoot architecture

which were relatively difficult to reconstruct, such as cultivar JM

(Figure 10) were also satisfactory.

Seedling plants, leafy plants with complex leaves, and plant

organs were used to test the performance of the platform in

other types of plants and other MVS reconstruction software.

The MVS-Pheno V2 platform was used to obtain multi-view

images. The open-source 3D reconstruction program integrated

intoMVS-Pheno V2 and ContextCapture software were used for

3D point cloud reconstruction. The reconstructed point clouds

are shown in Figure 11. Good reconstruction point clouds with

realistic colors were obtained, demonstrating that the platform

was also applicable in other plants as long as the size of the

plants is suitable. Moreover, the multi-view images acquired

using this platform are available for other MVS reconstruction

algorithms and software. The point clouds reconstructed using

ContextCapture were optimized with fewer noise and seemed

relatively clean. The point clouds obtained using open-source

algorithms were with noises, but were relatively complete.

Point cloud resolution and accuracy

The accuracy of the reconstructed point cloud was

quantitatively evaluated by manually measuring plant height,

leaf length, and width of wheat shoots. The plant height is

an essential indicator of the scaling accuracy of reconstructed

point clouds. The estimated plant heights of 36 sample shoots

were compared with the manual measurement (Figure 12). The

R2 and root mean squared error (RMSE) were 0.9991 and

0.6996 cm, respectively. The plant height error occurred in

several shoots due to marker plate scaling error (Figure 9C).

However, the overall performance of the extracted plant height
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FIGURE 9

Visualization results and error comparison of marker plate measurements. (A) Identified marker plate and radius estimation. Three rows

represent segmented marker plate points, extracted boundary points, and fitted circumcircle, respectively. (B) The measured radius of marker

plate before point cloud calibration. (C) Measured diameter of marker plate after point cloud calibration. Errors of calibrated diameters occur

because the marker plate being partly covered by wheat leaves.

was satisfactory. A 3D digitization data acquired using a 3D

digitizer was used to estimate leaf length and width, which can be

regarded as the ground truth in comparison (Wang et al., 2019).

Due to the difficulty in realizing automatic leaf segmentation

and recognition, corresponding tillers of the acquired digitizer

data were found from the point cloud reconstructed using the

platform, and the CloudCompare software was used to measure

the maximum leaf length and width manually. Leaf width was

measured at the widest part of each leaf. A total of 120 leaves

randomly selected from upper, middle, and bottom positions

among 36 sample plants were measured. The comparison

results between the extracted values (measured manually using

software) from the point clouds and estimated values from

the 3D digitization data are shown in Figure 12. The R2 of

the leaf length and width were 0.9949 and 0.9693, respectively.

The RMSE of the leaf length and width were 0.4531 cm and

0.1174 cm, respectively. These results demonstrated that the

reconstructed wheat plant using MVS-Pheno V2 platform had

high accuracy and could retain leaf tip and edge features.

Extracted phenotype analysis of wheat
shoots

Phenotypes of 36 sample shoots were calculated (Figure 13).

The FK had the shortest plant height at each growth stage. The

JM had the longest plant height on 13 April 2021, while XN

had the longest on 19 April 2021 (Figure 13). The compactness

of each cultivar gradually increased with the growth process.

Cultivar JM had the smallest compactness in the late growth

stage, indicating that JM had a looser shoot architecture than

other cultivars. The averaged leaf area was calculated based on

the tiller numbers of each shoot to compare the tiller phenotypes

(Table 1). Cultivar XN had the largest averaged leaf area while

FN had the smallest averaged leaf area per tiller on 19 April

2021. These results indicated that XN had a larger leaf area than

other cultivars in each tiller. Shoot convex volume and averaged

leaf area per tiller increased with the plant growth. Figure 13

demonstrates that the platform is able to capture the phenotype

differences among cultivars and individual plants.
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Each cultivar plants in different growth stages were not

continuously measured using specific shoots because samples

shoots were destructively transplanted from the field, leading

to unsustainable increasing data in the averaged leaf area

per tiller, such as FK-3, JM-1, and XN-3. The projected leaf

area gradually increased with the growth process (Figure 10).

The second layer was the largest, the first layer was close

to the third layer, and the fourth layer was the smallest

(from bottom to top). The FK had the smallest projected

leaf area.

Discussion

Hardware improvement of MVS-Pheno
platform

The miniaturized MVS-Pheno V2 platform was an

improvement of the MVS-Pheno V1 (Wu et al., 2020) for

small plants. The improvements were as follows: (1) Wireless

communication and control were realized in the V2 platform;

thus, signal and data cables in the V1 platform were removed,

avoiding complex cable winding and improving the overall

performance. (2) The V2 platform had the top mounted

turntable structure for allowing complete separation of

turntable and plants to be measured. As a result, the plants

maintain the static state, avoiding movement during the

collection process; thus, reducing the noise of the reconstructed

point cloud, and the reconstructed point cloud can retain

fine features such as leaf tip and edge. Besides, the change of

hardware size reduces the space required by the platform. (3)

Better light source control was realized in the V2 platform by

setting up enclosure structure and light supplement module,

ensuring consistent and even lights; thus, obtaining high-

quality images. (4) The V2 platform had a suitable image

background compared with the V1 platform. The enclosure

cloth filters out the disordered background. It effectively

prevents the moving background, such as the dynamic noise

caused by people walking within the camera field of view during

image acquisition. (5) The V2 platform had a more suitable

calibration structure; thus, enhancing accuracy and robustness.

In summary, the four elements of the MVS reconstruction

system include even illumination, clear background, static plant,

and sufficient image overlap. The MVS-Pheno V2 provides

systematic a design based on these four aspects to ensure

the high-resolution and high-precision acquisition of plant

multi-view images.

Notably, the turntable adopts precision gear transportation

to improve its rotation stability. Therefore, the V2 platform

cannot be easily disassembled by non-professionals, reducing

its portability.

Comparison with “camera to plant”
methods and other types of 3D sensors

High-throughput 3D phenotyping of short plants is in

high demand, and the “camera to plant” mode is commonly

considered an effective and low-cost solution. Despite many

efforts being made to achieve multi-view image acquisition

(Rose et al., 2015; Hui et al., 2018), most of these methods

are not automatic. The studies describing “camera to plant”

have reported improved data acquisition efficiency. However,

the hardware described in these studies seems to be prototype,

and robustness and stability of these devices might not reliable

(Nguyen et al., 2016; Cao et al., 2019). Besides the MVS-Pheno

V1 platform (Wu et al., 2020), automatic control and data

transformation were not considered in these studies. In contrast,

MVS-Pheno V2 is highly automatic in data acquisition, and

wireless control and data transformation are also involved in the

system. Imaging environment, including light and airflow, are

important factors forMVS-based 3D phenotyping. Although the

imaging background and wind shelter were taken into account

in Gao’s research (Gao et al., 2021), the scenario was simply built

to meet the basic demands of data acquisition. The MVS-Pheno

V2 platform has light supplement and windshield modules,

providing promising imaging environment.

The MVS-Pheno V2 platform was designed for low plant

shoots; thus, the range was smaller than most 3D sensors.

Because the point clouds were reconstructed using high-

resolution images, the resolution and accuracy were satisfactory

for plant phenotyping demands, and were better than Kinect

and low-resolution LiDARs. The MVS-Pheno V2 platform was

automatic; thus, easy for users to acquire and process data.

Comparatively, other types of 3D sensors generally need to

move around a target plant manually. The cost of the MVS-

Pheno V2 platform was nearly 8,500 dollars, which was cost-

effective compared with high-resolution 3D scanners, such as

FARO Focus.

Improvement of data processing system

The data processing system of the MVS-Pheno V2 platform

systematically integrates open-source libraries and realizes

batch reconstruction of point clouds using multi-view images.

Moreover, automatic point cloud calibration and phenotype

extraction are also involved in the system. Consequently, an

automatic data processing pipeline was established, which is

essential for handling big data in plant phenomics (Zhang et al.,

2017).

Point clouds generated using MVS reconstruction

technology are unequally scaled under different data acquisition

scenarios, even if the equipment and sensor positions remain

unchanged and the positive direction of the reconstructed
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FIGURE 10

Point cloud visualization of reconstructed wheat shoots of three cultivars at four growth stages. Bar charts represent projected leaf area (cm2) in

four layers. The colors, black to yellow, indicate layered projected area from bottom-to-top layers.

point cloud are inconsistent. Therefore, besides calibrating the

point cloud scale, the calibration system should also correct the

positive direction. Herein, the designed calibration system was

robust and had satisfactory reconstruction accuracy, effectively

ensuring automation for post-data processing. The extracted

3D phenotypes described in this study can also be achieved

using existing methods. They were listed here to promise the

integrity of MVS-Pheno V2, including hardware design and

automatic data processing system. Unlike the data acquired

using 3D digitizers (Zheng et al., 2022), the reconstructed point

clouds of plants using MVS-Pheno V2 platform are unordered

and without semantic information. Further point cloud feature

extraction and analyzing algorithms should be developed to

extract agronomy traits for next-stage applications.

Platform applicability and future
improvements

The MVS-Pheno V2 platform has a limited imaging range

and is unsuitable for tall and large plants described in the V1

platform (Wu et al., 2020). However, The V2 platform is more

suitable for lower plants with or without branches or tillers and
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FIGURE 11

Point cloud visualization of other plants and plant organs. The left ones were reconstructed using open-source 3D reconstruction program

integrated into MVS-Pheno V2. The middle ones were reconstructed using ContextCapture software. The left and middle point clouds were

visualized using vertex colors for each group, and the right ones were visualized using color di�erences along with the height direction of the

middle point clouds.

Frontiers in Plant Science 16 frontiersin.org

https://doi.org/10.3389/fpls.2022.897746
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wu et al. 10.3389/fpls.2022.897746

FIGURE 12

Accuracy evaluation of the extracted plant height, leaf length, and leaf width. The extracted plant height was compared with the measured

values. The measured leaf length and width values from the reconstructed point clouds and the estimated values from the 3D digitization data

were compared. The estimated values were regarded as the basis for comparison.

FIGURE 13

Estimated phenotypes of three wheat cultivars at four growth stages. Each cultivar had three samples. The estimated phenotypes include plant

height, compactness, shoot convex volume, and averaged leaf area per tiller.

can also be used for plant organs, such as maize tassels, ears,

and roots. The reconstructed point clouds of plant shoots were

used to estimate 3D phenotyping characteristics such as leaf area,

layered projected area, volume, and compactness. The MVS-

Pheno V2 platform provides a low-cost and high-throughput

solution for the 3D phenotyping of individual plants. Shielding
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affects plants with too compact tillers or a small group of

plant population. Besides, the V2 platform cannot effectively

reconstruct internal and lower leaves. Recovery of the missing

points is also difficult for data acquired using LiDAR.

However, the platform needs some improvements in the

future. For instance, the hardware should be made lighter and

easier to disassemble to make the platform easier to deploy and

save labor costs. Point cloud segmentation (Miao et al., 2021)

and phenotype extraction algorithms for specific plant species

should be developed.

Conclusion

A multi-view stereo reconstruction-based phenotyping

platform MVS-Pheno V2 was developed for small plant

shoots. The platform is composed of hardware and data

processing system and can realize automatic and high-

throughput data acquisition and phenotypes extraction. The

hardware is a miniaturized equipment that needs small space

to deploy. Controlled imaging condition is established to avoid

light and wind affection and ensure image quality. Wireless

communication and control were integrated to avoid cable

twining. Data processing system includes 3D point cloud

reconstruction using multi-view images, point cloud calibration

that returned the point cloud to plant real size, and 3D

phenotype extraction model. MVS-Pheno V2 is applicable for

wheat, rice, leafy vegetables, plants at the seeding stage, and

plant organs. The R2 was 0.9991, 0.9949, and 0.9693 for plant

height, leaf length, and leaf width, respectively. The RMSE

was 0.6996 cm, 0.4531 cm, and 0.1174 cm for plant height, leaf

length, and leaf width. These results demonstrating the point

cloud quality is satisfactory for wheat phenotypes measurement.
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