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Editorial on Research Topic

Transport and Membrane Traffic in Stomatal Biology

Global climate change and increasing atmospheric CO2 are clearly set to impact precipitation and
the availability of fresh water worldwide. Agricultural water usage is fundamentally connected
to plant gas exchange and hence to the carbon cycle of the globe, thereby affecting agricultural
productivity (Blatt et al., 2017). The stomata of plants are tiny pores that facilitate the gas exchange
between plants and the environment. Their movements are regulated by dynamic changes in the
volume of guard cells that line the stomatal pore. Guard cell volume is regulated in response
to environmental cues, balancing leaf gas exchange. Stomatal opening facilitates CO2 uptake for
photosynthetic carbon assimilation and stomatal closing prevents water loss through transpiration
(Lawson and Blatt, 2014). Although the total area of stomatal pores only represents <3% of the leaf
surface, almost all CO2 absorption and up to 95% of water loss from plants are through these pores
in stomata-bearing plant species (Schroeder et al., 2001). Indeed, changes in stomatal behavior
in response to changing climatic conditions will, in turn, affect global water and carbon cycles
(Lawson and Blatt 2014). Moreover, stomatal guard cells respond to an array of extracellular and
intracellular signals, including light and CO2. In guard cells, ion transport and membrane vesicle
traffic are coordinated for the regulation of stomatal aperture in response to environmental and
endogenous cues (Sutter et al., 2007; Grefen et al., 2015; Jezek and Blatt, 2017; Xia et al., 2019).
Thus, understanding stomatal function and their regulating mechanisms are vital for water use
efficiency (WUE) in agriculture, and for the development of strategies for improved crops that are
resilient to global climate changes.

In plants, water loss by transpiration occurs through the stomatal pore. WUE is calculated as a
ratio of the amount of water used inmetabolism to the water plant transpired and takes into account
photosynthetic rate (A) to transpire rate (E), or the ratio of biomass produced by the plant to the
rate of transpiration. However, improving WUE by enhancing plant A is difficult as enhancing
CO2 uptake comes at a cost of water loss in most plants. Thereby, accelerating stomatal responses
to reduce transpirational water loss is considered an efficient way to improve WUE. In the past
decades, efforts are ongoing to improve WUE in crops, and success in such technologies requires
fundamental knowledge of stomatal regulation in plants.

Quantitative modeling is a potential strategy to solve the dilemma of balancing between WUE
and A. It offers a promising in silico approach to investigate the stomatal function and its related
WUE. The OnGuard model is the first quantitative guard cell model with a set of macroscopic
descriptors of guard-cell-specific features (Chen et al., 2012; Hills et al., 2012). Experimental tests
(Chen et al., 2012; Hills et al., 2012; Wang et al., 2012, 2014; Minguet-Parramona et al., 2016; Jezek
et al., 2021) established the reliability of the representations encoded in the model across a wide
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range of experimentation and led to a more profound
understanding of the complex mechanisms behind many of
the responses of guard cells and stomata to environmental
change (Wang et al., 2017). OnGuard model offers users an
unprecedented tool with which to explore the mechanics of
stomatal functions across scales from the molecule to the whole
plant. In this Research Topic, Shafaque et al. describe a standard
protocol for using OnGuard Software in studying stomatal
physiology and its related ion transport and homeostasis.
They provided comprehensive guidance to the fresh users to
manipulate the function of each key option of the model and
took several examples to show how to change parameters in ion
transporter characters and humidity.

Recent studies have shown that enhanced stomatal kinetics
for opening and closure can contribute to high WUE in plants
(Lawson and Blatt, 2014). Papanatsiou et al. (2019) expressed
a synthetic, light-gated K+ channel, BLINK1 in the guard cells
of Arabidopsis to accelerate both stomatal opening under light
exposure and closing after irradiation, driving a 2.2-fold increase
in biomass in fluctuating light without cost in water use by
the plant. These findings open a new avenue for strategies
toward improving plant WUE by using optogenetic tools that
enhance stomatal kinetics. In this Research Topic, Ding and
Chaumont provide insights into the regulation of stomatal
kinetics by optimizing the expression of water transporting
aquaporin proteins in plants.

In addition to the stomatal kinetics, stomatal morphology
is also a key factor to affect stomatal response and WUE. The
Poaceae family have distinctive dumbbell-shaped guard cells
and specialized subsidiary cells to form an efficient stomatal
complex. These allow for a faster grass stomatal response than
any other stomatal type (Chen et al., 2017). However, the
molecular mechanism of Poaceae family stomatal regulation
is not well characterized. In this Research Topic, Wang and
Chen highlight the unique structure and developmental progress
of grass stomata and outline the different guard cell signaling
mechanisms in monocots and eudicots.

In the last article of this Research Topic, Ren et al.
provide us a mini-review on sulfur compounds in stomatal
regulation. Sulfur is one of the essential elements for plants.
It has important effects on plant growth, development,
and abiotic and biotic responses. In recent studies, various
sulfur compounds, including H2S, SO2, SO2−

3 , etc., were
reported to regulate stomatal movements. This mini-review
offers us the detail of how these sulfur compounds affect
stomatal movements.

To sum up, this Research Topic provides up-to-date stomatal
knowledge using multi-disciplinary approaches, including
computational biology, agricultural biology, and molecular and
cellular biology. We believe that stomatal research will continue
to flourish in the future as novel technologies emerge.
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