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Stem form is the shape of the trunk, differs among tree species and mainly 

affected by stand density factor. Accurate taper equations are crucial for 

estimating the stem diameter, form and tree volume, which is conducive to 

timber utilization and sustainable forest management and planning. Larch 

(Larix principis-rupprechtii Mayr.) is a valuable afforestation species under 

large-scale development in North China, but no study on the effect of density 

on its stem taper has been reported yet. The dataset included 396 analytical 

trees from 132 standard plots of larch plantation in Saihanba, Hebei Province. 

Based on 12 different forms of models, we explored the optimal basic equation 

for plantations and the effects of the stand density, basal area, canopy density 

and different forms of stand density on the prediction accuracy of the variable-

exponent models. The variable-exponent taper equation that includes Sd 

(stand density) was constructed by using nonlinear regression, a nonlinear 

mixed effect model and the nonlinear quantile regression method. The results 

indicate that the Kozak’s 2004 variable-exponent taper equation was the best 

basic model for describing changes in the stem form of larch plantations, and 

the density factor in the form of Sd  improved the prediction accuracy of the 

basic model. Among the three regression methods, the quantile regression 

method had the highest fitting accuracy, followed by the nonlinear mixed 

effect model. When the quantile was 0.5, the nonlinear quantile regression 

model exhibited the best performance which provides a scientific basis for the 

rational management of larch plantations.
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Introduction

The taper equation is one of the most common indicators used to describe the shape 
of tree boles (Nunes et al., 2010). With a taper curve equation, it is possible to estimate the 
diameter at the relative height, which corresponds to slenderness and then obtain a stem 
volume. A high-precision taper equation is crucial for stem profiles (Lumbres et al., 2017), 
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volume estimates (Nunes et al., 2010), sawlog production (Jiang 
and Liu, 2011), biomass and carbon storage (Koenker and Bassett, 
1978; Özçelik and Crecente-Campo, 2016). The variable-exponent 
taper equation, one of the most extensively used methods in forest 
properties modeling and analysis, which describe stem shape with 
a changing exponent or variable from ground to top to represent 
theneiloid, paraboloid, conic, and several intermediate forms 
(Kozak, 1988). Its act by changing the independent variable-
exponent in the continuous function, better estimates of the tree 
stem shape can be obtained, and the method can be applied to tree 
stems of any shape (Zhang et  al., 2021). Many studies have 
indicated that the variable-exponent taper equation is usually 
subject to less bias and is more precise in estimating diameters at 
different heights (Kozak, 1988; Muhairwe, 1999). This equation 
has been widely used for Chinese fir (Cunninghamia lanceolata 
(Lamb.) Hook.), birch (Betula platyphylla Suk.), Korean pine 
(Pinus koraiensis Sieb. et Zucc.) and Japanese larch [Larix 
kaempferi (Lamb.) Carr.; Lee et al., 2017; Tang et al., 2017; Zhang 
et al., 2021].

Most taper equations are determined based on specific tree 
species, and the fitting accuracy of the model is also affected by 
tree species, so the taper of various tree species is very different 
(Muhairwe, 1994). Stem forms varies for different trees due to 
factors such as stand density (Sharma and Zhang, 2004; Jiang and 
Liu, 2011; Duan et al., 2016; Sharma, 2020), stand age (Gomat 
et al., 2011), and crown variables (Valenti and Cao, 1986; Leites 
and Robinson, 2004; Liu et al., 2020; Liang et al., 2022). However, 
the influence of stand age and canopy structure variables on the 
prediction precision of the taper equation in the study of the 
response of the stem form to various factors is unknown. Most 
studies (Duan et al., 2016; Sharma, 2020) have considered that the 
prevailing stand density factor determines the characteristic taper 
formation among tree species, therefore, it is necessary to add 
density factor to the taper equation to improve the accuracy of 
the model. In addition, compared with other stand factors, the 
density factor is easier to obtain and costs less investigation cost. 
Jiang and Liu (2011) reported that the stand density indirectly 
affects the stem form by affecting the crown structure, and a 
suitable stand density has a good potential for enhancing timber 
production and wood quality. Currently, stand density indicators 
include tree per hectare (TPH), basal area (BA), and canopy 
density (Cd). Additionally, trees per hectare and basal area are the 
most widely indicators for the stem form (Sharma and Zhang, 
2004; Sharma, 2020). For example, Sharma and Zhang (2004) 
used different forms of plant density (TPH) indicators to describe 
the stem form of Canadian short-leaved pine (Pinus banksiana 
Lamb.), black spruce [Picea mariana (Mill.) B.S.P.] and fir [Abies 
balsamea (L.) (Mill.)] and reported that BA / TPH  could 
improve the fit statistics and predictive accuracy for all species. 
Sharma and Parton (2009) developed a taper equation for jack 
pine (Pinus banksiana Lamb.) and black spruce plantations 
growing at varying densities, proved BA is the most significant in 
describing taper. Therefore, including stand density information 
in modeling tree tapers makes sense.

The variable-exponent taper equation is the main equation used to 
describe the stem form. Over time, several regression techniques have 
been reported and evaluated in terms of their accuracy and precision. In 
the process of constructing the taper equation, nonlinear regression (Lee 
et al., 2017; Tang et al., 2017), the nonlinear mixed effect model method 
(Fonweban et al., 2012; Arias-Rodil et al., 2015), and nonlinear quantile 
regression (Bohora and Cao, 2014; Özçelik et al., 2018; Liu et al., 2020) 
have been widely used to estimate the parameters of the taper equation 
of different tree species. However, nonlinear regression requires the 
assumption of independence and the equal distribution of errors, with 
a zero mean and constant variance (Demaerschalk, 1973; Sabatia and 
Burkhart, 2015), but this assumption is violated by temporal correlation 
and spatial heterogeneity as a result of multiple observations of each tree. 
A nonlinear mixed effect model can effectively account for this problem. 
The mixed effect model is a statistical method developed in the late 
1900s. The random effect represents the hierarchical structure of the 
data set and the independent variables can be predicted at different 
levels. Nonlinear mixed effects modeling approach can improve the 
goodness-of-fit statistics compared with nonlinear regression (Bronisz 
and Zasada, 2019; Bouriaud et al., 2019; Amna et al., 2021), it is widely 
used in forest growth and harvest models such as canopy width model 
(Yang and Huang, 2017) and single tree growth model (Zhang et al., 
2014; Duan et al., 2018; Simone et al., 2020). Compared to traditional 
regression, nonlinear quantile regression tends to be more efficient and 
accurate, especially in evaluating values other than the conditional 
average (Smale et al., 2014). Moreover, this type of model can be used to 
obtain the regression of the conditional mean and the regression results 
for arbitrary quantile points, thus providing a wide range of applications, 
including self-thinning boundary lines (Zhang et al., 2021), diameter 
growth models (Bohora and Cao, 2014) and tree height diameter models 
(Rust, 2014).

In different stand types, the density factor, taper equation 
form and regression techniques play key roles in determining the 
change in the stem form. However, this method has not been 
studied independently for a high-precision taper equation based 
on appropriate density indicators and regression techniques. 
Larch forests, one of the main plantation types in northeast China, 
which are an important timber forest species above the middle 
and high mountains in northern China. It occupies the widest 
distribution range and the largest stand volume among the main 
forest ecological tree species in the Yanshan Mountains. The 
Saihanba Forest Farm in Hebei Province is known for its abundant 
forest resources. The results of the national continuous forest 
inventory showed that the forest coverage rate is over 80.0%. It 
supplies 137 million cubic meters of purified water and 55,000 
tons of oxygen to Beijing and Tianjin every year, which is an 
important ecological barrier to protect Beijing and Tianjin. Larch 
forests provide essential economic and ecological benefits related 
to timber production, windbreaks, sand fixation, and carbon 
storage on the Saihanba Forest Farm. The objectives of this study 
were (1) to fit the taper equation to provide accurate estimates of 
the diameter at any height by using 396 analytical data points of 
larch trees from the Saihanba Forest Farm, (2) to evaluate the 
taper equations based on different stand density factors to obtain 
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the optimal density factors that affect the taper equation, and (3) 
to compare the predictive abilities of the nonlinear mixed effect 
model, nonlinear regression and nonlinear quantile regression to 
obtain the most flexible and widely applicable regression technique.

Materials and methods

Study area

The study area encompassed the Saihanba Forest Farm 
(41°22′–42°58′ N, 116°53′–118°31′ W) in Hebei Province. The 
research site is in the warm temperate continental monsoon 
climate zone. The elevation range of the area is 1,010 ~ 1,940 m 
above sea level, and the terrain is higher in the north than in the 
south. The landform is rich and mainly includes plateaus and 
mountains. The annual average temperature is −1.2°C, and the 
mean annual temperature ranges from −43.3°C to 33.4°C. The 
annual precipitation is 452.2 mm, and the annual evaporation is 
1,388 mm. The typical soils of the area are aeolian sandy soil, 
meadow soil, brown soil and gray forest soil. The total operating 
area is 94,000 hectares, including 73,333 hectares of forest land, 
of which 57,333 hectares of artificial forests and 16,000 hectares 
of natural forests; the forest coverage rate is 80%, the total forest 
volume is 5.025 million m3, and the average annual growth rate 
is 9.7%. The main types of vegetation are grassland, meadow, 
coniferous and broad-leaved mixed forest, broad-leaved forest, 
and shrub forest, with a forest coverage rate of 75.5%. The main 
trees are Larix principis-rupprechtii Mayr., Picea asperata Mast., 
and Betula platyphylla Suk., and the main shrubs are 
Rhododendron micranthum Turcz., Syringa oblata Lindl. var. 
alba Rehder., and Sambucus Williamsii Hance. The main 
herbaceous plants include Galium verum L. and Menyanthes 
trifoliate L.

Data description

From 2018 to 2020, 132 sample plots (30 m2 × 30 m2) in the 
larch plantation of the Saihanba Forest Farm, Hebei Province 
(Figure 1). were established. The tree factors (diameter at breast 
height, tree height, crown width, height under branches), stand 
factors (age, density, canopy density, basal area) and site factors 
(altitude, slope, slope position, aspect) of the standard plots were 
measured. Based on the survey data, three average trees were 
selected for destructive sampling from each standard plot. The total 
height H was measured from the stump to the tree tip. The 
diameters were measured at 5%, 10%, 15%, 20%, 30%, 40%, 50%, 
60%, 70%, 80%, and 90% of the total height. From all measured 
trees, 25% of data were randomly selected as a validation data set, 
while the rest were used for model fitting. Descriptive statistics of 
the tree height and diameter at breast height (DBH; Table 1) and 
the trend of the relative height of the stem form with a relative 
diameter (Figure 2) are shown. T
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FIGURE 2

Relative height plotted against the relative diameter of the tree 
height of Larix principis-rupprechtii Mayr. Relative height, ratio of 
trunk height above ground to total tree height; relative diameter, 
ratio of diameter to DBH at the height of trunk above the ground.

Basic model

In recent years, researchers have established different forms of 
taper equations to describe the stem form of different tree species. 
The taper equation belongs to the empirical equation and the 
theoretical growth equation, which is a typical nonlinear 
regression model, and estimation of parameters by nonlinear least 

square method. The widely used taper equation is generally 
arranged into three groups: the simple taper equation, the 
segmented taper function and the variable-exponent taper 
function (Shahzad et al., 2020). Among them, the simple taper 
equation has a simple form and estimates the parameters in a 
straightforward manner, but it has the disadvantage that model fit 
has large deviation from the data at the bottom of the tree (Kozak 
et al., 1969; Newberry and Burkhart, 1986; Sharma and Oderwald, 
2001). The segmented taper equation states that several 
polynomials representing different parts of the tree stem are 
connected through an inflection point, and the tree stem is 
assumed to have several different geometries from bottom to top. 
However, the shortcomings are that the formula is too complex, 
and the parameter estimation method does not converge (Max 
and Burkhart, 1976; Fang et al., 2000; Brooks et al., 2008). The 
variable-exponent taper equation has the advantages of a simple 
structure and the easy convergence of parameter estimation 
method (Perez et  al., 1990; Newnham, 1992; Bi, 2000), and 
researchers have demonstrated its better fit and suitability for 
studying the stem form (Özçelik and Crecente-Campo, 2016; Tang 
et al., 2017). Therefore, this study based on the 12 most widely 
used forms of variable-exponent taper equations to describe the 
stem form of larch plantations (Table 2).

Nonlinear mixed effect model

The mixed model consists of fixed parameters and random 
parameters, and the random parameters are added to the fixed 
parameters of the nonlinear model, which vary with changes in 
different blocks. Zhang et  al. (2021) established the variable-
exponent taper equation for Chinese fir and found that the 
nonlinear mixed effect model based on the tree-level effect 
performed the best. Therefore, in this study, a nonlinear mixed 
effect model was developed according to tree-level effects. The 
model expressions are as follows:

 ( ) ε= ∫ ∅ +Y tijk ijk, ijk ijk 
 

(1)

 ( ) ( ), ~ , , ~ ,
β∅ = +

+ ∅ ∅1 1 2 20 0
ijk ijk ijk i

ijk ij i i

A B u
C u u N u N  

(2)

In equations (1–2), ikY  is the kth DBH observation value of the 
jth tree in the ith standard plot; ( )·∫  contains a differentiable 
function containing parameter vector Æijk  and adjoint vector 

ijkt ; and εijk  is the error term which is normally distributed. The 
expected value is assumed to be zero, and the covariance structure 

ijR  is assumed to be positive; additionally, β  is a n × 1 dimensional 
parameter vector, and ui1 and ui2 are random parameter vectors of 
tree level that obey an independent normal distribution, with an 
expected value of zero and variance–covariance structures of ∅1 
and ∅2. Finally, Aijk, Bijk, and Cijk are design matrices.

FIGURE 1

Larix principis-rupprechtii Mayr. plantation in Saihanba Hebei 
Province.
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Determining the random and fixed parameters is the key 
to establishing a mixed effect model. The inclusion of too 
many random parameters may lead to problems of 
overparameterization or nonconvergence. Therefore, in this 
study, different random parameters were combined separately. 
The optimal combination of fixed and random parameters was 
determined by comparing the minimum values of the 
statistics: Akaike’s information criterion (AIC), Bayesian 
information criterion (BIC) and twice the negative 
log-likelihood (−2LL; Scolforo et al., 2019; Liu et al., 2020; 

Zhang et  al., 2021), their expressions are provided at later 
section (equations 12~15).

Variance–covariance structure can reflect the changes between 
plots and trees. According to the research of Calama and Montero 
(2005), the variance–covariance structure of two random 
parameters was set as a positive definite structure matrix, as follows:

 

σ σ

σ σ

 
=  

  

2
1 12

2
21 2

D
 

(3)

TABLE 2 The 12 stem taper equations selected as candidate models.

Origin model form Parameters Variables

Kozak (1988) ( )
4

2 T
4 5 6 7 8

2
1 3

1 Td b ·D ·b ·
1 p

1.3 Db T · b ln T 0.001 b T b e b ·
H Hb D  −=  

−  

   + + + + +     b1,b2,b3,b4,b5,b6,b7,b8,P D,H,T

Muhairwe et al. (1994) ( )11 1 1
34 2 2

4 5 6 7 8 9 10

2
1 3

1 Td b ·D ·b ·
1 0.01

1b b T b T b T b arc sin(1 T b b HDb D T
H

 −=  
− 

 
 

+ + + + − + + 
 +
 

b1,b2,b3,b4,b5,b6,b7,b8,b9,b10 D,H,T

Muhairwe (1999) ( ) ( )2 52
4 6 7 8

1 3d b ·D ·b · 1 T
bb T b ·D b ·H b · D/Hb D T= −

  + + + +     b1,b2,b3,b4,b5,b6,b7,b8 D,H,T

Muhairwe (1999) ( ) ( )2 352
3 4 6 7 8

1 3d b ·D ·b · 1 T
bb ·T b ·T b ·T b ·D b · D/Hb D T= −

 + + + + +   b1,b2,b3,b4,b5,b6,b7,b8 D,H,T

Bi (2000)

1 2 3 4

5 6 7

d D·[logsin ·T
2

1.3/logsin ·
2 H

sin ·T
23b b ·sin ·T b cos ·T b ·

2 2 T
b ·D b ·T· D b ·T· H

π

π

π
π π

 =   

 
  

   
            + + +             
 + + + 

b1,b2,b3,b4,b5,b6,b7 D,H,T

Kozak (2004)

D
1 1 H
4 4

D 1 13 4 5 6
H 4 4

2
1

1 Td b ·D
1 0.01

1 1 T 1 Tb b b D b1/4b e 1 0.01 1 0.01
1/4

 − =
 − 

      − −    + + +       − −      b1,b2,b3,b4,b5,b6 D,H,T

Kozak (2004)

2 3
1

0.1

1 1
3 3

1/34 1 T
D 1 14 5 6 7 8 9
H 3 3

d b ·D ·H ·

1 T

1.31
H

b b

1 1 T 1 1 Tb T b b b b H b
D1.3 1.3e 1 11/3

H H
1/3

−

=

 
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Lee et al. (2003)
( )

2
3 4 52

1d b ·D · 1 T b ·T b ·T bb= − + + b1,b2,b3,b4,b5 D.T

Kozak (2004)

0.1 1/31/3 1/3H
1

4 5 7 D
4 6 8 9D/H 1/3 1/3

2 3
1

1 Td b ·D ·H ·
1 P

b 1 T b 1 Tb ·T b · b ·H b ·1/3 e 1 P D 1 pb b
1/3

 −  

 − =
 − 

 − − + + + + +   − −    b1,b2,b3,b4,b5,b6,b7,b8,b9,p D,H,T

Sharma and Zhang (2004) ( )2
2 3 4

1

Z hd D· b · ·
H 1.3 1.3

2 b b ·T b ·T   =       −

− + +
b1,b2,b3,b4 D,H,h,Z,T

Berhe and Arnoldsson (2008) ( )
2

3 4 52
1d b ·D · 1 T ·

b T b ·T bb= −
+ +

b1,b2,b3,b4,b5 D,T

Sharma and Parton (2009) ( )2
2 3 4

1

Z hd D·b · ·
H 1.3 1.3

b b ·T b ·T   =       −

+ +
b1,b2,b3,b4 D,H,h,Z,T

D is the DBH; H is the whole tree height; h is the height of the trunk from the ground; d is the diameter at tree height h; bi and p are the parameters to be estimated; T = h/H; Z = H − h.
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In equation (3), (i = 1, 2) is the variance of the random 
parameters, and σ ij (i, j = 1,2, i ≠ j ) is the covariance of the 
random parameters 1 and 2.

The Davidian and Giltinan (2017) method was used to 
eliminate the intra-group variance–covariance structure in this 
study. Previous studies have shown that the mixed effect model of 
the unstructured covariance–variance matrix can explain the 
autocorrelation between most observations (Yang et al., 2009). The 
equation is as follows:

 
. .σ Γ= 2 0 5 0 5

ij ij ij ijR G G
 

(4)

In equation (4), s 2  is the residual variance value of the 
estimation model; 0.5

ijG is a dimensional diagonal matrix used to 
describe ij ijn n×  variance heterogeneity within groups; and ijΓ  
is an ij ijn n×  dimensional diagonal matrix describing the 
autocorrelation structure of errors within a group.

Nonlinear quantile regression model

The quantile regression estimator, which can estimate the 
complete conditional distribution of dependent variables and 
evaluate the influence of different quantiles to predict variables 
(Koenker and Bassett, 1978), is useful when predicting unexpected 
conditional means (Weiskittel et al., 2011). Compared with the 
mean regression model of the least-squares procedure, parameters 
from the quantile regression are obtained by minimizing 
equation (5):

 

( )min

≥ <

   
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(5)

where 
ry  refers to the estimated value at the quantile. The 

parameters of each taper equation were calculated with quantiles 
τ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9.

Two methods can be used to determine the parameters of 
quantile regression. In one method, the parameters of each 
quantile are directly substituted into the test using the same 
method as that used in nonlinear regression. In the other method, 
the interpolation method proposed by Cao and Wang (2015) is 
used to test by combining quantiles. The first method was used to 
verify the fitting results of quantile regression in this study.

Model fitting and evaluation

SAS 9.4 was used to estimate the parameters. Specifically, 12 
basic models were fitted with the NLIN module, the mixed effect 
model was fitted with the NLMIXED module, and the nonlinear 
quantile regression model was fitted with the NLP module. 
Statistical metrics for evaluating the model included the mean 

absolute bias (MAB), the root mean square error (RMSE), the 
mean percentage of bias (MPB), the coefficient of determination 
(R2), the adjusted coefficient of determination (Radj

2), the mean 
deviation (Bias), Akaike’s information criterion (AIC), and 
Bayesian information criterion (BIC; Equations 6~15). These 
expressions are shown as follows:
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where yi is the measured value, iy  is the predicted value of 

the model, /iy y n= ∑

 , 
( )

2

i i

y

y y
S

n n p

 
∑ −  

=
−



, n is the number 

of samples, L is the maximum likelihood value, l  is the number 
of parameters.

Results

Selection of base taper model

Based on the nonlinear least-squares method, 12 different 
forms of variable-exponent taper equations were fitted and 
evaluated (Tables 3, 4). The Kozak (2004) variable-exponent had 
the best results. The adjusted coefficient of determination (Radj

2), 
Akaike’s information criterion (AIC), Bayesian information 
criterion (BIC), mean absolute bias (MAB), root mean square 
error (RMSE), and mean percentage of bias (MPB) of the 
equation were 0.9353, 16,005, 16,141, 0.7779, 1.0561, and 5.0147, 
respectively. Therefore, the Kozak (2004) model was selected as 
the optimal basic equation to construct the variable exponential 
taper equation to accurately predict the change law of the stem 
form on larch plantations.

Variable-exponent taper equation 
including the density factor

The Kozak (2004) variable-exponent taper equation can reflect 
the variation pattern of the stem diameter with the tree height. 
Therefore, three stand density indexes, the stand density (Sd), the 
basal area (BA) and the canopy density (Cd), and six different forms 
of Sd were selected to construct the variable-exponent taper equation 
of larch plantations in the study. The effects of the three stand density 
indexes and different forms of Sd on the fitting accuracy of the 
variable-exponent taper equation of larch plantations were evaluated 
(Table  5). The result show that Sd was the best stand density 
function that explained the variation in taper for this tree species, 
and the variable-exponent taper equation (equation 16) with the 
stand density factor was constructed. The adjusted coefficient of 
determination (Radj

2), mean absolute bias (MAB), root mean square 
error (RMSE), and mean percentage of bias (MPB) of the equation 
were 0.9460, 0.7670, 1.0420, and 4.9520, respectively.

.

/
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TABLE 3 Parameter estimates with approximate standard errors for 12 selected basic models.

Model b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 p

Kozak (1988) 1.217 2 0.960 3 1.000 1 −0.001 0 −0.010 4 −1.100 3 0.614 9 0.142 1 0.038 6

(0.167 9) (0.063 7) (0.003 0) (0.097 3) (0.011 8) (0.179 5) (0.103 4) (0.009 0) (0.015 9)

Muhairwe  

et al. (1994)

1.296 3 0.976 5 0.999 4 34.807 2 −31.812 3 5.274 4 −7.378 1 −21.403 4 −0.314 6 −0.001 2

(0.173 5) (0.064 2) (0.002 9) (5.120 6) (9.451 9) (8.322 0) (3.902 1) (3.218 8) (0.027 5) (0.000 7)

Muhairwe 

(1999)

0.899 5 1.002 6 1.000 1 0.512 5 0.512 5 0.003 5 −0.002 0 0.092 5

(0.122 4) (0.065 8) (0.003 1) (0.010 2) (0.001 7) (0.001 0) (0.000 8) (0.011 0)

Muhairwe 

(1999)

1.260 1 0.833 3 −1.397 8 0.820 6 0.219 7 −0.2733 0.008 2 −0.167 5

(0.025 9) (0.005 4) (0.131 1) (0.291 5) (0.023 9) (0.173 7) (0.000 5) (0.010 8)

Bi (2000) 0.166 4 0.216 6 −0.113 8 0.060 7 0.002 4 −0.127 3 0.111 3

(0.004 4) (0.025 5) (0.010 9) (0.007 1) (0.000 2) (0.004 8) (0.005 2)

Kozak (2004) 1.400 6 0.930 2 0.426 9 0.040 8 0.007 2 −0.451 7

(0.034 4) (0.008 1) (0.008 6) (0.028 2) (0.000 3) (0.015 2)

Kozak (2004) 1.235 0 1.049 5 −0.059 7 0.265 2 −0.156 6 0.325 1 0.273 6 0.093 5 −0.053 6 0.038 6

(0.151 6) (0.051 9) (0.053 3) (0.038 7) (0.213 9) (0.195 7) (0.285 5) (0.075 6) (0.050 9) (0.015 9)

Lee et al. (2003) 1.564 4 0.915 4 2.850 8 −3.737 6 1.941 1

(0.031 4) (0.006 5) (0.062 0) (0.078 0) (0.025 7)

Kozak (2004) 1.005 1 0.928 1 0.081 4 0.525 3 −0.563 0 0.491 8 1.473 7 0.012 3 −0.108 5

(0.025 2) (0.007 4) (0.009 6) (0.010 4) (0.037 4) (0.011 1) (0.262 2) (0.001 4) (0.015 5)

Sharma and 

Zhang (2004)

0.865 9 1.875 9 0.282 2 0.036 8

(0.042 6) (0.018 9) (0.013 8) (0.018 9)

Berhe and 

Arnoldsson 

(2008)

1.664 8 0.915 7 1.189 4 −1.210 3 0.794 1

(0.028 7) (0.005 6) (0.023 2) (0.026 7) (0.008 7)

Sharma and 

Parton (2009)

0.060 2 −0.191 0 0.599 0 −1.141 6

(0.000 2) (0.006 2) (0.028 9) (0.029 9)

In parentheses is the standard error; p are the parameters to be estimated.
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In equation 16, d is the diameter (cm) at height h of the stem; 
D is the diameter at breast height (cm); H is the tree height (m); T 
is the relative tree height, i.e., h/H; X is 1.3/H; Sd is the stand 
density (trees/hm2); and b1, b2, b3, b4, b5, b6, b7, b8, b9, and b10 are 
the parameters to be estimated.

Nonlinear mixed effect model

Based on the variable-exponent taper equation of larch 
plantations, including the optimal stand density factor, the 
variable-exponent taper equation of the nonlinear mixed effect of 
larch plantations was constructed to solve the problem in which 
the parameters of the nonlinear mixed effect variable-exponent 

taper equation struggle to converge due to an excessive number of 
parameters. In the selected basic model, there are 55 forms of 1–2 
parameters in Equation 16 fitted randomly in pairs or separately, 
and 34 combinations converged (Table 6). When random effect 
parameters acted on b6 and b8, the equation showed the best results. 
The AIC, BIC and -2LL values were 13,766, 13,818 and 13,738, 
respectively. The parameter estimates of the nonlinear mixed effect 
variable-exponent taper equation are shown in Table 7.

Nonlinear quantile regression model

Using nonlinear quantile regression technology, the variable-
exponent taper equation of larch plantations, including the optimal 

TABLE 4 Fit statistics of the 12 selected basic models.

Model MAB RMSE MPB AIC BIC R2 Radj 2

Kozak (1988) 0.783 2 1.085 3 5.056 3 16,075 16,171 0.930 1 0.930 0

Muhairwe et al. (1994) 0.985 4 1.318 3 6.360 4 16,172 16,245 0.921 7 0.921 6

Muhairwe (1999) 0.741 5 0.861 4 5.004 6 21,214 21,254 0.899 4 0.899 3

Muhairwe (1999) 0.738 3 0.859 6 4.981 5 20,311 20,362 0.899 6 0.899 5

Bi (2000) 0.768 6 0.876 7 5.182 6 23,312 23,577 0.887 6 0.887 5

Kozak (2004) 1.097 1 1.404 5 7.081 4 19,210 19,256 0.916 5 0.916 4

Kozak (2004) 0.935 7 1.266 5 6.034 0 16,114 16,187 0.924 7 0.924 6

Lee et al. (2003) 0.973 8 1.281 0 6.277 6 18,209 18,248 0.923 8 0.923 7

Kozak (2004) 0.777 9 1.056 1 5.014 7 16,005 16,141 0.935 4 0.935 3

Sharma and Zhang (2004) 1.213 6 1.584 9 7.831 3 20,520 20,553 0.904 7 0.904 6

Berhe and Arnoldsson (2008) 0.823 7 1.099 9 5.309 4 16,535 16,575 0.923 3 0.923 2

Sharma and Parton (2009) 1.736 6 1.318 8 11.714 0 28,965 29,016 0.841 6 0.841 5

TABLE 5 Parameter estimation and fitting statistics of different density factor taper equations.

Parameters b10*BA b10*Cd b10/Sd b10*Sd b10/Sd2
b10/ Sd b10/log(Sd) b10/ Sd3

b1 1.003 4 (0.034 1) 1.000 3 (0.026 9) 1.033 9 (0.026 0) 1.063 2 (0.027 6) 1.036 9 (0.026 5) 0.991 3 (0.025 2) 0.969 4 (0.025 0) 1.063 5 (0.030 3)

b2 0.929 3 (0.009 6) 0.930 2 (0.007 3) 0.900 2 (0.007 9) 0.905 6 (0.007 8) 0.908 8 (0.007 9) 0.922 7 (0.007 7) 0.908 0 (0.007 5) 0.916 7 (0.007 8)

b3 0.080 7 (0.012 2) 0.077 7 (0.009 9) 0.091 7 (0.009 6) 0.093 0 (0.009 5) 0.087 6 (0.009 6) 0.068 8 (0.009 7) 0.091 8 (0.009 7) 0.086 3 (0.009 5)

b4 0.522 5 (0.013 3) 0.549 2 (0.025 9) 0.587 3 (0.013 7) 0.481 8 (0.010 6) 0.544 9 (0.011 2) 0.662 5 (0.019 6) 0.691 3 (0.024 7) 0.451 7 (0.015 7)

b5 −0.560 0  

(0.046 2)

−0.564 6  

(0.042 4)

−0.600 3  

(0.039 3)

−0.5548  

(0.035 2)

−0.580 5  

(0.037 9)

−0.787 4  

(0.041 7)

−0.630 2  

(0.043 1)

−0.532 8  

(0.034 3)

b6 0.494 5 (0.014 1) 0.498 1 (0.012 6) 0.522 7 (0.012 1) 0.503 5 (0.010 6) 0.511 3 (0.011 6) 0.500 1 (0.012 8) 0.528 0 (0.043 1) 0.490 5 (0.010 4)

b7 1.425 9 (0.333 4) 1.414 0 (0.295 8) 1.210 5 (0.277 5) 1.131 2 (0.247 3) 1.253 0 (0.266 8) 2.460 7 (0.295 6) 1.395 7 (0.305 8) 1.187 0 (0.240 0)

b8 0.012 0 (0.0017) 0.012 0 (0.001 5) 0.011 6 (0.001 4) 0.012 1 (0.001 3) 0.011 9 (0.001 4) 0.009 9 (0.001 5) 0.011 0 (0.001 5) 0.012 3 (0.001 3)

b9 −0.115 2  

(0.0198)

−0.111 7  

(0.017 3)

−0.107 4  

(0.016 1)

−0.118 6  

(0.014 9)

−0.112 4  

(0.015 6)

−0.078 5  

(0.016 9)

−0.094 5  

(0.017 5)

−0.121 8  

(0.014 7)

b10 0.000 4  

(0.0048)

0.018 0  

(0.006 9)

0.971 1  

(0.109 4)

−0.000 5  

(0.000 1)

11.172 0  

(1.711 8)

0.347 0  

(0.032 7)

0.243 3  

(0.025 5)

−0.010 5  

(0.002 1)

MAB 0.775 5 0.775 8 0.76 8 0 0.770 0 0.771 0 0.767 0 0.768 0 0.774 0

RMSE 1.050 9 1.050 3 1.044 0 1.045 0 1.047 0 1.042 0 1.043 0 1.050 0

MPB 5.000 3 5.000 2 4.955 0 4.971 0 4.975 0 4.952 0 4.960 0 4.998 0

R2 0.875 7 0.865 4 0.906 0 0.905 9 0.895 8 0.946 1 0.916 0 0.925 7

Radj
2 0.875 6 0.865 3 0.905 9 0.906 0 0.895 6 0.946 0 0.915 9 0.925 7

In parentheses is the standard error; Sd, stand density; Cd, canopy density; BA, basal area.
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stand density factor, was constructed. Table  8 presents the 
estimated parameters of the variable-exponent taper equation of 
larch plantations at different quantiles ( τ  = 0.1, 0.2, 0.3, 0.4, 0.5, 
0.6, 0.7, 0.8, 0.9). With changes in the stem form, different quantile 
points had different prediction accuracies for the diameter at 
different trunk positions (Figure 3). When quantile τ = 0.5, the 
quantile regression model produced the best MAB value (0.7636). 
When τ  = 0.3, the prediction accuracy was the highest at a relative 
tree height of 0.9, and the MAB was 0.8470. Therefore, when the 
quantile τ = 0.5, the variable-exponent taper equation of larch 

plantations with the optimal stand density factor had the highest 
fitting accuracy. Among them, the Radj

2 value (Radj
2 = 0.9766) was 

the highest, and the RMSE value (RMSE = 1.0367), MPB value 
(MPB = 4.9282), and MAB value (MAB = 0.7636) were the lowest.

Model fitting and evaluation

The variable-exponent taper equation proposed by Kozak 
(2004) was tested and evaluated using 98 data points (Table 9). The 
variable-exponent taper equation, including the stand density 
factor, had the highest prediction accuracy. The variable-exponent 
taper equation of larch plantations, including the stand density 
factor, was constructed by using the nonlinear least-squares 
method, the nonlinear mixed effect model and nonlinear quantile 
regression technology, and nonlinear quantile regression ( τ  = 
0.5) had the highest prediction accuracy.

Based on the optimal basic variable-exponent taper equation, 
nonlinear regression, the mixed effect model and nonlinear 
quantile regression, including the stand density factor, the effects 
of the density factor and the different parameter estimation 
methods on the prediction accuracy of the equation were 
compared (Figure 4). The prediction errors of the Kozak (2004) 
variable-exponent taper equation with the density factor 
constructed based on different parameter estimation methods 
were different. Among them, the variable-exponent taper 
equation based on nonlinear regression and the nonlinear mixed 
effect model method had a lower prediction accuracy in the 
upper part of the trunk (0.7 < h/H ≤ 1). The prediction accuracy 
for the diameter in the middle and lower parts (0.1 < h/H ≤ 0.6) 
was higher, but the nonlinear mixed effect model had a higher 
prediction accuracy. In the nonlinear quantile regression 
equation, when quantile τ  = 0.5, the variable-exponent taper 

TABLE 7 Parameter estimates and variance components for the best 
combinations b6 and b8 of the nonlinear mixed effect model.

Parameters Estimate standard 
error

95% confidence 
limits

Value 
of p

b1 0.936 2 0.017 9 0.900 8 0.971 2 <0.0001

b2 0.939 3 0.006 4 0.926 8 0.951 8 <0.0001

b3 0.078 5 0.007 3 0.064 1 0.092 9 <0.0001

b4 0.624 1 0.017 6 0.589 7 0.658 9 <0.0001

b5 −0.653 4 0.079 0 −0.806 7 −0.495 9 <0.0001

b6 0.524 7 0.025 8 0.474 6 0.576 2 <0.0001

b7 1.630 2 0.535 6 0.550 5 2.658 7 0.003

b8 0.014 0 0.001 4 0.011 3 0.016 6 <0.0001

b9 −0.124 7 0.016 4 −0.156 9 −0.092 2 <0.0001

b10 0.257 8 0.030 5 0.197 7 0.317 9 <0.0001

Var(u1) 2.607 1 0.246 5 2.119 6 3.089 9 <0.0001

Var(u2) −0.106 5 0.011 9 −0.129 9 −0.083 2 <0.0001

Cov(u1,u2) 0.007 7 0.000 8 0.006 2 0.009 2 <0.0001
2σ 0.579 1 0.011 8 0.555 9 0.602 2 <0.0001

u1 and u2 are random parameter vectors; Var(u1) and Var(u2) are variances for the 
random effects u1 and u2, respectively; Cov(u1,u2) is covariance between random effects. 

2σ  is residual variance.

TABLE 6 Statistics of the AIC, BIC and −2LL for Kozak (2004) variable-exponent taper models with the density effect.

Mixed parameters AIC BIC −2LL Mixed parameters AIC BIC −2LL

b1 15,137 15,188 15,109 b2,b5 15,143 15,199 15,113

b2 15,137 15,182 15,113 b2,b7 15,143 15,199 15,113

b3 15,140 15,140 15,116 b3,b5 14,112 14,164 14,084

b4 15,137 15,181 15,113 b3,b10 14,199 14,251 14,171

b5 14,817 14,862 14,793 b4,b6 14,424 14,475 14,396

b6 14,843 14,887 14,819 b4,b9 14,637 14,689 14,609

b7 14,778 14,823 14,754 b4,b10 14,272 14,323 14,244

b8 15,640 15,685 15,616 b5,b6 14,409 14,461 14,381

b9 15,554 15,598 15,530 b5,b8 13,834 13,886 13,806

b10 14,670 14,714 14,646 b5,b9 13,896 13,948 13,868

b1,b2 63,145 63,196 63,117 b6,b8 13,766 13,818 13,738

b1,b4 14,285 14,337 14,257 b6,b9 13,801 13,852 13,773

b1,b5 14,103 14,155 14,075 b6,b10 13,896 13,948 13,868

b1,b6 14,090 14,141 14,062 b7,b9 13,831 13,883 13,803

b1,b7 14,065 14,117 14,037 b8,b9 14,746 14,797 14,718

b1,b9 45,779 45,831 45,751 b8,b10 14,032 14,084 14,004

b1,b10 14,194 14,246 14,166 b9,b10 14,008 14,060 13,980

AIC, Akaike information criterion; BIC, Bayesian information criterion; LL, Log likelihood.

https://doi.org/10.3389/fpls.2022.902325
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xu et al. 10.3389/fpls.2022.902325

Frontiers in Plant Science 10 frontiersin.org

TABLE 8 Fit parameters and statistics of basic models with density factors at different quantiles.

Parameters τ = 0.1 τ  = 0.2 τ  = 0.3 τ  = 0.4 τ  = 0.5 τ  = 0.6 τ  = 0.7 τ  = 0.8 τ  = 0.9

b1 0.997 3  

(0.021 3)

0.998 5 

(0.0353)

0.998 2  

(0.021 1)

0.999 7  

(0.019 3)

1.000 6 

(0.0051)

1.001 4  

(0.006 3)

1.002 1  

(0.492 1)

1.004 3  

(0.100 5)

1.007 2  

(0.000 6)

b2 0.890 9  

(0.017 6)

0.998 5 

(0.0092)

0.898 3  

(0.007 2)

0.900 8  

(0.014 5)

0.900 4  

(0.039 2)

0.902 2  

(0.025 4)

0.903 0  

(0.210 5)

0.906 4  

(0.004 2)

0.910 5  

(0.002 5)

b3 0.092 4  

(0.005 3)

0.998 5 

(0.0581)

0.090 5  

(0.002 1)

0.090 8  

(0.001 1)

0.092 6  

(0.000 6)

0.093 2  

(0.003 2)

0.095 3  

(0.007 2)

0.096 5  

(0.002 7)

0.096 7  

(0.009 2)

b4 0.684 5  

(0.031 8)

0.998 5 

(0.1382)

0.664 6  

(0.028 3)

0.660 6  

(0.009 5)

0.656 2  

(0.011 4)

0.653 6  

(0.102 7)

0.649 5  

(0.005 7)

0.639 6  

(0.005 6)

0.623 8  

(0.043 1)

b5 −0.607 7 

(0.004 0)

0.998 5 

(0.0141)

−0.617 7 

(0.038 2)

−0.621 2 

(0.014 4)

−0.624 8 

(0.006 5)

−0.626 5 

(0.027 3)

−0.629 2 

(0.014 2)

−0.634 5 

(0.000 7)

−0.640 8  

(0.001 3)

b6 0.580 6  

(0.010 3)

0.998 5 

(0.0154)

0.547 3  

(0.003 3)

0.537 5  

(0.021 4)

0.530 9  

(0.008 4)

0.520 3  

(0.023 9)

0.514 5  

(0.000 5)

0.500 2  

(0.237 2)

0.483 7  

(0.006 9)

b7 1.280 4  

(0.009 2)

1.279 8 

(0.0337)

1.278 6  

(0.130 3)

1.278 0  

(0.063 8)

1.277 0  

(0.364 1)

1.277 6  

(0.683 5)

1.277 4  

(0.050 3)

1.276 2  

(0.758 1)

1.274 9  

(0.045 1)

b8 0.005 6  

(0.000 2)

0.007 5  

(0.000 6)

0.009 4  

(0.000 3)

0.010 2  

(0.001 3)

0.011 1  

(0.000 1)

0.012 1  

(0.004 8)

0.013 8  

(0.000 9)

0.015 5  

(0.001 1)

0.018 3  

(0.006 2)

b9 −0.101 3 

(0.077 1)

−0.099 2 

(0.006 3)

−0.099 2 

(0.002 6)

−0.100 6 

(0.031 8)

−0.100 4 

(0.093 1)

−0.101 4 

(0.008 5)

−0.100 7 

(0.063 4)

−0.097 4 

(0.007 2)

−0.092 4  

(0.000 8)

b10 0.309 6  

(0.017 1)

0.317 4  

(0.023 3)

0.321 2  

(0.004 6)

0.324 2  

(0.010 1)

0.326 5  

(0.006 3)

0.328 5  

(0.045 7)

0.329 6  

(0.008 9)

0.333 5  

(0.003 5)

0.339 5  

(0.010 7)

MAB 1.191 4 0.968 1 0.847 0 0.782 4 0.763 6 0.785 6 0.849 5 1.015 6 1.334 2

RMSE 1.528 0 1.299 4 1.163 5 1.079 6 1.036 7 1.053 7 1.110 4 1.281 7 1.615 7

MPB 7.686 2 6.251 1 5.469 3 5.046 2 4.928 2 5.066 7 5.478 4 6.554 8 8.610 8

R2 0.948 3 0.962 7 0.970 1 0.974 3 0.976 6 0.975 5 0.972 8 0.963 7 0.942 3

Radj 2 0.948 4 0.962 8 0.970 1 0.974 3 0.976 6 0.975 5 0.972 8 0.963 8 0.942 4

In parentheses is the standard error; τ  is different quantiles.

FIGURE 3

The fitting results of different positions of the stem based on the different quantiles. τ, nonlinear quantile regression (NQR) across nine different 
quantiles.
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FIGURE 4

Box plot of the predicted diameter against the relative tree height by using the Kozak (2004) model. (A) Nonlinear regression model without 
density factor; (B) nonlinear regression model with density factor; (C) nonlinear mixed effect model with density factor; (D) quantile regression 
model with density factor.

equation, including the stand density factor, could accurately 
predict the diameter at any relative height of the stem and had the 
highest prediction accuracy. The smoothness of the fitting curve 
was closest to the true stem form of the tree.

Discussion

This study aimed to determine how stand density effects and 
regression techniques affect the accuracy of taper models. To this 
end, the optimal basis model were selected from 12 different forms 

of variable-exponent models and compared the goodness-of-fits 
of three regression techniques.

Selection of the optimal basic model

The variable-exponent taper equation is critical for providing 
a more accurate estimate of the stem form. In this study, 12 
different forms of variable-exponent taper equations (Table 2) 
were fitted to the larch plantation data, and the fitting precision of 
the Kozak (2004) variable-exponent taper equation was higher 
than that of the others (Table 4), which is consistent with the 
conclusions of previous studies (Özçelik and Crecente-Campo, 
2016; Liu et al., 2020; Shahzad et al., 2020; He et al., 2021). The 
Kozak (2004) variable-exponent taper equation well describes the 
stem form of larch (Larix gmelinii), lebanon cedar (Cedrus libani 
A. Rich.) and other tree species and can be used to estimate the 
volume (Kozak, 2004; Warner et  al., 2016). However, other 
researchers have reached different conclusions. Lumbres et  al. 
(2017) developed a model for Japanese cedar (Cryptomeria 
japonica D.Don) and noted that the Kozak (1988) equation could 
accurately describe the stem form. Tang et al. (2017) reported that 
the prediction accuracy of the (Muhairwe, 1999) variable-
exponential taper equation was higher than that of the Kozak 
(1988) equation for Betula alnoides. Bi (2000) obtained a fitting 
accuracy similar to that reported by Kozak (1988) and Bi (2000) 

TABLE 9 Goodness-of-fit statistics of Kozak (2004) for the four 
different forms using validation data.

Parameters NR
Contain Sd

NR NLME NQR( τ  
= 0.5)

Bias 0.066 4 0.048 5 0.004 1 0.003 2

MAB 0.796 3 0.785 7 0.782 2 0.773 8

MPB 5.145 5 5.077 1 4.758 4 4.497 9

R2 0.932 9 0.947 8 0.960 9 0.974 7

Radj 2 0.932 6 0.947 5 0.960 7 0.974 6

NR, nonlinear regression; NLME, nonlinear mixed effect model; NQR, nonlinear 
quantile regression; τ  is different quantiles.
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at the lower part of the trunk, but the value was significantly 
higher than that of Kozak (1988) at the top. This phenomenon is 
related to differences in the tree size. One of the most likely 
explanations is the ecophysiology of trees, for which the 
appropriate taper equation for different species varies significantly.

Effects and selection of stand density 
variables

The stem form differs among tree species and is influenced by 
factors such as the site conditions and the stand density (Sharma and 
Parton, 2009; Jiang and Liu, 2011). In Larson (1963), found that most 
variations in the stem form are affected by the size of the live crown 
and the length of the branch-free bole. Burkhart and Walton (1985) 
first related the crown ratio to parameter estimates in a loblolly pine 
(Pinus taeda L.) taper model and concluded that including the crown 
ratio as a predictor variable in a taper model was not warranted. 
Liang et al. (2022) incorporated different crown variables or their 
combinations into a taper model for a Cunninghamia lanceolata 
forest, and the results confirmed that the accuracy of the taper model 
incorporating different crown variables was improved. Leites and 
Robinson (2004) postulated that the operational costs involved in 
measuring the crown dimensions of standing trees may limit their 
use. The stand density is a widely used density metric that can 
be obtained without significant cost. In addition, it is the main factor 
affecting changes in the stem form (Sharma and Parton, 2009). The 
results of our study show that the fitting statistics and predictive 
precision were improved when a stand density factor of b10/ Sd  
(Table 5) was included in the main model. A similar result was 
reported by Duan et al. (2016), who incorporated the optimal taper 
equation of Chinese fir based on the Kozak (2004) model. Sharma 
and Zhang (2004) introduced a density index ( )BA / TPH  into a 
variable-exponent taper model, which improved the model 
prediction accuracy when applied to a Korean pine plantation. One 
possible reason for this inconsistent result is the effect of the tree 
species and stand type on the stand density (Sharma, 2020). In 
addition, Sharma and Parton (2009) incorporated BA into a variable-
exponent taper model for jack pine and black spruce plantations. 
Sharma (2020) established the variable-exponent taper equation for 
Korean pine plantations by combining TPH and BA. In fact, stand 
density factors inhibited taper increases to a certain extent, affecting 
the prediction applicability of the taper equation (Jiang and Liu, 
2011). However, Duan et al. (2016) noted that this effect mainly 
affected the stem form below 10% of the tree height, and there was 
little difference in the prediction of the middle section (Sharma and 
Zhang, 2004). Nevertheless, density indicators affect individual tree 
growth and the stem form; therefore, including stand density 
information in modeling tree tapers makes sense.

Effects of regression techniques

In most cases, different regression techniques affect the 
prediction accuracy of the taper model (He et al., 2021). Although 

nonlinear regression is the most commonly used method, the data 
used in this method must meet the assumptions of independent 
error terms (Yang et al., 2009). However, the nonlinear mixed 
effect model and the quantile regression model can effectively 
solve these problems. In this study, nonlinear mixed effect 
variable-exponent taper models were developed, and random 
effects acting at b6 and b8 significantly improved the fit statistics 
(Tables 6, 7). Similar results have also been presented by Duan 
et al. (2016), who created a variable-exponent taper equation for 
Chinese fir. Although the calibrated nonlinear mixed effect model 
performed better than the nonlinear regression in predicting the 
stem form, the nonlinear mixed effect method accuracy highly 
relied on the sampling size and strategy. In previous studies, 
excessively large or small trees have been confirmed to not 
be conducive to improving model accuracy (Subedi et al., 2011; 
Fu et al., 2017; Kb and Lm, 2020). Crecente-Campo et al. (2010) 
stated that the only method that maintains bias at a low level is 
random selection. In addition, as the number of measurements 
included in a subsample increases, the prediction accuracy of the 
model increases. However, a large sample is often unreasonable 
because of the increased cost of sampling (Castedo Dorado et al., 
2006). Liang et al. (2022) found that a mixed effect model achieved 
a high accuracy by adding random factors to some parameters, 
while the requirement of additional measured diameter 
information for calibration was often not justifiable. These studies 
suggest that choosing different sample sizes and decreasing the 
number of samples required for calibration could provide better 
model fitting results and increase the precision of estimation when 
applying the mixed effects model. The quantile regression method 
should be the most flexible; it can not only predict the relationship 
between the response variable and independent variables in the 
conditional mean but also quantify the entire conditional 
distribution of the response variable (Koenker and Bassett, 1978). 
Our results show that we were able to successfully apply quantile 
regression to tree taper modeling. When quantile τ = 0.5 (Table 8; 
Figure 2), the model performed slightly better than it did for the 
other quantiles. Our results are similar to those of Cao and Wang 
(2015), who established the taper equation for loblolly pine 
plantations and recommended the use of five quantile regression 
methods for prediction purposes. Miao et al. (2021) indicated that 
when using quantile regression, the locations where the curves 
crossed one another should be ignored; this recommendation may 
have been due to the inability of quantile regression to identify the 
hierarchical structure of the data. Notwithstanding this 
disadvantage, the quantile regression method was more flexible 
and the least biased (Table 9) technique for our dataset. Thus, the 
quantile regression method technique is recommended.

Conclusion

The results of this study indicate that the Kozak (2004) model 
was the optimal basic taper model for larch. In addition, the taper 
model incorporating the stand density index ( )Sd  gave the most 
accurate estimation of the diameter. Quantile regression showed 
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the highest accuracy among the several regression techniques. 
When τ  = 0.5, the quantile regression model could accurately 
describe the stem from the change law of larch. Our study 
analyzed the impacts of density factors and regression techniques 
on the accuracy of the taper equation, which provides a new 
approach for establishing high-precision taper equations.
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