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Estimating the aboveground biomass (AGB) of rice using remotely sensed data is critical 
for reflecting growth status, predicting grain yield, and indicating carbon stocks in 
agroecosystems. A combination of multisource remotely sensed data has great potential 
for providing complementary datasets, improving estimation accuracy, and strengthening 
precision agricultural insights. Here, we explored the potential to estimate rice AGB by 
using a combination of spectral vegetation indices and wavelet features (spectral 
parameters) derived from canopy spectral reflectance and texture features and texture 
indices (texture parameters) derived from unmanned aerial vehicle (UAV) RGB imagery. 
This study aimed to evaluate the performance of the combined spectral and texture 
parameters and improve rice AGB estimation. Correlation analysis was performed to 
select the potential variables to establish the linear and quadratic regression models. 
Multivariate analysis (multiple stepwise regression, MSR; partial least square, PLS) and 
machine learning (random forest, RF) were used to evaluate the estimation performance 
of spectral parameters, texture parameters, and their combination for rice AGB. The 
results showed that spectral parameters had better linear and quadratic relationships with 
AGB than texture parameters. For the multivariate analysis and machine learning algorithm, 
the MSR, PLS, and RF regression models fitted with spectral parameters (R2 values of 
0.793, 0.795, and 0.808 for MSR, PLS, and RF, respectively) were more accurate than 
those fitted with texture parameters (R2 values of 0.540, 0.555, and 0.485 for MSR, PLS, 
and RF, respectively). The MSR, PLS, and RF regression models fitted with a combination 
of spectral and texture parameters (R2 values of 0.809, 0.810, and 0.805, respectively) 
slightly improved the estimation accuracy of AGB over the use of spectral parameters or 
texture parameters alone. Additionally, the bior1.3 of wavelet features at 947 nm and scale 
2 was used to predict the grain yield and had good accuracy for the quadratic regression 
model. Therefore, the combined use of canopy spectral reflectance and texture information 
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INTRODUCTION

Nitrogen is the most critical nutrient for promoting crop growth, 
increasing crop aboveground biomass (AGB), and improving 
grain yield. As an important predictor, AGB can reflect crop 
growth status and gross primary production (Harrell et al., 2011) 
and is related to grain yield (Wang et  al., 2021b). Rapid and 
accurate assessment of crop AGB is essential for predicting grain 
yield and improvement of field nitrogen management strategies. 
The conventional approach for measuring AGB by collecting 
samples in the field and drying them indoors is destructive, 
time-consuming, laborious, and prone to human error. In recent 
years, remotely sensed technology has been successfully used 
to estimate crop AGB, other physiological parameters, and grain 
yield and quality. With the development of remotely sensed 
technology, more remotely sensed sensors and platforms have 
been developed and applied to agricultural condition monitoring.

Remotely sensed data for estimating rice AGB are acquired 
from the ground (Cheng et al., 2017), unmanned aerial vehicles 
(UAV; Jiang et  al., 2019), and satellite platforms (Sharifi and 
Hosseingholizadeh, 2020). Remotely sensed data from the ground 
with hyperspectral information have received close attention 
and are widely used to estimate crop AGB because ground-
based hyperspectral remote sensing has the advantages of high 
spectral resolution, continuous wavebands, high efficiency, and 
objectivity (Li et  al., 2016a). Many studies have reported the 
close relationship between spectral parameters and rice biomass 
using ground-based hyperspectral remote sensing (Casanova 
et  al., 1998; Gnyp et  al., 2014; Kanke et  al., 2016; Cheng 
et al., 2017). Ground-based hyperspectral remote sensing cannot 
directly observe the growth status of rice, nor can it satisfy 
the requirements of space–time, and it is difficult to estimate 
rice biomass and dry matter over large areas. Conversely, satellite 
platforms have an obvious advantage in monitoring rice growth 
status and estimating biomass over large areas (Mansaray et al., 
2020; Sharifi and Hosseingholizadeh, 2020). A study reported 
using back-propagation artificial neural network models to 
estimate the grassland AGB from MODIS satellite imagery 
with high accuracy (R2: 0.75–0.85; Yang et  al., 2018). However, 
the estimation accuracy of crop AGB using satellite imagery 
data is often influenced by spatial and spectral resolution, cloud 
cover, and meteorological factors (Wu et al., 2005). In particular, 
the anticipated accuracy is not achieved for small field areas. 
Many studies have used UAV-based RGB imagery to overcome 
these constraints and drawbacks and to estimate rice AGB 
with high accuracy (Cen et  al., 2019; Wan et  al., 2020).

Multisource remotely sensed data are acquired to provide 
more approaches for the accurate, fast, and non-destructive 
monitoring of crop biomass. Researchers have developed various 

data-processing methods and mathematical models for remotely 
sensed data. Canopy spectral reflectance, multispectral imagery, 
and RGB imagery are often used to extract vegetation indices 
(VIs) for estimating AGB in maize, rice, and wheat (Jiang 
et  al., 2019; Yue et  al., 2019; Ma et  al., 2020; Raya-Sereno 
et  al., 2021). Spectral VIs (SVIs), such as the ratio vegetation 
index (RVI), difference vegetation index (DVI), and normalized 
difference vegetation index (NDVI), have proven to have close 
relationships with rice biomass (Gnyp et  al., 2014). However, 
the relationship between remotely sensed data and physiological 
parameters is related to differences in crop species, remote 
sensing measurements, and growth conditions. When SVIs of 
the same wavebands are used in different crop species or 
growth conditions, crop biomass could be  overestimated or 
underestimated, yielding larger errors. Therefore, extracting 
accurate wavebands to establish SVIs is necessary to improve 
the estimation accuracy of crop biomass. SVIs based on complete 
two-by-two combinations of spectral wavebands were calculated 
to accurately estimate leaf chlorophyll content (LCC; Wang 
et  al., 2021b), canopy nitrogen content (Wang et  al., 2022), 
leaf area index (Delegido et al., 2015), and grain yield (Rodrigues 
et  al., 2018). Wavelet analysis is a widely utilized spectral 
analysis tool that uses mother wavelet functions by decomposing 
raw spectral reflectance data into multiple scales (Mallat, 1989; 
Cheng et  al., 2011). Continuous wavelet transform (CWT) is 
superior to SVIs in noise and dimension reduction (Cheng 
et  al., 2011). Our studies have confirmed that CWT has better 
performance than SVIs for estimating LCC (Wang et al., 2020) 
and carbon-nitrogen content (Chen et  al., 2019; Wang et  al., 
2022). The wavelet coefficient calculated using mother wavelet 
functions can minimize the interference of the canopy structure 
and soil background on the spectral reflectance data (Cheng 
et  al., 2012). Previous studies have analyzed the feasibility of 
wavelet analysis for estimating crop biomass and dry matter 
content using remotely sensed data (Li et  al., 2013; Cheng 
et al., 2014). Wavelet analysis has been widely used to estimate 
physiological parameters (Guo et  al., 2015; Wang et  al., 2016), 
predict grain yield and protein content (Wang et  al., 2021b), 
and detect weeds and diseases in the field (Zhang et al., 2014).

RGB imagery shows abundant color and texture features with 
temporal and spatial information, compensating for the defects 
of ground-hyperspectral remote sensing. However, extracting 
information from RGB imagery is more complicated than ground-
hyperspectral remote sensing. Multiple RGB images obtained from 
the field are stitched to yield orthophotos and point cloud data, 
and then the digital number (DN) values and texture features 
are extracted to monitor the growth status of crops. Two 
complementary data sources are used simultaneously to improve 
the estimation accuracy of wheat biomass (Lu et  al., 2019). 

has great potential for improving the estimation accuracy of rice AGB, which is helpful for 
rice productivity prediction. Combining multisource remotely sensed data from the ground 
and UAV technology provides new solutions and ideas for rice biomass acquisition.

Keywords: aboveground biomass, rice, vegetation indices, wavelet features, texture, unmanned aerial vehicle, 
machine learning
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Generally, both RGB-based VIs (RGB-VIs) and texture features 
derived from RGB imagery are vital variables for estimating crop 
biomass. The estimation accuracy of crop biomass is gradually 
considered based on the influence of crop growth differences. 
The majority of previous studies have attempted to combine 
RGB-VIs and plant height information to improve the accuracy 
and have shown the best estimation performance (Bendig et  al., 
2014; Iqbal et  al., 2017; Lu et  al., 2019). One study found that 
coupled plant height and spectral reflectance data correlated with 
barley biomass (Bendig et  al., 2015). Spectral reflectance data 
reflect the specific features (such as steps, reflection peaks, and 
absorption valleys) of physiological and biochemical information 
in crop tissues with a strong correlation. Therefore, establishing 
a multiple stepwise regression (MSR) model using texture features 
and SVIs (Yue et  al., 2019) is a better approach to estimating 
crop biomass than plant height (Bendig et  al., 2015; Roth and 
Streit, 2018). Satellite imagery and polarimetric radar data were 
combined to improve the estimation model of rice biomass on 
the Sanjiang Plain in Heilongjiang Province, Northeast China 
(Koppe et  al., 2013). The combination of multisource remotely 
sensed data is receiving extensive attention for estimating the 
physiological parameters and productivity of crops.

Multivariate analysis and machine learning algorithms have 
great potential in remotely sensed data mining and crop biomass 
estimation, with higher accuracy than convenient algorithms (Meyer 
and Neto, 2008; Mansaray et al., 2020). The MSR model established 
by a combination of SVIs and texture indices can explain more 
variability of rice AGB (R2 = 0.87) than linear and exponential 
regression models for the pre-heading stage (Zheng et  al., 2019). 
The random forest (RF) regression model was used to achieve 
a better prediction result (R2 = 0.90) than linear and exponential 
regression models for rice AGB (Jiang et  al., 2019). Few studies 
have investigated multivariate analysis and machine learning 
algorithms for estimating rice AGB by combining SVIs and wavelet 
features (spectral parameters) derived from canopy spectral 
reflectance and RGB-VIs, texture features and texture indices 
(texture parameters) derived from RGB imagery. Consequently, 
this study examines whether RGB-VIs and texture parameters 
can compete with spectral parameters for estimating rice 
AGB. We  determine whether the combination of canopy spectral 
reflectance and RGB imagery leads to a more accurate estimation 
of rice AGB. Last, we  evaluate the performance of estimation 
models of rice AGB established using univariate analysis, multivariate 
analysis, and machine learning algorithm from canopy spectral 
reflectance and RGB imagery.

MATERIALS AND METHODS

Field Experimental Details
The field experiment was conducted in 2021 at the Sichuan 
Agricultural University Modern Agricultural Research and 
Development Base in Chongzhou city (30°33′N, 103°38′E, altitude 
540 m), Sichuan Province, China (Figure  1). The experimental 
location is in a subtropical humid monsoon climate zone; the 
average temperature is 23.7°C, and precipitation is 908.4 mm 
from May to September during the rice-growing season.

In a randomized complete block design, experimental 
treatments were carried out with three replications for three 
nitrogen rates, two nitrogen application percentages, and two 
cultivars during three growth stages. The nitrogen rates were 
applied as urea (46.7% N) at N0 (0 kg ha−1), N1 (150 kg ha−1), 
and N2 (180 kg ha−1). The nitrogen fertilizer was applied in 
two percentages as follows: i) approximately 70% of urea was 
applied as basal fertilizer, and another 30% of urea was applied 
at the tillering stage (M1 = 7: 3); and ii) 30% of urea was 
applied as basal fertilizer, 30% of urea was applied at the 
tillering stage, and another 40% of urea was applied at the 
heading stage (M2 = 3: 3: 4). Two rice cultivars, “Fyou498” 
with loose type and “Jingliangyou534” with compact type, were 
sown on April 14, rice seedlings were transplanted with a row 
space of 0.33 m and plant distance of 0.17 m on May 16. Rice 
grain was harvested on September 12. A total of 30 plots 
were used for the experiment, and the individual plot size 
was 11 × 4 m2. The plant density was 1.8 × 105 plants ha−1. Other 
basal fertilizers of phosphorus as calcium superphosphate (12% 
P2O5) at 75 kg ha−1 and potassium as potassium chloride (60% 
K2O) at 150 kg ha−1 were applied to all plots. Weeds and insect 
populations were controlled with herbicides and pesticides, 
respectively.

Data Acquisition
Acquisition of RGB Imagery
Acquisition of RGB imagery was performed at the tillering 
(June 22), booting (July 21), and full-heading (August 03) 
stages. RGB imagery and canopy spectral reflectance were 
acquired under clear sky conditions between 10:00 and 14:00 
(Beijing local time). We  used a UAV platform with four 
propellers and a visible RGB camera (DJI Mavic 2 Zoom, DJI, 
Shenzhen, China) to fly over the rice field and evaluate the 
RGB-VIs and texture features for estimating rice biomass. The 
detailed specifications of the aircraft, camera, and flight settings 
are shown in Table  1. The aircraft was flown before the 
measurement of canopy spectral reflectance to avoid the human 
campaigns from destroying the canopy status, which would 
have affected the RGB imagery. According to the settings of 
camera specifications and flight details, the nine routes were 
automatically fielded from west to east. Nine images were 
acquired for each route, for 81 images. The aircraft was always 
stable during flight, and flight planning was not changed during 
the whole season. Orthophotos were generated using Agisoft 
PhotoScan software (Agisoft, LLC., St. Petersburg, Russia) to 
extract DN values and texture features.

Measurement of Canopy Spectral Reflectance
After acquiring RGB imagery, ground-based canopy spectral 
reflectance data were measured using a field spectroradiometer 
with a 25° field-of-view fiber optic probe (AvaSpec-2048, 
Avantes, Apeldoorn, Netherlands). The device has a full 
spectral range from 350 nm to 2,500 nm, and the sampling 
intervals are 0.6 nm from 350 nm to 1,100 nm and 6 nm from 
1,100 nm to 2,500 nm. The probe was vertically placed from 
1 m above the rice canopy and 0.445 m view diameter to 
obtain spectral information. A 25π m2 BaSO4 white panel 
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was used to calibrate spectral reflectance before and after 
vegetation measurement by using three scans each time. 
Canopy spectral reflectance was measured for three samples 
in a plot, and average reflectance was recorded by scanning 
three times for one sample.

Measurement of Aboveground Biomass and Grain 
Yield
After measuring canopy spectral reflectance, rice plants were 
uprooted and taken to the laboratory to remove the dirt and 

soil. Then, the roots of the rice plants were cut off and placed 
in paper bags. Samples were oven-dried at 105°C for 0.5 h 
and 70°C until constant weight. Subsequently, dry weight 
(including stems, leaves, and panicles) was weighed and recorded. 
Rice AGB (kg m−2) was calculated as the product of dry weight 
per plant (kg plant−1) and plant density (plant m−2; Li et al., 2016b).

Rice grain yield (t ha−1) for each plot was harvested individually 
by manual means at the maturity stage. The collected rice 
grain was air-dried to a 13.5% moisture level and weighed 
using an electronic balance.

FIGURE 1 | Location of the field experimental site and layout of the field plots with two rice cultivars, three nitrogen rates, and two applied percentages.

TABLE 1 | Basic information on aircraft, cameras, and flight settings.

Aircraft Camera Flying details

Take-off weight 905 g Camera model FC2204 Height 30 m
Maximum flying speed 20 m s−1 Effective pixels 12 million Speed 2.2 m s−1

Maximum flying height 6,000 m CCD 1-inch CMOS Shutter interval 4 s
GNSS GPS + GLONASS Angle 85° Ground resolution 1.1 cm pixel−1

Photo resolution 4,000 × 3,000 Forward overlap 80%
Bit depth 24 Side overlap 70%
Aperture f/2.8
Focal length 4.386 mm
ISO ISO-100
Exposure 1/640 s
Photo format JEPG (RAW)
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Data Analysis
Texture Analysis
This study generated a gray level co-occurrence matrix (GLCM) 
at the tillering, booting, and full-heading stages to analyze the 
texture features for AGB estimation (Figure  2). Eight texture 
features were computed in the IDL/ENVI 5.3 environment 
(Exelis Visual Information Solutions, Boulder, Colorado, 
United  States), including the mean (ME), variance (VAR), 
homogeneity (HOM), contrast (CON), dissimilarity (DIS), 
entropy (ENT), second moment (SEM), and correlation (COR). 
Window size represents detailed texture information and is 
an important parameter for texture analysis. Appropriate window 
sizes often contain texture features of the soil background and 
crop plants (Zheng et  al., 2019). Rice was transplanted with 
a row spacing of 0.33 m and a plant spacing of 0.17 m; thus, 
texture analysis was performed using the smallest window size 
of 3 × 3 pixels. The texture features of the red, green, and blue 
wavebands were calculated separately, and twenty-four features 
were finally generated. Texture features from RGB imagery 
were used to evaluate rice AGB.

Vegetation Indices and Texture Indices
Orthophotos were processed to extract DN values (including R, 
G, and B values) using the region of interest tool in IDL/ENVI 
software. Then DN values were normalized to reduce the illumination 
effect (Cheng et al., 2001). Five RGB-VIs were studied to correlate 
with crop physiological parameters and calculated using normalized 
DN values (i.e., r, g, and b). Based on the RVI, DVI, and NDVI, 
texture indices were defined as the ratio texture index (TRVI), 
difference texture index (TDVI), and normalized difference texture 
index (TNDVI) and produced using complete two-by-two 
combinations of eight texture features with three wavebands (red, 
green, and blue wavebands). Texture indices were determined 
based on a previous study (Zheng et  al., 2019). The waveband 
range of 1,050–2,500 nm was removed because of the exorbitant 
signal-to-noise ratio. Canopy spectral reflectance with an exorbitant 

signal-to-noise ratio could affect the sensitive wavebands analysis 
of rice AGB. Thus, this study used the waveband range of 
350–1,050 nm to analyze the relationships between rice AGB and 
spectral parameters. Eight SVIs of ground-based canopy spectral 
reflectance were calculated to correlate with rice AGB, including 
SVIs of complete two-by-two combinations of spectral wavebands 
within a spectral range of 350–1,050 nm and SVIs of specific 
spectral wavebands. These indices are defined and listed in Table 2.

Wavelet Analysis
Five wavelet features, namely daubechies6 (db6), symlets3 (sym3), 
biorthogonal1.3 (bior1.3), reverse biorthogonal5.5 (rbio5.5), and 
gaussian3 (gaus3), were executed to transform the spectral 
reflectance data into wavelet coefficients at a dyadic scale of 
1–256  in MATLAB Version 9.2 (MathWorks, Inc., Natick, MA, 
United  States). The definition and equation of wavelet analysis 
were described in our previous study (Wang et  al., 2021b). In 
this study, spectral reflectance of 350–1,050 nm was used to 
produce a wavelet coefficient matrix and analyze the correlation 
between wavelet coefficients and rice AGB on a scale of 1 to 
256. Finally, the correlation coefficient matrix diagram, best 
correlation coefficient (r), corresponding waveband, and scale 
were output to establish the estimation model of rice AGB.

Model Performance Estimation
Data involving various cultivars, nitrogen rates, and growth stages 
were integrated to form a comprehensive dataset. The comprehensive 
dataset was randomly divided into the calibration and validation 
datasets. 70% of samples were used as the calibration dataset 
for modeling, and 30% of samples were used as the validation 
dataset for validating model performance, as shown in Table  3.

Three regression methods were selected to evaluate rice AGB, 
namely, univariate analysis, multivariate analysis, and machine 
learning algorithm. SVIs, wavelet features, texture features, and 
texture indices were respectively employed to establish simple 
linear and quadratic regression models using the calibration dataset 

FIGURE 2 | Gray level co-occurrence matrix of rice RGB imagery at the tillering, booting, and full-heading stages.
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for univariate analysis. The MSR and partial least square (PLS) 
were fitted for multivariate analysis using spectral parameters, 
texture parameters, and their combination. The MSR can explain 
the reliability of independent variables and eliminate variables 
that cause collinearity (Li et  al., 2016b). No more than three 
variables were introduced into the MSR models to avoid overfitting 
(Zheng et  al., 2019). Variables with collinearity and p > 0.05 were 
eliminated for the MSR models.

The PLS regression technique is successfully used to monitor 
rice biomass (Wang et  al., 2021a). The PLS can effectively 
reduce dimensionality, eliminate the collinearity between 
variables, and improve the reliability and accuracy of estimation 
models (Fu et  al., 2014). In this study, the PLS regression 
technique was implemented in MATLAB software, and the 
modeling results were finally output as regression coefficients, 
constant, predicted values, and R2.

The RF algorithm is an ensemble machine learning algorithm 
that combines a large set of decision trees to improve the 
accuracy of classification and regression trees (Mutanga et  al., 
2012). Two important parameters were adjusted and optimized 
to achieve the best prediction performance: the number of 
variables to be  tested for each node of tree (mtry) and the 
number of trees (ntree). The parameter mtry was generally 
determined from the default value (1/3 of the total number 

of input variables; Mutanga et  al., 2012; Oliveira et  al., 2012). 
In this study, the out-of-bag error rate was calculated to acquire 
the optimal mtry, and the mtry with the lowest out-of-bag 
error rate was selected. Subsequently, we adjusted the parameter 
ntree to achieve the best training results. Finally, mtry and 
ntree were determined to operate the RF algorithm using spectral 
parameters (mtry = 1, ntree = 1,000), texture parameters (mtry = 4, 
ntree = 1,600), and their combinations (mtry = 7, ntree = 400). The 
RF algorithm was implemented using the “randomForest” package 
within the R statistical software (R Development Core Team, 2022).

The predictive accuracy of the estimation models was assessed 
using the R2, root mean square error (RMSE), and the ratio 
of performance to deviation (RPD). The following equations 
calculated three accuracy metrics:
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where yi  and yi'  are the measured and predicted AGB values 
for sample i , respectively. y  is the mean AGB. n  is the 
number of samples for the calibration or validation dataset. 
Stdv  and RMSEv  are the standard derivation and RMSE of 
the validation dataset, respectively. Higher R2 and lower RMSE 
values indicate better estimation accuracy for AGB estimation 
models. The RPD is classified into three levels: RPD ≥ 2 represents 
good performance, 2 > RPD ≥ 1.4 represents intermediate 

TABLE 2 | Definition of RGB-VIs and SVIs.

Category Name Definition References

RGB-VIs Excessive green index ExG = 2*g-r-b Woebbecke et al., 1995
Excessive red index ExR = (1.4*R−G)/(R + G + B) Meyer and Neto, 2008
Excessive blue index ExB = (1.4*B−G)/(R + G + B) Mao et al., 2003
Excess green minus excess red ExGR = ExG−ExR Camargo Neto, 2004
Red green blue vegetation index RGBVI = (G2−B*R)/ (G2 + B*R) Bendig et al., 2015

Two-by-two 
combinations of 
spectral wavebands

Ratio vegetation index RVI = Ri/Rj Pearson and Miller, 1972
Difference vegetation index DVI = Ri−Rj Jordan, 1969
Normalized difference vegetation index NDVI = (Ri−Rj)/(Ri + Rj) Rouse et al., 1974

Specific spectral 
wavebands

Red-edge chlorophyll index CIrededge = R800/R720−1 Gitelson et al., 2003
Renormalized difference vegetation index RDVI = (R800−R670)/(R800 + R670)1/2 Roujean and Breon, 1995
Optimized soil adjusted vegetation index OSAVI = (1 + 0.16)*(R800−R670)/(R800 + R670 + 0.16) Tremblay et al., 2003
Transformed chlorophyll absorption reflectance index TCARI = 3*((R700−R670)−0.2*(R700-R550)*(R700/R670)) Haboudane et al., 2002
Plant pigment ratio index PRR = (R550−R450)/(R550 + R450) Metternicht, 2003

R, G, and B represent the DN values of red, green, and blue, respectively; r = R/(R + G + B), g = G/(R + G + B), b = B/(R + G + B); Ri and Rj indicate the spectral reflectance for 
wavebands i and j, respectively.

TABLE 3 | Statistical results of rice AGB and grain yield for calibration and 
validation datasets.

AGB (kg m−2) Grain yield (t ha−1)

Cal. dataset Val. dataset Cal. dataset Val. dataset

Samples 160 68 20 10
Minimum 0.113 0.140 5.839 6.176
Maximum 1.928 2.013 9.204 10.568
Mean 0.885 0.881 8.091 8.352
Standard 
deviation

0.469 0.490 0.909 1.318

Coefficient of 
variation (%)

53.0 55.5 11.2 15.8
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performance, and RPD < 1.4 represents low performance. The 
AGB model with the best validation accuracy was selected from 
all regression models. Rice AGB was used to analyze the 
relationship with grain yield using the linear model and as a 
bridge to link remotely sensed data to grain yield (Wang et  al., 
2021b). The approach indirectly uses remotely sensed data to 
estimate crop grain yield is more physiologically explanatory.

RESULTS

Estimation of Rice Aboveground Biomass 
Using Spectral Parameters
Figure  3 shows the correlation results for the relationships 
between rice AGB and spectral parameters. The CIrededge, RDVI, 
OSAVI, TCARI, and PRR of specific spectral wavebands exhibited 
low positive correlations (r < 0.64, p < 0.01) with AGB. The 
correlation coefficient matrices were calculated using complete 
two-by-two combinations of wavebands (701 × 701 wavebands) 
for the DVI, RVI, and NDVI (Supplementary Figures S1A–C). 
The best correlation was selected from the correlation coefficient 
matrices, and the DVI (952, 947), RVI (775, 784), and NDVI 
(775, 784) showed better correlation than SVIs of specific 
spectral wavebands, and the correlation coefficients were 0.811, 
0.806, and 0.806, respectively. No differences were found in 
correlations between the three SVIs. The correlation coefficient 

matrix diagram illustrates the correlation analysis between 
wavelet features and rice AGB (Supplementary Figure S2). 
The wavelet features had a high correlation coefficient (| r 
| > 0.79, p < 0.001), and the db6 of the wavelet features had 
the strongest correlation with AGB (r = −0.876, p < 0.001) at 
469 nm and scale 6. Thus, the DVI (952, 947), RVI (775, 784), 
and NDVI (775, 784) of SVIs and five wavelet features were 
adopted to establish the linear and quadratic regression models.

As shown in Figure  4, the accuracy of linear and quadratic 
regression models is compared to estimate rice AGB using spectral 
parameters. Generally, the accuracy of the quadratic regression 
model is superior to that of the linear regression model. The 
db6 (469, 6) of the wavelet features achieved the best estimation 
performance for linear (R2 = 0.767, RMSE = 0.227 kg m−2) and 
quadratic (R2 = 0.777, RMSE = 0.223 kg m−2) regression models. 
Linear and quadratic regression models had proximate curves 
and similar accuracies for the db6 (469, 6), sym3 (468, 6), and 
rbio5.5 (467, 6) of the wavelet features. Furthermore, these models 
were validated with the validation dataset, and the validation 
accuracy is shown in the scatter plots of 1:1 (Figure  5). The 
validation results demonstrated that the performance of the SVIs 
and wavelet features estimates varied with R2 values of 0.56–0.67 
and 0.58–0.76, RMSE of 0.27–0.32 kg m−2 and 0.24–0.32 kg m−2, 
and RPD of 1.51–1.79 and 1.55–2.05, respectively. The wavelet 
features had a better performance than the SVIs. The quadratic 
regression model of rice AGB was determined to have the best 

FIGURE 3 | The correlation coefficient between rice AGB and spectral parameters. * indicates significant correlation at the p < 0.05 level, ** indicates the significant 
correlation at the p < 0.01 level, *** indicates the significant correlation at the p < 0.001 level.
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FIGURE 5 | Predicted and measured values of rice AGB with linear and quadratic regression models (n = 68). Uppercase letters (A–H) are represented in sequence 
as DVI (952, 947), RVI (775, 784), NDVI (775, 784), db6 (469, 6), sym3 (468, 6), bior1.3 (947, 2), rbio5.5 (467, 6), and gaus3 (469, 3), respectively.

validation performance (R2 = 0.762, RMSE = 0.238 kg m−2, 
RPD = 2.054) using the bior1.3 (947, 2) of the wavelet features.

Estimation of Rice Aboveground Biomass 
Using Texture Parameters
The correlation results of rice AGB with RGB-VIs and texture 
parameters are shown in Figure  6. RGB-VIs exhibited extremely 
low correlation coefficients with rice AGB, and the maximum 

correlation coefficient was only 0.277 (p < 0.01) with the RGBVI. For 
the texture features of red, green, and blue wavebands, eleven 
of twenty-four texture features showed strongly positive or negative 
correlations with correlation coefficient values from 0.53 to 0.69 
(VAR_R, HOM_R, CON_R, DIS_R, VAR_G, HOM_G, CON_G, 
DIS_G, VAR_B, CON_B, and DIS_B). The strongest correlation 
was found in VAR_G (r = 0.688, p < 0.001) with AGB. The correlation 
coefficient matrices of texture indices were calculated using 

FIGURE 4 | Linear and quadratic regression models using spectral parameters for estimating rice AGB (n = 160). The shaded band is the prediction interval at the 
95% confidence level. DVI (952, 947) indicates the DVI at wavebands 952 nm and 947 nm. Others are the same as it. db6 (469, 6) indicates the db6 of wavelet 
features at waveband 469 nm and scale 6. Others are the same as it.
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complete two-by-two combinations of wavebands (24 × 24 
wavebands) for the TDVI, TRVI, and TNDVI 
(Supplementary Figures S1D–F). Texture indices were better 
correlated with AGB than texture features, with correlation 
coefficients of −0.708, 0.719, and 0.727 for TDVI (VAR_G, ME_B), 
TRVI (ME_B, VAR_R), and TNDVI (DIS_B, CON_G), respectively. 
Thus, RGB-VIs and texture features with low correlation were 
not used to establish the estimation models of rice AGB.

The calibration accuracy for linear and quadratic regression 
models between rice AGB and texture parameters is presented 
in Figure  7. All estimation models using texture parameters 
yielded weaker correlations (0.28 < R2 < 0.55, 0.32 kg m−2 < RMSE 
<0.40 kg m−2) than spectral parameters. The TDVI (VAR_G, ME_B) 
of texture indices achieved the best calibration performance for 
quadratic (R2 = 0.548, RMSE = 0.317 kg m−2) regression models. 
However, the validation results were unsatisfactory for linear and 
quadratic regression models using texture parameters (Figure  8), 
with R2 values of 0.14–0.44, RMSE of 0.37–0.46 kg m−2, and RPD 
of 1.07–1.33. These models exhibited low performance (RPD < 1.4) 
by using texture parameters to estimate rice AGB.

Estimation of Rice Aboveground Biomass 
Using Multivariate Analysis and Machine 
Learning Algorithm
A combination of spectral parameters, selected texture features, 
and texture indices was used to investigate rice AGB estimates 

when using MSR, PLS, and RF techniques. The relationship between 
the predicted and estimated AGB is shown in Figure  9. The 
results demonstrated that RF regression using spectral parameters 
achieved the best calibration (R2 = 0.808, RMSE = 0.205 kg m−2) and 
validation (R2 = 0.747, RMSE = 0.245 kg m−2, RPD = 2.001) accuracy 
among the three techniques, and MSR and PLS regression had 
similar accuracy in calibration and validation performance. For 
selected texture features and texture indices, PLS regression showed 
better calibration (R2 = 0.555, RMSE = 0.312 kg m−2) and validation 
(R2 = 0.455, RMSE = 0.362 kg m−2, RPD = 1.354) accuracy than MSR 
and RF regression techniques. When using combined spectral 
parameters, selected texture features, and texture indices, PLS 
regression was found to have the best calibration (R2 = 0.810, 
RMSE = 0.204 kg m−2) and validation (R2 = 0.751, RMSE = 0.244 kg m−2, 
RPD = 2.010) accuracy. Similar accuracy was achieved using MSR 
and RF regression techniques. The validation accuracy of the 
three regression techniques was slightly better than that of the 
linear and quadratic regression models.

Estimation of Rice Grain Yield Using 
Remotely Sensed Data
As shown in Figure  10A, a strong linear relationship of grain 
yield was found with rice AGB (R2 = 0.654, RMSE = 0.521 t ha−1, 
p < 0.0001). The quadratic regression model established by the 
bior1.3 (947, 2) of the wavelet features with the highest validation 

FIGURE 6 | The correlation coefficient between rice AGB and RGB-VIs and texture parameters. * indicates significant correlation at the p < 0.05 level, ** indicates 
the significant correlation at the p < 0.01 level, *** indicates the significant correlation at the p < 0.001 level.

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Wang et al. Multisource Remote Sensing Estimates AGB

Frontiers in Plant Science | www.frontiersin.org 10 May 2022 | Volume 13 | Article 903643

accuracy was selected to investigate the relationship with grain 
yield. The “AGB-grain yield” linear model was linked with the 
“bior1.3-AGB” quadratic regression model to generate a spectral 
estimation model for grain yield. The 1:1 scatter plots of predicted 
and estimated grain yield are shown for calibration (Figure  10B) 
and validation (Figure  10C) performance. The results indicated 
that the bior1.3 (947, 2) of the wavelet features was used to 
estimate the grain yield with good calibration (R2 = 0.836, 
RMSE = 0.394 t ha−1) and validation (R2 = 0.758, RMSE = 0.683 t ha−1, 
RPD = 1.930) performance. Ground-based remotely sensed data 
exhibited a good ability for predicting rice grain yield.

DISCUSSION

Relationships Between Rice Aboveground 
Biomass and Remotely Sensed Data
In this study, the SVIs of specific spectral wavebands from 
previous studies were found to have low correlations with rice 

AGB. Generalizing previous studies with our study, the SVIs 
of specific spectral wavebands were difficult to adapt to the 
current study (Fu et  al., 2014; Bendig et  al., 2015; Ren et  al., 
2018; Wang et al., 2020, 2021b, 2022) because VIs were limited 
by crop species and the measurement environment of the 
remotely sensed data. These VIs appeared to be  used only for 
comparison with the new VIs to emphasize the advantages 
and performance of the new VIs. The sensitive wavebands of 
rice AGB were found in the red-edge and near-infrared (NIR) 
regions for the DVI, RVI, NDVI, and bior1.3 of the wavelet 
features and in the blue wavebands for other wavelet features. 
According to previous studies, the blue, red-edge, and NIR 
regions were sensitive to crop biomass (Kanke et  al., 2016; 
Yang et  al., 2021). The db6, sym3, and rbio5.5 of the wavelet 
features showed better calibration performance than the SVIs, 
which was related to the 467–469 nm of sensitive wavebands 
and the consistent scale (scale 6). UAV-based RGB imagery 
is complex and is composed of soil, water, leaves, stems, and 
panicles (Yue et  al., 2019). Although the soil background was 

FIGURE 7 | Linear and quadratic regression models using texture parameters for estimating rice AGB (n = 160). The shaded band is the prediction interval at the 
95% confidence level. TDVI (VAR_G, ME_B) indicates the TDVI at VAR_G and ME_B of texture features. Others are the same as it.
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effectively classified using a supervised classification method 
(i.e., RF classifier), DN values were still disturbed by water 
and soil background, influencing the linear relationship between 
RGB-VIs and rice AGB. Additionally, the GLCM was used to 
clearly distinguish crop canopy (dark pixels) and soil background 
(bright pixels; Haralick et  al., 1973), and the correlation with 
rice AGB was higher than RGB-VIs. The texture imagery 
showed that the cultivar “Fyou498” had bright pixels with 
high DN values at the full-heading stage (Figure  2). However, 
rice crops generally had dark pixels with low DN values, and 
bright pixels deteriorated the estimation accuracy of rice AGB 
using texture parameters. The bright pixels might be  related 
to the low chlorophyll content and panicles of cultivar “Fyou498.”

Multivariate analysis and machine learning algorithms have 
been widely used to predict the AGB and grain yield of crops 
(Kanke et  al., 2016; Cen et  al., 2019; Li et  al., 2020; Wan 
et al., 2020; Zhou et al., 2021). Linear and quadratic regression 
models are the simplest modeling methods used to determine 
the relationship between two quantitative variables. However, 
the dependent variable is often related to two or more independent 
variables. Linear and quadratic regression cannot solve more 
complex problems and achieve the anticipated prediction ability. 

In the current study, the MSR, PLS, and RF regression algorithms 
were able to explain the differences in AGB estimates by 
multiple variables while improving the prediction accuracy. As 
the texture features were affected by the water and soil 
background, the validation accuracy of the MSR, PLS, and 
RF regression models using texture parameters alone was still 
unacceptable, as with linear and quadratic regression (RPD < 1.4). 
Although RGB imagery data have little effective information 
and are easily affected by complex backgrounds, they cannot 
eliminate the advantages of RGB imagery data for the monitoring 
of crop growth status and the estimation of physiological 
parameters (Li et  al., 2016b; Zhou et  al., 2020, 2021). The 
PLS regression algorithm was used to estimate AGB with the 
best performance by combining spectral and texture parameters 
(Figure  9H), which explained 2.1%, 1.9%, and 0.2% higher 
variability than the spectral parameters used and explained 
50.0%, 45.9%, and 67.0% higher variability than the texture 
parameters used for the MSR, PLS, and RF regression algorithms, 
respectively. Notably, for the three regression algorithms, the 
difference in estimation accuracy was very small between the 
spectral parameters and the combination of spectral and texture 
parameters. RGB imagery provided the texture features with 
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FIGURE 8 | Predicted and measured values of rice AGB with linear and quadratic regression models (n = 68). Uppercase letters (A–N) are represented in sequence 
as VAR_R, HOM_R, CON_R, DIS_R, VAR_G, HOM_G, CON_G, DIS_G, VAR_B, CON_B, DIS_B, TDVI, TRVI, and TNDVI, respectively.
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little effective information, and the spectral parameters masked 
the contribution of texture parameters. It may also be  related 
to the physiological information, canopy structure, and texture 

information provided by spectral reflectance. Therefore, as 
important variables, the spectral parameters greatly contribute 
to the three regression algorithms. In future work, we  will 

A B C

D E F

G H I

FIGURE 9 | Predicted and measured values of rice AGB with MSR, PLS, and RF regression models from spectral parameters (A–C), texture parameters (D–F), 
and the combined spectral and texture parameters (G–I; cal: n = 160, val: n = 68).

A B C

FIGURE 10 | Spectral estimation of rice grain yield by using bior1.3 (947, 2) of wavelet features. (A) represents the linear relationship between rice AGB and grain 
yield (n = 20), (B) represents the calibration accuracy of the grain yield estimation model (n = 20), and (C) represents the validation accuracy of predicted and 
measured grain yield (n = 10).
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further optimize the RGB imagery data to improve the estimation 
accuracy by identifying and segmenting the background.

Collinearity and Importance of Variables 
for the Multivariate Analysis and Machine 
Learning Algorithm
The DVI, RVI, and NDVI of the complete two-by-two combination 
of spectral wavebands showed a high correlation with rice 
AGB. However, linear and quadratic regression models for the 
RVI and NDVI (Figure 4) exhibited similar scatter distributions 
and prediction intervals (at the 95% confidence level), resulting 
in approximate calibration and validation accuracy. The predicted 
values of the linear and quadratic regression models established 
by the RVI and NDVI were analyzed (Figure  11), the slope 
and R2 value reached 1 between the predicted values, and the 
scatter plots were close to the 1:1 line. Figures  3, 11 indicated 
that the RVI and NDVI had a strong positive correlation (r = 1, 
p < 0.001), which also confirmed the strong collinearity of these 
two VIs. The same wavebands were selected to calculate the 
RVI, and the NDVI was the main reason for strong collinearity 
and “perfect” predicted values. Therefore, the relationship between 
spectral reflectance data and rice AGB, along with the collinearity 
risk, should be  improved.

A parsimonious variable selection method such as MSR is 
set to no more than three variables to prevent overfitting and 
collinearity problems (Zheng et al., 2019). When more variables 
are introduced into the MSR model to estimate rice AGB, 
collinearity between independent variables should be considered 
to avoid undermining the stability and reliability of the model. 
Tolerance and the variance inflation factor (VIF) were employed 
to assess the collinearity of variables; variables with a tolerance 
less than 0.1 and a VIF greater than 10 were considered 
collinear and were not introduced into the MSR model (Dormann 
et  al., 2013). The collinearity diagnosis of the MSR model for 
estimating rice AGB is shown in Supplementary Table S1. 
The variables introduced by the MSR model did not have 

collinearity and achieved a significant level (p < 0.05). Some 
variables were not collinear, but these variables were removed 
because they did not satisfy the MSR model (p > 0.05). For 
example, the RVI, NDVI, bior1.3, and gaus3 of the wavelet 
features did not exhibit collinearity but were not employed in 
the MSR model. The introduction of other variables masks 
the strong collinearity between the RVI and NDVI. The sym3 
and rbio5.5 of the wavelet features and the TRVI always 
maintained strong collinearity with the other variables. Strong 
collinear variables will inevitably affect the test accuracy and 
model application for estimating rice AGB. PLS and RF regression 
models can accommodate collinearity without deteriorating the 
predictive performance of rice AGB (Dingstad et  al., 2004). 
Thus, the collinearity of the PLS and RF regression models 
is not discussed in this study.

The variable importance is supposed to assess the contribution 
and explanation to rice AGB. The standard regression coefficient 
(SRC) for the PLS regression model (Prasad et  al., 2008) and 
the percentage increase in mean square error (IncMSE%) for 
the RF regression model (Oliveira et  al., 2012) were used to 
indicate the variable importance (Figure  12). The larger the 
absolute value of SRC and IncMSE% is, the greater the influence 
of the variable on the AGB estimation model. The db6, sym3, 
and rbio5.5 of the wavelet features had high absolute values of 
SRC and IncMSE% in the PLS and RF regression models based 
on spectral parameters and combined spectral and texture 
parameters. For the correlation analysis between wavelet features 
and rice AGB, the db6, sym3, and rbio5.5 of the wavelet features 
were strongly correlated with rice AGB. These three wavelet 
features were determined to contribute greatly to the estimation 
of rice AGB. The TDVI, TRVI, and TNDVI of the texture indices 
significantly contributed to the PLS and RF regression models 
based on texture parameters. For the combined spectral and 
texture parameters, the spectral parameters were the main 
contributions, and the improved estimation accuracy of the MSR 
and PLS regression models may have been due to the dominant 

A B

FIGURE 11 | The relationships between predicted values of estimation models using RVI and NDVI for linear and quadratic regression models. (A) represents the 
calibration models, (B) represents the validation models.
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A B C
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FIGURE 12 | The variable importance measures for the PLS and RF regression models. (A–C) indicate the standard regression coefficient (SRC) of PLS regression 
model for spectral parameters, texture parameters, and the combined spectral and texture parameters, respectively. (D–F) indicate the percentage increase in mean 
square error (IncMSE%) of RF regression model for spectral parameters, texture parameters, and the combined spectral and texture parameters, respectively. Green 
solid circles indicate absolute values of negative SRC.

role of spectral parameters. When spectral parameters were coupled 
with texture parameters, the calibration and validation accuracy 
of the RF regression model was slightly reduced (Figures 9C,F,I). 
This may have been because the texture parameters were introduced 
into the RF algorithm, and the estimation accuracy was weakened 
for estimating rice AGB. Variables with low contributions tend 
to be  removed. However, the MSR and PLS regression models 
were slightly improved, reminding us that texture parameter 
contributions cannot be  ignored.

Sensitivity of Rice Aboveground Biomass
Several studies have demonstrated that AGB data in winter wheat 
and rice were universally underestimated at the late-reproductive 
growth stages due to high canopy coverage and plant density 
(Fu et  al., 2014; Kanke et  al., 2016; Lu et  al., 2019; Zheng et  al., 
2019). However, samples with high AGB values are not always 
underestimated (Li et  al., 2020; Yang et  al., 2021). The 
underestimation problem can be  addressed well by texture 
parameters and canopy height (Bendig et  al., 2015; Yue et  al., 

2019). The predicted AGB did not suffer from the underestimation 
problem in this study. Notably, the AGB values derived from 
the 0–0.5 kg m−2 range at the tillering stage were always 
overestimated (Figures  5, 8, 9). The spectral reflectance and 
RGB imagery data were not sensitive to rice AGB in the range 
of 0–0.5 kg m−2 (Figures  4, 7). Bare soil and water background 
during the tillering stage may be  the main reasons that interfere 
with the spectral reflectance and DN values. When the spectral 
and texture parameters were combined, the predicted AGB values 
were overestimated, which improved compared to the spectral 
parameters alone and the texture parameters alone. A study 
demonstrated that texture information provides the advantage 
of structural information when spectral information deteriorates 
biomass estimation accuracy at the heading stage (Lu and Batistella, 
2005). The sensitivity of texture parameters at the early vegetative 
growth stages to vegetation canopy structure remains to be further 
studied and discussed. Canopy height as an indicator had a 
suitable and robust relationship with crop biomass and was used 
to overcome the underestimation problem (Tilly et  al., 2015; Li 
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et al., 2016b). We will explore whether canopy height can optimize 
and improve the overestimation problem of rice AGB.

Previous studies have reported that multivariate analysis and 
machine learning algorithms, such as MSR (Gab-Sue et  al., 
2006), PLS (Kawamura et  al., 2018), RF (Mariano and Mónica, 
2021), and neural networks (Zhou et  al., 2021), demonstrate 
excellent advantages in estimating crop grain yield. However, 
using machine learning algorithms to predict grain yield is 
difficult to explain physiologically through physiological 
parameters and lacks a mechanism. Because AGB is closely 
related to photosynthetically active radiation and dry matter 
accumulation in crops, it is a critical predictor of grain yield. 
SVIs, wavelet features, and texture features were successfully 
used to estimate crop grain yield (Rodrigues et  al., 2018; 
Maimaitijiang et  al., 2020; Wang et  al., 2021b). A combination 
of spectral and texture parameters to predict rice grain yield 
requires further work. More diverse remotely sensed data are 
available for improving the estimation models and application 
areas (Li et  al., 2016b). Meanwhile, dry matter is stored in 
leaves and stems during the vegetative growth stages and then 
transported at the grain filling stage to form the grain yield. 
The sensitivity of AGB at the different growth stages was different 
for grain yield. Therefore, it is essential to seek sensitive stages 
to predict grain yield using multisource remotely sensed data.

CONCLUSION

This study compared the estimation performance of linear, 
quadratic, MSR, PLS, and RF regression models for rice AGB 
estimation with spectral parameters (SVIs and wavelet features), 
texture parameters (texture features and texture indices), and 
their combination. The results showed that spectral parameters 
were strongly correlated with rice AGB, and eleven selected 
texture features and texture indices were found to have significant 
but weaker correlations. Spectral parameters were superior to 
texture parameters in estimating rice AGB for the linear and 
quadratic regression models. For the MSR, PLS, and RF regression 
models, a combination of spectral and texture parameters 
slightly improved estimation performance over the use of 
spectral parameters or texture parameters alone. Combined 
remotely sensed data may help overcome the overestimation 

of rice AGB in the range of 0–0.5 kg m−2. At the same time, 
rice grain yield can be  predicted well with bior1.3 of the 
wavelet features. However, this study was limited to one growing 
season and an area with few datasets. Future work will further 
optimize texture information and combine spectral reflectance 
to improve the estimation accuracy of rice AGB and grain 
yield. More years and growth areas should be  examined to 
test the stability and reliability of the estimation models.
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