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To feed the fast growing global population with sufficient food using limited global resources, 
it is urgent to develop and utilize cutting-edge technologies and improve efficiency of 
agricultural production. In this review, we specifically introduce the concepts, theories, 
methods, applications and future implications of association studies and predicting 
unknown genetic value or future phenotypic events using genomics in the area of breeding 
in agriculture. Genome wide association studies can identify the quantitative genetic loci 
associated with phenotypes of importance in agriculture, while genomic prediction utilizes 
individual genetic value to rank selection candidates to improve the next generation of 
plants or animals. These technologies and methods have improved the efficiency of genetic 
improvement programs for agricultural production via elite animal breeds and plant 
varieties. With the development of new data acquisition technologies, there will be more 
and more data collected from high-through-put technologies to assist agricultural breeding. 
It will be crucial to extract useful information among these large amounts of data and to 
face this challenge, more efficient algorithms need to be developed and utilized for 
analyzing these data. Such development will require knowledge from multiple disciplines 
of research.

Keywords: agriculture, genome-wide association study, genomic prediction, breeding, genetic improvement

INTRODUCTION

Genome wide association study (GWAS) is used to find associations between specific genotypes 
obtained from direct measurements on DNA level and phenotype using a specific statistical 
or mathematical method which can identify the correlation or connection between genotype 
and phenotype. It is methods of great importance in the areas of animal and plant breeding. 
Identifying areas on the genome with effects on the phenotype such as yield or physiological 
(Jannink et  al., 2010; Crossa et  al., 2017) can be  used to identify individuals or lines with 
better yield or better adaptation to current and future climate conditions than previous individuals 
or lines. These information could be used to understand the regulations or predict the regulations 
between genes toward phenotypes. Therefore, the identified genetic markers correlated with 
or underlying the genes affecting the phenotypes from genome-wide association studies can 
be  further utilized in plant or animal breeding. Collectively, these markers can be  used to 
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predict the expected phenotype (expected breeding values, i.e., 
EBV) of varieties or lines for precision plant or animal breeding 
(Meuwissen et  al., 2001; Meuwissen and Goddard, 2010; 
Daetwyler et  al., 2014; van Binsbergen et  al., 2015). The EBV 
of a variety or line is the expected values of the genes carried 
when these genes are transmitted to offspring. The estimation 
of EBV is basis of genomic selection and the improved accuracy 
of EBV estimation can be directly translated into big difference 
in genetic gain.

GWAS has commonly been used in identifying genes or 
genotypes affecting specific phenotypes (traits) in agriculture. 
Usually, researchers use general linear regression to identify 
the relation between genotypes and phenotypes and the general 
solutions can be  found using least squares. In plant or animal 
breeding, the genes or genotypes associated with phenotypes 
can be  utilized to study the function or classifying plants or 
animals into simple classes when the phenotypic effect of genes 
or genotypes is relatively large and the number of genes 
significantly associated with the phenotypes is relatively small 
(Daetwyler et  al., 2014; Zhang et  al., 2016b). The genotype 
or genes with large phenotypic effect are often studied in depth 
in order to breed better breeds or varieties with better production 
and disease resistance toward the breeding objectives in plants 
and animals through functional studies (Brondum et  al., 2015; 
Zhang et  al., 2018). These information derived from GWAS 
analysis can also provide prior information or the information 
used for variants pruning in genomic prediction.

Notably, association between genotypes and phenotypes does 
not always reflect the causal relationship between genotype 
and phenotype because the correlated structures of genotypes 
and phenotypes are very complex and detected loci are mostly 
in linkage disequilibrium with the causal loci. In order to 
explore and utilize the complex structure of the genotype and 
phenotypes better, more complex model is used for GWAS, 
for example, random regression model, mixed linear models 
etc. So far, very many genes with small effects have been 
identified in many agricultural species and there are extensive 
databases classifying these effects into different categories (Gibson, 
2012; de los Campos et  al., 2015). During the long-term 
selection since domestication of many agricultural species, many 
of these genes with relatively large effects have been fixed by 
various forms of selection. For example, rice species have been 
domesticated in China since 10,000 years ago and the following 
conscious or unconscious selection have fixed most genes of 
large effects. However, even though, there are still very 
considerable amounts of genetic variation in all agricultural 
species which is primarily due to very many genes each with 
small effects that collectively contribute to the phenotypic 
variation. These small effects are very difficult to be  detected 
and validated experimentally because very large experimental 
populations are needed. Phenotypic testing and extensive dense 
genotyping instead should be  used to predict the collective 
effects of these genes with small effects still segregating in the 
corresponding agricultural species instead of testing for each 
single gene. Meanwhile, when performing GWAS study, the 
same genotypes have different effect sizes when associating 
across various phenotypes. This reflects that the genetic 

architectures underlying different phenotypes are complex, 
correlated and interactive defined as pleiotropy of the genetic 
architectures or background of different phenotypes (Daetwyler 
et al., 2014). In plants, the same genotypes have different effects 
sizes even for the same phenotype and this has resulted from 
the significant genotype by environment interaction when the 
plants are grown in different environments (Campbell and 
Waser, 2001). Therefore, estimation of genotype by environment 
interaction effects are very important for plants instead of animals.

When the effect sizes of the genotypes are estimated 
simultaneously for all genes with corresponding regularization 
methods and the effects are summed, the sums are efficient 
predictions of individual genetic values. Usually, plant or animal 
breeders practically utilize these individual genetic values to 
predict the future phenotypes of plants or animals. This results 
in a ranking of candidate animals or plants for selection, which 
help breeders using prediction ahead to select the best animal 
lines or plant varieties to mate to save cost. There are also 
other methods in predicting selection candidates’ genetic values. 
For example, in animal or plant breeding, a mixed linear model 
is usually used to calculate the effect sizes of genotypes 
simultaneously under certain model assumption and these effect 
sizes are summed up for each of the selection candidates 
(Zhang et al., 2016a,b). Different model assumptions can be made 
when calculating the effect sizes, e.g., normal distribution, 
laplace distribution, and gamma distribution etc. (Zhang et  al., 
2016b; Lo and Marculescu, 2017). However, these model 
assumptions made are more for simplifying the mathematical 
treatment of the model, which does not mean a certain model 
assumption is always better than others.

GWAS and genomic prediction are utilized in different 
context in Agricultural breeding. As stated before, GWAS is 
more used for identify significantly associated markers to assist 
agricultural breeding, therefore, the markers selected from 
GWAS are the key information for producing SNP chips for 
specific species. In contrast, genomic prediction calculates the 
estimated breeding values in order to rank the selection candidates 
in practical breeding. The difference between GWAS and genomic 
prediction is that in GWAS, usually a single SNP is associated 
with the phenotype accordingly while in genomic prediction, 
all SNPs are simultaneously fitted in the model associating 
with the phenotype (Daetwyler et  al., 2013; Veerkamp et  al., 
2016). It means that a prediction model is a comprehensive 
model which takes all SNPs into consideration, while a GWAS 
model is more focused on the association between a single 
SNP with different phenotypes (Zhang, 2017). In agricultural 
breeding, it is common to conduct various strategies of cross 
validations without as a supplement to formal statistical tests 
in order to obtain maximum accuracy with limited bias (Legarra 
and Reverter, 2018).

SNPs associated with phenotype that directly lead to structural 
changes in protein or changes and significant difference in 
gene expression are often called “quantitative trait loci” (QTL). 
However, most common SNPs are anonymous markers around 
the important QTLs and are in linkage disequilibrium with 
important QTL. Usually, there are limited numbers of significant 
QTLs associated with each phenotype. It is important to know 
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how these currently detected QTLs with significant effects on 
phenotypes evolve during time and how the allele frequencies 
of QTLs are changing during time in an evolutionary perspective 
(Bosse et  al., 2012; Purfield et  al., 2012; Zhang et  al., 2018). 
Genomic prediction is able to predict the collective effects of 
all the genes without even knowing the individual genes. It 
is of interest to know and understand how the evolutionary 
forces such as selection, introgression and inbreeding etc. have 
changed the frequency of the QTLs and how the given 
evolutionary constraints shape the phenotypes or the genetic 
architecture of the complex phenotypes during the history time. 
The general trend information during the history is important 
to infer the important genetic parameters changed through 
time necessarily needed for genetic improvement programs. 
For example, QTLs associated with a class of phenotypes are 
sometimes significantly enriched in genomic regions due to 
introgression or inbreeding (Bosse et al., 2012, 2015). It reflects 
that these QTLs under the demographic forces are clustered 
together or segregated to affect certain classes of phenotypes 
(Bosse et al., 2014). Moreover, some pathways or Gene Ontology 
(GO) terms are also enriched in a way or function together 
to affect the phenotypes under a certain direction during 
demographic processes (Bosse et  al., 2015). However, in most 
of the cases, these QTLs or GO terms or pathways are randomly 
distributed across the genomes and are not significantly enriched. 
This suggests that these demographic processes need to have 
long-term effects which are strong enough to shape the genetic 
architectures of the phenotypes from QTLs or pathways or 
GO terms (Bosse et  al., 2019). These types of information are 
very important for selection in genetic improvement programs 
such as putting extra weight for the specific genomic regions 
or loci contributing in important traits of interest especially 
in genomic selection to maximize genetic change per time unit.

This review article will give an overview of GWAS and 
genomic prediction in the context of genomics from different 
angles and perspectives in agriculture. It will include the 
importance and background of GWAS and genomic prediction 
in different areas such as plant and animal breeding, the 
generalized methods and theories, specialized methods in terms 
of different types of variants, the extended knowledge about 
GWAS and genomic prediction, and finally the applications.

THE THEORIES AND METHODS

Improving the production and performance of plants and 
animals with better disease resistance is the central goal for 
plant and animal breeding (Hammer et  al., 2006; Groenen 
et  al., 2012). Different species of animals and plants have 
different breeding goals depending on their use in the food 
chain (Daetwyler et  al., 2014; Jiang et  al., 2017). For example, 
it is of great importance to improve the production related 
traits and disease resistance in crops to solve the conflict 
between the increasing global population and lacking of major 
plant related food such as wheat, rice, maize etc. (FAO, 2009). 
GWAS and genomic prediction are the important tools in 
different ways to help in achieving these breeding goals in 

plants and animals (Daetwyler et al., 2014). GWAS can identify 
the potential associations between single genes and phenotypes, 
while genomic prediction estimates the combined effects of 
all genes jointly to rank selection candidates (Meuwissen and 
Goddard, 2010; Caballero et  al., 2015; Zhang et  al., 2016b). 
The variants associated with phenotypes identified from GWAS 
can be  further validated whether they are causal variants or 
in linkage with the true causal variants (Höglund et  al., 2014). 
It helps in understanding the genetic basis of phenotypes how 
different genetic variants regulating the phenotypes in different 
pathways (Barton and Keightley, 2002). However, GWAS and 
genomic prediction can be  combined so that GWAS identify 
the strongly associated genetic variants with validating the 
function of QTL in a different structured population and these 
functional variants are expected to be  emphasized in genomic 
prediction in the related pathways regulating the phenotypes 
when ranking the selection candidates in breeding (Brondum 
et  al., 2015; Veerkamp et  al., 2016). The statistical methods 
for GWAS and genomic prediction are more or less quiet 
similar and the difference between them is that the statistical 
method of GWAS tests the single effect of each of the genetic 
markers, while the statistical method of genomic prediction 
sum up all the markers effects in the model. The results of 
GWAS can provide prior information for genomic prediction 
(Figure  1). Generally, the statistical methods for GWAS and 
genomic prediction can be  classified into mixed linear model 
(BLUP used in prediction), Bayesian methods and machine 
learning (Figure  1).

Mixed Linear Models, BLUP
Here we  firstly introduce the models and theories commonly 
used in GWAS and genomic prediction. One of the most 
common models for GWAS or prediction is the mixed linear 
model. It has been used for long time in animal and plant 
breeding since it was proposed in the middle of last century. 
The model can be  written in the following general format:

 y Xa Mb g e= + + +

Where y is a vector of observed phenotypes expected following 
a normal distribution, X is the assigning matrix for any fixed 
effect allocating for the specific class and a is covariates computed 
for the fixed effects, M is the matrix of genotypes consisting 
of 0, 1, and 2 corresponding to 0, 1, or 2 copies of the reference 
allele and b is the coefficients computed for the genotypic effects, 
g is the polygenic effect estimated from the pedigree or genomic 
relationship matrix, e is the random effects for random errors. 
We  have implemented a software package for implementing the 
key algorithms of GWAS and genomic prediction (Zhang et  al., 
unpublished). This model is the well-known mixed linear model 
that assumes a random effect for the genetic effect estimated 
from pedigree [also known as Best Linear Unbiased Prediction 
(BLUP)] or genotypes (GBLUP) with correcting on the fixed 
effects (Figure  1; Henderson, 1984). Many other covariance 
structures can be  also assumed here. In mixed linear model, 
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the additive genetic values are the sum of very many genes 
with very small effects. Therefore, it is by default assumed that 
those small effects are normally distributed due to the central 
limit theorem (Fisher, 1918; Hill, 2014). It is also called as 
infinitesimal model, i.e., assuming that there are infinite many 
genes with infinitesimally small effects when the number of 
individuals is very limited (n  > > p) using in an animal model 
based on pedigree when no markers is available. However, the 
situation has changed a bit in the current age, as there are 
more and more genomic information collected due to the decrease 
of the genotyping and sequencing price. In GWAS studies, the 
coefficients for genetic makers are tested to determine whether 
it is significant or not using t-test or chi-square test (Sahana 
et al., 2010). When there are multiple number of markers tested, 
correction for multiple testing of value of p is needed. In genomic 
prediction, genetic effects simultaneously estimated from a mixed 
linear model BLUP and summed up are the estimated breeding 
values for each individual. However, it is very important to 
estimate the related parameters accurately such as genetic variance 
components. Commonly, the genetic variance component is 
derived from a joint model based on likelihood theory in which 
one specific parameter is estimated conditional on other parameters 
with maximum restricted likelihood theory in the consideration 
of the joint model during the iterations (Jensen et  al., 1997).

Bayesian Methods
There are also some categories of linear models such as Bayesian 
type of linear models (Calus et  al., 2016; Zhang et  al., 2020). 

The major assumptions of Bayesian types of models compared 
likelihood based models are that the genetic effects are mostly 
sampled from a normal distribution while sometimes other 
than a normal distribution (Figure  1). For example, Bayes A 
samples the SNP effects from a given t-distribution and this 
results from that a few classes of SNPs with the genetic effects 
from normal distributions with few degrees of freedom in the 
model. This Bayes B model samples the genetic effects from 
two component normal distributions, while Bayes R samples 
from a four components normal distributions (Zhang et  al., 
2020). The different assumptions on the distribution of genetic 
effects result in the different degrees of false positives and 
false negatives when testing the different models. These Bayesian 
models are based on the Bayesian theory and the models are 
solved by deriving the posterior probability distribution of 
model parameters conditional on the data available. This is 
often implemented using Markov Chain Monte Carlo (MCMC) 
methods such as the Gibbs sampler sampler to generate the 
random variables from the specific distributions assumed by 
the respective Bayesian models (Foll et  al., 2008). The derived 
posterior probability of different variance parameters for different 
Bayesian models will not be  presented here. Among these 
different Bayesian models with normal distribution assumptions, 
Bayes R usually performs better compared with the model 
only assuming one normal distribution as it assumes four 
components normal distributions which is more flexible (Zhang 
et  al., 2020). This is especially important if very many markers 
are available and traits are affected by some genes with large effects.

FIGURE 1 | The basic statistical methods and theories for agricultural breeding.
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Machine Learning
Machine learning is a comprehensive set of methods for extracting 
and summarizing useful information using complex algorithms 
on big data (Figure  1; Grinberg et  al., 2020). Specifically, 
machine learning is currently used for classification and 
identification of types among different agricultural varieties with 
a supervised or an unsupervised learning method using extracted 
or user specified characteristics from high-through-put data 
(Araus et al., 2018). In agriculture, usually only high-through-put 
phenotyping data is utilized due to the cost and machine 
learning helps in the way that the characteristics among the 
large amount of data can be  automatically extracted to save 
cost. In mathematics, the large amount of data are usually 
complex with different correlated structure in different dimensions 
but these can be  formatted and standardized into the matrices 
with different scales in the corresponding dimension. The 
methods of standardizing the matrices can vary which results 
in different accuracy of calculations compared with the other 
methods such as mixed linear model (Grinberg et  al., 2020). 
Generally machine learning methods include support vector 
and neural network etc., which can be classified into supervised 
and unsupervised learning and the solutions of these models 
depends on the exact model assumptions in which they were 
applied and how the model assumptions fit the data often 
decides the accuracy of the model (Figure 1; Grinberg et al., 2020).

These machine learning methods have been compared with 
the routine methods described above such as mixed linear model 
and Bayesian methods in different agriculture species (Crossa 
et  al., 2017; van Dijk et  al., 2021). Machine learning can usually 
be  used for identifying QTLs, generating a formula of the most 
likely genetic architecture of the studied complex traits and finally 
utilize these information to predict total marker values, i.e., 
estimated breeding values (van Dijk et al., 2021). In plant breeding, 
recent developments and applications were made in predicting 
the effects of environments, the interactive effects between genotypes 
and environments (Montesinos-López et  al., 2018, 2019) and in 
both animal and plant breeding, predictions of estimated breeding 
values are made from secondary or in-between phenotypes 
utilizing the newly invented detection technologies (Cobb et  al., 
2013; Roitsch et  al., 2019; Lopez-Cruz et  al., 2020). Although 
mixed linear models can perform genomic prediction routinely 
through random effects, machine learning kind of methods still 
have clear advantages when the traits architecture is not normally 
distributed, accounting for non-additive effects such as the 
significant existence of dominance and epistasis (Montesinos-
López et  al., 2019; Abdollahi-Arpanahi et  al., 2020). However, 
machine learning methods do not hold consistent outperformance 
compared with mixed linear models (Azodi et  al., 2019).

THE CONNECTIONS WITH POPULATION 
GENETICS

Heritability
Heritability is a basic concept from quantitative genetics which 
refers to the ratio between the genetic variance and the total 
phenotypic variance (Zhang et al., 2017). The inference of heritability 

is usually based on the inferred genetic variance component and 
error variance component when using a restricted maximum 
likelihood or Bayesian theory. However, concepts of amount of 
genetic variance explained often depends on the method of 
estimation and possible misspecification of models used. It is a 
very important and basic concept as this reflects the genetic basis 
of a certain phenotype which affects the important agronomic 
traits in breeding. To breed the agronomic population toward a 
breeding goal, it is first to estimate the heritability of agronomically/
economically important traits. The amount of possible genetic 
gain also referring to evolvability is positively correlated with 
heritability, genetic variance and selection intensity, while negatively 
correlated with generation interval. Therefore, under the same 
genetic variance, selection intensity and generation interval, the 
higher the heritability of an agronomic trait it has, more genetic 
gain can be possibly achieved under a breeding program. However, 
complex traits and diseases are often difficult to breed as they 
usually have a low to mediate heritability. The genetic variants 
usually are classified into different categories according to its allele 
frequencies such as common variants and rare variants. Common 
variants are usually defined as variants with allele frequencies of 
more than 0.05 while rare variants have allele frequencies of less 
than 0.05 (Zhang et  al., 2016a). These variants with different 
allele frequencies have various amount of contribution on the 
heritability of complex traits in agriculture (Zhang et  al., 2017). 
Generally, the number of genetic variants and their contribution 
to the total genetic variance reflect the genetic architecture of 
the different traits in agriculture.

The Contribution of Common Variants
Genome-wide association studies have identified large amount 
of common variants significantly associated with different 
phenotypes using various models (Zhang et al., 2016b). However, 
these common variants associated with the phenotype are mostly 
anonymous markers that are linked to QTL and instead QTL 
very often have quite extreme frequencies. The distribution of 
genetic variants with effect on phenotypes typically follow a 
U-shaped distribution which reflects that most alleles with big 
effects on phenotype are un-common. Under an assumption of 
mixed linear model with normal distribution, the common variants 
collectively explain large amount of variance from the genetic 
variance explained in the phenotypic variance, in which a general 
trend is that the total genetic variance explained by QTL is 
proportional to the number of variants. So far, only very few 
common variants with large genetic effects on important traits 
have been found. A typical example is the common variants 
underlying DGAT1 gene with big effects on milk yield (Grisart 
et al., 2004). However, most genetic variance in agricultural species 
are actually caused by numerous rare variants with small or 
very small effects. This makes the rare variants hard to detect 
individually, and therefore genomic prediction is usually utilized 
to estimate the summed effects from the all the genetic variants. 
Under an additive model the genetic variance caused by QTL 
can achieve the highest with the gene frequency of 0.5. This 
gene is common and not yet fixed in the population. In a mixed 
linear model, it is assumed that the effect of each genetic variant 
is sampled from a normal distribution with mean zero and the 
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specific variance. It results in that most of the sampled effects 
will be  close to zero, i.e., each QTL contributes differently in 
the genetic variance but the QTL effects are sampled from the 
same distribution (van Binsbergen et  al., 2015). Therefore, when 
intensive selection has been performed in the agricultural 
populations, the allele frequency is in strong shrinkage toward 
zero which is more or less fixed in the population and the 
genetic effects become large when it is assumed that each of 
the variant is expected to contribute equally. Notable, this also 
happens in natural populations due to natural selection but at 
a much lower rate. In fact, many natural populations are affected 
by the local effective population size and therefore heavily influenced 
by genetic drift. Interestingly, there are still plenty of genetic 
variance remained in agricultural population even though under 
a strong directional selection through many generations. One of 
the challenges currently is to explain why and how the large 
amount of genetic variance can be  maintained in a typical 
agricultural population. However, careful modeling is extremely 
important especially for the inference about natural phenomena 
as different model assumptions might result in different proportion 
and scaling of the genetic variance contributed inferred for the 
genetic parameters. A very careful model validation is always 
needed when conducting genetic analysis.

The Role of Rare Variants
Rare variants are usually difficult to detect from genome-wide-
association studies due to its low frequency and extremely small 
genetic effects contributed very little to genetic variance (Gibson, 
2012). Several methods such as burden test and variance component 
test have developed which actually collapses the genetic effects 
of number of rare variants so that they can be detected collectively. 
However, in specific populations where selection has been intensively 
performed, the frequency of rare variants can be  shaped toward 
a certain frequency so that they are easier to be  mapped (Zhang 
et  al., 2016a). For example, this has been the case in dairy cattle 
where sires with carrying recessive lethal genes have been heavily 
used in the international population. Otherwise, a specific alternative 
model or methods together using very large data sets are required 
to detect the effects of rare variants.

Estimation of Heritability and the Debate 
About Missing Heritability
Heritability is the ratio between the total genetic variance 
contributed by common and rare variants and the total phenotypic 
variance. Estimation of the variance components usually utilize 
the probability theory which derives the likelihood function of 
the parameter with the inaccuracy around unknown genetic 
parameters to be estimated under the condition of other parameters 
and after a certain number of iterations the estimates with the 
best likelihood are taken as the final solution. In Bayesian 
estimation, we  derive the posterior distribution of heritability 
given by data and model. Genome-wide-association studies have 
identified thousands of genetic variants which significantly 
associated with the complex traits during the recent years in 
agriculture (Daetwyler et  al., 2014). However, these variants are 
mostly common variants and they collectively only explain a 

small amount of genetic variance contributing to heritability. 
There is large amount of genetic variance which has been missing 
in the heritability and this has been the famous mystery which 
has puzzled for long time for the scientists in the area of genetics 
(Figure  1; Gibson, 2012). To explain and solve this puzzle, 
scientists have come up with several arguments and try to 
search for the amount of missing heritability (Manolio et  al., 
2009). SNP chips have been used for a long time in agricultural 
genomics and the variants in the chips are mostly common 
variants often sampled with ascertainment bias. The genetic 
variance is mostly explained by the detected significantly associated 
common variants, while it is difficult to detect the rare variants 
using the current sequencing technology. Rare variants might 
plan an important role in the missing heritability problem.

APPLICATIONS

Whole-Genome Selection for Plant and 
Animal Breeding
With the continued development of sequencing technology, it 
is possible to obtain the genotypes of different plant and animal 
species for the purpose of breeding. The SNP chips in different 
densities have been developed for many different agricultural 
species (Sherry et  al., 2001; Brondum et  al., 2015). Notably, the 
SNP chips only provide very few SNP compared with whole 
genome sequences. These commercial SNP chips can measure 
and test the genotypes of these agricultural species accurately 
and they are utilized to assist the breeding procedures in the 
way that significant genetic markers in linkage disequilibrium 
with the corresponding functional genes in phenotypes can 
be  identified and the sum of their genetic effects can be  used 
to rank the agricultural varieties. This owes to the long term 
structured mating systems used in breeding program which 
generates lots of short or long range linkage disequilibrium (LD) 
in the agricultural populations included compared with human 
populations that are much closer to random mating. For example, 
the LD of genomes of wheat varieties using as bread between 
adjacent loci pairs is ranging from 25.5 to 41.2  in cM with 
high LD R2 of 0.7 (Somers et al., 2007). The advantage of utilizing 
the sum of the total genetic effects is that the breeders can 
directly select the elite lines or varieties right after the genotypes 
are obtained and make decision about the mating strategies. 
Meanwhile, it is important that selection strategies are designed 
for long-term perspective and only in this way, genetic progress 
can be  accumulated gradually toward the breeding objectives.

Successful Examples Using Whole 
Genome Selection and High-Through-Put 
Data in Agriculture
The concept of whole genome selection, i.e., genomic selection 
was firstly proposed by Meuwissen et  al. (2001) and it has 
been widely applied in different agricultural species since 
then. It was first applied in dairy cattle and over the last 
20 years it has been a great success in dairy production 
(Garcia-Ruiz et al., 2016). The key of the success of genomic 
selection in dairy cattle is that it largely decreases the genetic 
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interval of dairy cattle breeding process so that the genetic 
progress can be  achieved quickly. In dairy cattle, a breeding 
cycle of genomic selection is typically that a reference 
population is firstly built up and this reference population 
is then both genotyped and phenotyped which are divided 
into training and validation set to train and validate the 
genomic selection model. When the genomic selection model 
is ready to be  used, new candidate dairy cattle are tested 
with genotypes at an early age and their breeding values 
are estimated based on the genomic selection model so that 
they could be  ranked and used for insemination for the 
next breeding cycle. Until now, genetic gain in different 
complex traits such as milk yield, protein and fat content 
and fertility etc. have been greatly improved, i.e., doubled 
or even more since genomic selection has been implemented 
in dairy cattle (Garcia-Ruiz et al., 2016). The similar strategy 
for genomic selection has also been implemented in layers 
compared with dairy cattle with significant reduction of 
generation interval and less cost of phenotyping test. Genomic 
selection has also been applied successfully in pig and chicken 
breeding, while the main advantage of genomic selection 
applied for pig breeding is that the accuracy for prediction 
of breeding values and selection of candidates is more 
accurate when combining phenotypic information with 
genomic information instead of shortening the generation 
interval in dairy cattle. Genomic selection has been extremely 
useful and powerful for improving complex traits especially 
for polygenic traits with many genes with small effect sizes. 
It has resulted in significantly improved genetic progress 
in animal breeding. Similarly, genomic selection can be applied 
in plant breeding and it has been applied in important 
crops breeding programs such as maize, wheat and barley 
breeding using combined phenotypic and genomic information. 
In general these methods were introduced much later in 
plant breeding compared to animal breeding (Zhao et  al., 
2012; Bassi et  al., 2016; Tessema et  al., 2020). In recent 
years, the high-through-put phenotyping (Araus et al., 2018) 
has been developed a lot for automatic imaging system and 
it has been gradually utilized more and more for agricultural 
phenotyping to obtain more accurate information for use 
in breeding programs and sometimes also to save man power.

IMPLICATIONS FOR THE FUTURE IN 
AGRICULTURE

With the increasing global climate change and huge increase 
of the human population, there are severe problems and 

discrepancy between the global resources and the need of the 
human populations especially in places where the local population 
size is extremely large. People are facing these challenges and 
trying to solve the problems by improving the efficiency of 
agricultural production with keeping the balance between the 
environment capability and its natural resources. To meet the 
need of food requirement of the global population, utilizing 
the cutting-edge technology for breeding better breeds or 
varieties is the key to solve this problem.

In this review, we  have summarized different cutting-edge 
technologies and theories including genome-wide association 
and genomic prediction using data collected from genomics 
and agronomic traits for agricultural breeding and further discussed 
their utilities in agricultural breeding. In the future, the output 
from these technologies and theories will provide the key 
information and knowledge for the input for the genome editing 
technology such CRISPR-Cas9  in crops. These cutting-edge 
Agricultural breeding technologies and theories are crucial for 
accelerating the rate of genetic progress and the key for ensuring 
food security for humanity. The common research topics including 
genome-wide-association studies and genomic prediction etc. 
have been discussed and we  further elaborate the applications 
of these research topics. It reveals that the models including 
the algorithms behind these technologies are the core to drive 
these technologies. Therefore, there will be huge needs to further 
develop and implement these technologies and insure more and 
more collaboration between the different areas of research. 
Nowadays, the methodology have been generating large amount 
of data at fast speed using the current fast developing 
biotechnologies. This needs to be  focused on data useful for 
improving agricultural breeding efficiency. In order to extract 
useful information from these large amount of data the efforts 
from the scientists in respective fields and multi-disciplines is 
needed for more efficient Agricultural breeding.
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