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Ionomics, the study of the composition of mineral nutrients and trace elements in

organisms that represent the inorganic component of cells and tissues, has been

widely studied to explore to unravel the molecular mechanism regulating the elemental

composition of plants. However, the genetic factors of rice subspecies in the interaction

between arsenic and functional ions have not yet been explained. Here, the correlation

between As and eight essential ions in a rice core collection was analyzed, taking

into account growing condition and genetic factors. The results demonstrated that the

correlation between As and essential ions was affected by genetic factors and growing

condition, but it was confirmed that the genetic factor was slightly larger with the

heritability for arsenic content at 53%. In particular, the cluster coefficient of japonica

(0.428) was larger than that of indica (0.414) in the co-expression network analysis for

23 arsenic genes, and it was confirmed that the distance between genes involved in

As induction and detoxification of japonica was far than that of indica. These findings

provide evidence that japonica populations could accumulate more As than indica

populations. In addition, the cis-eQTLs of AIR2 (arsenic-induced RING finger protein)

were isolated through transcriptome-wide association studies, and it was confirmed that

AIR2 expression levels of indica were lower than those of japonica. This was consistent

with the functional haplotype results for the genome sequence of AIR2, and finally,

eight rice varieties with low AIR2 expression and arsenic content were selected. In

addition, As-related QTLs were identified on chromosomes 5 and 6 under flooded and

intermittently flooded conditions through genome-scale profiling. Taken together, these

results might assist in developing markers and breeding plans to reduce toxic element

content and breeding high-quality rice varieties in future.
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INTRODUCTION

Ionomics is defined as the study of the composition of mineral
nutrients and trace elements in organisms and represents the
inorganic components in the cells and tissues of an organism
(Salt et al., 2008). Early ionomics focused on the identification
or characterization of Arabidopsis and yeast mutants (Lahner
et al., 2003); however, its application has been extended to
high-throughput element profiling to find genes involved in
controlling the ionome of an organism (Danku et al., 2013).

Ionomics is a powerful approach to quickly analyzing several
samples using the inductively coupled plasma mass spectrometry
(ICP-MS). In addition, since transcript and ion profiling can be
performed not only on cells regulating plant physiology but also
on the whole organism simultaneously, many complex studies on
ionomes combined with the genome, transcriptome, proteome,
and metabolites have recently been published (Baxter, 2010).

Reportedly, As, a toxic non-essential element, accumulates
in rice and other crops due to irrigation with contaminated
groundwater, industrialization, mining activity, and use of
arsenical pesticides (Duxbury et al., 2003; Liao and Ou, 2005;
Williams et al., 2007; Chen et al., 2016). As contamination is
not limited to water sources, soil contamination with As induces
infertile ears and reduces plant growth, especially in agricultural
areas (Kumarathilaka et al., 2018a). Arsenic is a major threat
to human health because it is absorbed from the soil and
accumulates in edible plant parts (Finnegan and Chen, 2012).

In the environment, As exists in organic and inorganic
forms, and the contents of inorganic species, such as arsenate
[As(V)] and arsenite [As(III)], are higher in soil than the organic
arsenic species, such as monomethylarsonic acid (MMAA) and
dimethylarsinic acid (DMAA). The ratio of As(III) and As(V)
varies depending on the redox state and redox potential (Eh) of
soil; if Eh is negative, As(V) is transformed to As(III), and the
proportion of As(III) increases (Yamaguchi et al., 2014). Recent
studies based on climate change prediction models have shown
that arsenic concentrations in the soil are affected by Co2 and
temperature. As(III) concentration decreased with increasing
CO2 concentration, but the toxicity of As(III) to humans
increased proportionally with an increase in the temperature
compared with that of As(V) (Muehe et al., 2019).

Rice, one of the staple crops consumed by more than 50% of
the world’s population, is known to be roughly 10 times more
likely to assimilate As than other crops (Williams et al., 2007),
and therefore, it could be amajor source of As toxicity in humans.
The mechanism of absorption As(V) is closely related to the
phosphate uptake system, whereas As(III) is absorbed by the
aquaporins of roots (Ullrich-eberius et al., 1989). It is known
that several phosphate transporter genes (e.g., OsPht1, 1-OsPht1,
and Pht) are involved in As(V) absorption, and nodulin 26-
like intrinsic proteins (NIPs) have been shown to absorb As(III)
(Paszkowski et al., 2002; Bienert et al., 2008; Isayenkov and
Matouis, 2008; Ma et al., 2008; Kirk et al., 2009).

The accumulation of ionomes, including arsenic, in plants is
regulated by these genes involved in uptake, binding, transport,
and sequestration (Baxter, 2009). Therefore, studies to verify the
correlation between arsenic and other inorganic components in

various populations and to elucidate genetic factors involved
in this have been reported, so far (Zhang et al., 2008; Yang
et al., 2018). However, the interactions between ionomes are
affected not only by genotypes, but also by the environment
or the interaction between the environment and the genotypes
(Garcia-Oliveira et al., 2009; Hu et al., 2013; Huang and Salt,
2016).

In this study, the interactions between As and other ions
were analyzed under non-stress and stress conditions for rice
core collections, including temperate japonica, tropical japonica,
indica, and aus, to elucidate the impact of environmental and
genotypic differences. In addition, it was attempted to identify the
genetic factors regulating As genes through a transcriptome-wide
association study on 23 genes known to transport, detoxify, or
stress-response (Yang et al., 2012; Nguyen et al., 2014; Most and
Papenbrock, 2015; Yamaji et al., 2015; Hwang et al., 2016, 2017;
Shi et al., 2016; Das et al., 2017, 2018a,b; Salt, 2017; Latowski et al.,
2018; Sun et al., 2018; Wang et al., 2019; Tiwari et al., 2020; Singh
et al., 2021).

MATERIALS AND METHODS

Plant Materials
An allele-mining set of 166 accessions was developed using
a heuristic algorithm for 4,046 rice accessions collected from
60 countries held by RDA-Genebank (Kim et al., 2007; Zhao
et al., 2010). After the rice core set was constructed, association
mapping was conducted on eating quality and amylose content,
and a rice core collection for the current 430 accessions was
established (Lu and Park, 2012a,b; Zhao et al., 2013). A rice core
collection was cultivated in non-contaminated and contaminated
paddy soil in 2016 and 2017, and then, 273 accessions overlapped
by year were selected. The following subspecies of selected
273 accessions were used: 192 temperate japonica, 19 tropical
japonica, 49 indica, 8 aus, 3 admixture, and 2 aromatic.

Field Experiment and Inorganic
Component Analysis
Field experiments were conducted on general paddy soil
(latitude: 36.670, longitude: 126.855) at Kongju National
University and contaminated paddy soil at Hakyeong
Mine (latitude: 36.573, longitude: 126.819), Yesan-gun,
Chungcheongnam-do, Republic of Korea. The 273 rice
accessions were grown in contaminated soil over two years
(2016 and 2017), and the ears of each individual were sampled
at the yellow ripe stage to analyze accumulation patterns of
ionomes in brown rice (Supplementary File 1). In particular,
field experiments were conducted under flooded (2016) and
intermittently flooded conditions (2017) due to the narrow
arable land of the contaminated soil.

The chemical properties of soil were analyzed following the
National Academy Aggregation Science (NAAS, 2010). First, soil
samples were mixed with distilled water at a 1:5 ratio and kept for
1 h. The pH and EC were then measured (Orion 3 Star, Thermo,
USA). To measure cation exchangeability for Ca, Mg, K, and
Na in soil, soil samples were mixed with 1mL of distilled water,
21mL of HCl, and 7mL of HNO3. Subsequently, the mixture
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was decomposed using Kjeldahl (C. Gerhardt GmbH & Co.,
Northants, UK). Afterward, 1M NH4OAc (pH 7.0) was added
to the decomposed mixture, mixed by shaking, and filtered using
a Whatman No. 42 filter paper (Kang et al., 2018).

After the 273 brown rice accessions were ground using a
cyclone miller (PX-MFC 90 D, KINEMATICA, Switzerland),
they were decomposed by adding 4mL of HNO3 and 1mL of
distilled water in a microwave oven (UltraWAVE, Milestone,
USA). The volume of the decomposed samples was adjusted to
25mL with distilled water. Micro-elements in plants (As, Zn, Fe,
Cu,Mn, Na, and Se) were analyzed using ICP-MS (7700E, Agilent
Technologies, USA), and the macro-elements in soil (Ca andMg)
were analyzed using inductively coupled plasma-optical emission
spectrometry (Integra XL, GBC, AUS). The R2 of the standard
calibration curves for each element was 0.999 or more using
multi-element standard (Agilent, USA), and it was confirmed
that the recovery rates for inorganic components were 80–120%
using IRMM-804 rice flour.

Meanwhile, broad-sense heritability for As content was
calculated by QTLmax Global (2022) with the following formula:

H2 =
σ 2
g

σ 2
g +σ 2

e
, where “σ 2

g ” is the genetic variance, “σ
2
e ” is the

genotype by the annual environmental effect, “σ2” is the error
variance, and “e” is the annual environmental effect (Le Sech and
Christian, 1991).

DNA Extraction and Whole-Genome
Sequencing
DNA and RNA were extracted from the 15-day-old seeds after
heading to analyze the SNP and arsenic gene expression levels.
Some amino acids or metabolites play important roles in plant
growth and development, as well as plant resistance to various
stresses (Li et al., 2010). Amino acid metabolism is affected by
high night temperature at the early milky stage. As a result, the
seed weight and grain quality of rice are determined by changes
in gene expression patterns (Liao et al., 2015).

The 15-day-old young seeds were collected and powdered
using mortar–pestle. Afterward, genomic DNA was extracted
using DNeasy R© Plant Mini Kit (QIAGEN, Germany). The
concentration of the sample was adjusted to 30 ng µL-1. For
next-generation sequencing library preparation, quality control
(QC) analysis was performed to ensure that the fragment
of the DNA was of the desired size. The extracted DNA
samples were quantified using the Quant-iTTM dsDNA High-
Sensitivity Assay Kit (Invitrogen, Carlsbad, CA, USA) on an
Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara,
CA, USA). Optical density was measured using Tecan F200
(Tecan, Switzerland), and the quality of the extracted DNA
was confirmed by electrophoresis on a 0.7% agarose gel. Short-
read sequences were obtained using HiSeq 2500 (Illumina), and
next-generation sequencing was performed for genome analysis
(Supplementary File 2).

RNA Sequencing and Transcriptome
Analyzes
Total RNA from the samples was extracted using the Total RNA
Prep Kit for plant tissues (QIAGEN, Germany). The quality

of the extracted RNA was confirmed by electrophoresis on
0.7% agarose gel, and its absorbance was measured using a
UV spectrophotometer (UV-2600, SHIMADAZU). The purity
and quantification were performed using NanoDrop ND-1000
(Dupont Agricultural Genomics Laboratory). The concentration
of the sample was adjusted to 20 ng µL−1. The short-read
sequence obtained from RNA sequencing was aligned, and the
Bowtie (version 1.1.2) and Tophat (version 2.1.0) were used to
compare and map with International Rice Genome Sequencing
Project 1.0 (Heo et al., 2017; Supplementary File 3).

Model Selection for GWAS
GWAS is the most powerful statistical tool to analyze the
association between traits and SNP markers, and various genetic
models are applied to identify quantitative traits. Whole-genome
resequencing data were imputed using the Beagle (Browning and
Browning, 2007), and then, 3,110,974 SNPs for the rice core
collection (273 accessions) were obtained from 808,686 SNPs
by adjusting the minor allele frequency (MAF) to be less than
5% and removing the proportion of missing SNPs by 80%. In
addition, accurate genome-scale profiling for As was performed
by applying the linear mixed model (LMM).

The formula of the LMM is as follows:

y = Xβ + Zu+ ε, (1)

where “y” is the observed phenotype, “β” indicates the marker
information that is a fixed effect, “u” indicates the object
information that is a random effect, “ε” is the random residual
effect, and “X” and “Z” are the associated design metrics. The
random effect assumes that u is proportional to the normal
distribution for the mean and covariates [u∼N(0, G)] and that
ε is proportional to the normal distribution for the means and
sum of the error squares [ε∼N(0, Iσ2

ε
)] (Piepho et al., 2008).

On the contrary, in the 2016 and 2017 GWAS results applying
GLM, the lambda values were 1.234507 and 1.58868, respectively,
which were inflated compared with the LMM (0.781438 and
0.950722) (Supplementary File 4).

Significant QTLs with –log10(p) > 5 from GWAS results
applied with LMM were selected, and linkage disequilibrium
was analyzed by calculating allele frequency as r2 for each
QTL. Candidate genes were identified at the range of ±50
kbp using genome browser of the Rice Annotation Project
(https://rapdb.dna.affrc.go.jp/) (Kawahara et al., 2013; Sakai
et al., 2013) for QTLs with a low recombination rate (r2 ≤ 1)
(Supplementary File 5). In addition, functional haplotypes for
candidate genes were investigated by using genomic sequence
information, including the promoter and coding regions. The
phenotypic variation for the haplotype group was statistically
validated with a one-way ANOVA test.

Statistical and Network Analyses
Jamovi (version 1.6.12) was used for the correlation analysis
between inorganic components. The one-way analysis of variance
(ANOVA) was performed for genotypic differences (japonica,
indica, and aus) of the rice core collection. Cytoscape (version
3.7.2) was used for the network analyses between inorganic
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components based on the Pearson correlation coefficient.
However, the network analysis excludedAdmixture andAromatic
collections with small sample numbers (n < 5).

RESULTS

Variations in the Ionome Among the 273
Rice Accessions
The variations of As, Se, Na, Ca, Mn, Fe, Cu, Zn, andMg contents
accumulated in brown rice of 273 accessions were analyzed.
Under the non-contaminated soil condition, As contents of
rice varieties ranged from 0.0407 to 0.1775mg kg−1, with an
average content of 0.0833mg kg−1. In 2016, As contents of
varieties grown under contaminated soil conditions ranged from
0.1306 to 0.6923mg kg−1, with an average content of 0.2768mg
kg−1. This average content increased by approximately 332%
compared with the non-contaminated soil condition. The As
content of the cultivars in 2017 was grown under the same
polluted soil conditions as in 2016, As contents ranged from
0.0391 to 0.4184mg kg−1, with an average of 0.1471mg kg−1,
a decrease of approximately 53% compared with the previous
year. Functional inorganic components, such as Na, Ca, Mn,
Fe, Cu, Zn, and Mg, showed statistically significant differences
(p < 0.05) in all environmental conditions. It was confirmed
that under the contaminated soil condition in 2017, other
inorganic components except for Na, Cu, Fe, and Mg increased
compared with the contaminated soil condition of the previous
year (Figure 1). However, there were no significant differences in
Se contents under the contaminated soil conditions in both years.
In the 273 rice accessions grown in contaminated soil, the broad-
sense heritability (H2) of As content in 2016 and 2017 was about
54%, which was found to be affected by both environmental and
genetic factors (Figure 2).

Interaction of Ionomes in Rice Core
Collection
It was confirmed that the accumulation of ionomes in rice
is affected by environmental conditions, and the contents of
ionomes vary greatly depending on the rice varieties. This is
predicted to be due to the genotypic differences due to subspecies,
and the ionome content and their interactions were analyzed
by classifying them into temperate japonica, tropical japonica,
indica, and aus. Compared with other subspecies, temperate
japonica exhibited more complex interactions between ionomes
under both non-contaminated and contaminated soil conditions
(Figures 3A,B). On the contrary, the correlations between
ionomes in the rice grown under contaminated soil conditions
were increased in all subspecies in the second year (2017)
compared with that in the previous year (Figures 3B,C). The
direction of correlation betweenAs and other functional minerals
varied depending on subspecies and environmental conditions.

Co-Expression Network Analysis
The subspecies of rice were largely classified into japonica and
indica population; then, the relationship between expression
levels and genotypes of 23 genes known to be involved in
As transport, detoxification, or As-induced stress response was

analyzed for each population (Table 1). The expression networks
for 23 As genes were performed using RNA-seq data from the rice
accessions grown in unpolluted paddy soils.

The network average clustering coefficient for 23 As genes
expression levels was 0.428 in the japonica population, which was
larger than that in the indica population (0.414). That is, it was
confirmed that the expression network of the indica population
was denser than that of japonica, so seven essential genes (STR5,
STR6, STR8, MYB1, multidrug and toxic compound extrusion 2
[MATE2], NIP1.1, and NIP3.2) were identified in the japonica
population, and these genes are related to sulfur transferase
and As transporter. Seven essential genes (STR5, STR8, GRX4,
MRP1, ACR2.1, RCS, and AIR2) involved in sulfur transferase,
As translation, and As induction were identified in the indica
population (Figure 4). As a result of comparing As contents
accumulated in grains of rice core collection cultivated in
contaminated soil based on network analyses for rice subspecies,
the As content of japonica under the flooded condition was
0.283mg kg−1, which was significantly higher than that of indica
(0.253mg kg−1). In addition, the arsenic content of japonica was
0.153 even under the intermittently flooded condition, which was
significantly higher than that of indica (0.126 mg kg−1).

Expression QTL Analyzes
Twelve genes were identified as essential genes in the expression
network for As genes. To identify the genetic factors regulating
the expression of these genes, the association between the
whole genome and the gene expression level was analyzed for
the 273 rice accessions. As a result, the associations between
expression levels and genotypes for STR5, STR8, and AIR2
were significant as -log10(p) > 5 (Figure 5). The expression
levels of STR5 were associated with trans-eQTLs ranging from
25.4 to 33.6Mb on chromosome 1, and the -log10(p) for trans-
eQTLs ranged from 5.03 to 7.21 (Figure 5A). The 18,967 SNPs
were identified at trans-eQTLs of STR5. These SNPs were
clustered into three groups by variations, and 90% japonica
varieties and 97% indica varieties were included in Group
1 and Group 3, respectively. STR5 expression levels of each
group were 0.23, 0.35, and 0.30, but there was no statistical
significance (Table 2). A total of 121 trans-eQTL genes were
identified at the trans-eQTLs, including 5 at 25Mb and 31
at 33Mb. Os01g0635400 (protein-binding) and transcription-
regulating Os01g0635550 (ZF-HD homeobox) were detected at
25Mb, and genes involved in nodulin 20 (Os01g0786500), ABC
transporter (Os01g0786000), peroxidase (Os01g0787000), and
transcription factor (Os01g0788800) were detected at 33Mb
(Supplementary File 6).

The expression levels of STR8 and AIR2 showed high
association at cis-eQTLs on chromosome 2 and chromosome
11, respectively. The cis-eQTLs for STR8 were identified at
3.0 to 3.1Mb and 19.4 to 20.0Mb on chromosome 2. The
–log10(p) for cis-eQTLs ranged from 5.1 to 8.9 (Figure 5B).
The 226 SNPs at 3Mb were identified and clustered into
three groups by SNPs variations. All japonica and 63%
indica varieties were included in Group 1, and 26% indica
varieties were included in Group 3. The expression levels of
STR8 in each group were 0.22, 0.33, and 0.21, but there
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FIGURE 1 | Variation of arsenic and functional ion content for the 273 rice accessions. (A) Ion contents in 273 rice grains in non-contaminated soil. (B) Ion contents in

273 rice grains under the flooded condition in contaminated soil. (C) Ion contents of 273 rice grains under the intermittently flooded condition in contaminated soil.
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FIGURE 2 | Correlations between estimating breeding values (EBVs) and arsenic contents. Green circle indicates arsenic contents of the 273 rice accessions grown

under the flooded condition in contaminated soil. Blue circle indicates arsenic contents of the 273 rice accessions grown under the intermittently flooded condition in

contaminated soil.

was no significant difference between groups. The 376 SNPs
were identified and clustered into two groups at cis-eQTLs
within 19.4–20Mb. All japonica cultivars and 72% indica
varieties were included in Groups 1 and 2, respectively, but
there was no association between STR8 expression and SNPs
variations at cis-eQTLs (Table 2). The 20 cis-eQTL genes
were detected at cis-eQTLs of STR8. The cis-eQTLs genes
involved in leucine-rich repeat domain (e.g., Os02g0156400)
and arsenate reductase (Os02g0157600) were identified at
3Mb. In addition, five cis-eQTLs genes, including chloroplast
development protein (Os02g0539600), were identified at 19.2–
20Mb (Supplementary File 6).

The 15,388 SNPs were identified at 19.2 Mb−25.8Mb
associated with AIR2 expression, and -log10(p) for cis-eQTLs
ranged from 5 to 8.84 (Figure 5C). The cis-eQTLs were
clustered into three groups, and 75% japonica and all indica
varieties were included in Groups 1 and 2, respectively. AIR2
expression levels were 1.89, 1.85, and 1.67 in each group, and
there was a significant difference (p < 0.001) in Group 1 and
Group 3 (Table 2). The 591 cis-eQTL genes for AIR2 were
detected, and it was confirmed that a number of genes are
related to leucine-rich repeat domains (e.g., Os11g0568800),
serine/threonine kinase activity (Os11g0569300), heat
shock (Os11g0578500), and RNA binding (Os11g0579900).
In addition, the AIR2 was detected as a cis-eQTLs gene
(Supplementary File 6).

QTLs Identification for As Content Through
GWAS
To identify additional As-related genes other than known
major genes and to investigate genetic factors associated with
arsenic in plants by varying growing conditions under the
same stress environment, we performed GWAS of the rice
core collections, grown under contaminated soil conditions in
2016 and 2017. The contaminated soil was maintained under

the flooded condition in 2016 and was maintained under the
intermittently flooded condition in 2017. Under the flooded
condition, As-associated QTLs (As-QTLs) were identified at 8.0
and 8.32Mb on chromosome 6 and p-values were significant
as 5.12 and 5.36, respectively (Figure 6A). As a result of LD
(linkage disequilibrium) for As-QTLs, it was confirmed that the
linkage equilibrium was weakly linked (R2 < 0.5) within 8.32Mb
and strongly linked (R2 ≤ 1) between arsenic-related SNPs
within 8.0Mb (Supplementary File 5). Ten candidate genes were
identified within ±50 kb based on 8.0Mb, and a number of
candidate genes were identified that respond to abiotic stress
(Figure 6C). In particular, Os06g0254200 for ion channel activity
and potassium transport, Os06g0254300 for calcium ion binding,
and Os06g0255100, an iron-dependent oxygenase protein, were
detected as As-related candidate genes (Supplementary File 7).

Under the intermittently flooded condition, As-QTLs were
identified from 30.7 to 30.8Mb and 9.6 to 14.2Mb and 27.1Mb
on chromosomes 1 and 5, respectively (Figure 6B). The p-values
of As-QTLs ranged from 5 to 6.7, and linkage equilibrium
was strongly linked with R2 ≤ 1 (Supplementary File 5).
The 150 candidate genes on chromosomes 1 and 5 were
identified within ±50 kb based on each As-QTL. Candidate
genes involved in biosynthetic process, membrane, and plastid
were detected under the intermittently flooded condition,
unlike candidate genes identified under the flooded condition
(Figure 6D). In addition, Os01g0733001 (NRAMP3), which
transports metal ions, and Os05g0279400 (RFP), which regulates
innate immunity and disease resistance, were detected at
As-QTLs (Supplementary File 7). GWAS results for other
functional ions are not presented in the main text and are given
in Supplementary File 8.

Selection of Low-Arsenic Rice Varieties
AIR2 showed a significant difference in expression between
japonica and indica at the cis-eQTL (p < 0.001), so it was
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FIGURE 3 | Interaction between arsenic and other inorganic components. The correlation between ionomes was based on the Pearson coefficient value. Blue line:

positive correlation (0.8 < r < 1.0), red line: negative correlation (−1.0 < r < −0.8), black line: positive correlation (0.4 < r < 0.8), and dotted line: positive correlation

(0.2 < r < 0.4). (A) The interaction between ionomes of 273 rice grains in non-contaminated soil. (B) The interaction between ionomes of 273 rice grains under the

flooded condition in contaminated soil. (C) The interaction between ionomes of 273 rice grains under the intermittently flooded condition in contaminated soil.

verified whether the arsenic content differs by rice subspecies
in genomic sequences of AIR2. The haplotype group for AIR2
was classified into three groups, and SNP variations between
groups were confirmed in nonsynonymous SNPs (Ala134 →

Thr134, Gly130 → Ser130, Ile101 → Thr101). The 104 japonica
varieties belonged to Hap1, and the average As content under
flooded and intermittently flooded conditions was 0.295 and
0.161mg kg−1, respectively. Hap2 included 54 japonica and 18
indica varieties, and the average As content under flooded and
intermittently flooded conditions was 0.261 and 0.143mg kg−1,
respectively. Hap3 included 19 japonica and 25 indica varieties,
and the average As content under flooded and intermittently
flooded conditions was 0.251 and 0.134mg kg−1, respectively,
which were significantly lower (p < 0.01) than those of Hap1
and Hap2.

The haplotype groups for AIR2 were similar to the groups
clustered in the cis-eQTLs of AIR2. Based on the results of
these analyses, rice varieties with low expression levels and low
As content were selected from japonica and indica, respectively
(Figure 7).

DISCUSSION

Variation and Interaction of Ionomes in
Rice Core Collection
Partitioning the core collection based on rice subspecies and
estimation of the interaction between As and other functional

minerals demonstrated that environmental and genetic factors
contribute to these interactions. The ionome accumulation of 273
rice grains cultivated in contaminated paddy soil was generally
increased compared with unpolluted paddy soil conditions in
the same year. Na, Mn, Fe, Cu, and Mg including arsenic
increased, while Se, Ca, and Zn decreased in the contaminated
soil (flooded condition). Nicula et al. (2013) investigated whether
the properties of metals and the particularities of each species
affect the uptake capacity in Phaseolus vulgaris and Zea mays
and found that Fe, Cu, and Zn content of the two species
was increased in contaminated soil compared with unpolluted
soil. In addition, Williams et al. (2009) confirmed that Zn and
Se significantly decreased in rice as the arsenic concentration
increased. The results of these previous studies are consistent
with the variations in ionome contents for the 273 rice accessions.

The correlations between ionomes were decreased in
contaminated soil (flooded condition) compared with unpolluted
soil, and it was confirmed that there was a difference by rice
subspecies. The findings also revealed that the correlations
between ionomes under the intermittently flooded condition
were increased compared with those under the flooded
condition. Therefore, it can be inferred that the contents and
interaction between As and functional ions vary depending on
the rice subspecies and water management. Although the genetic
basis for the correlation between trace elements or toxic elements
has not yet been established (Tan et al., 2020), studies have
demonstrated the influence of subspecies on As, Hg, Pb, and Cd
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TABLE 1 | Genes involved in As transport, detoxification, or stress response in rice.

Gene names Gene symbols Descriptions

OS02G0745100 LSI1 Aquaporin NIP III subfamily protein, arsenic species (As) uptake, arsenite efflux (Os02t0745100-01)

OS01G0368900 OsGRX4 Glutaredoxin (Grx) family protein, arsenic (As) stress response, drought tolerance (Os01t0368900-01)

OS02G0102300 OsHAC1;1 Arsenate reductase, regulation of arsenic accumulation (Os02t0102300-01)

OS02G0157600 STR8 Arsenate [As(V)] reductase, As(V) tolerance, control of arsenic (As) accumulation (Os02t0157600-01)

OS02G0618100 GRX9 Glutaredoxin (Grx) family protein, arsenic (As) stress response, drought tolerance (Os02t0618100-01)

OS03G0107300 LSI2 Anion transporter, silicon efflux transporter, arsenic species (As) uptake (Os03t0107300-01)

OS03G0108000 ACR2.2 Dual-specificity tyrosine phosphatase CDC25, arsenic metabolism (Os03t0108000-01)

OS03G0195800 OsSultr1;1 Similar to sulfate transporter (fragment) (Os03t0195800-01)

OS03G0747800 OsRCS3 O-Acetylserine(thiol) lyase, cysteine biosynthesis, arsenic detoxification (Os03t0747800-01)

OS04G0249600 OsHAC1;2 Arsenate reductase, sulfurtransferase/rhodanese-like protein, regulation of arsenic accumulation (Os04t0249600-02)

OS04G0620000 OsABCC1 Arsenic (As) detoxification, reduction of As in grains (Os04t0620000-01)

OS05G0497600 OsAIR1 Arsenic-induced RING E3 ligase, abiotic stress response (Os05t0497600-01)

OS05G0554000 MATE2 Arsenic stress response, regulation of plant growth and development, disease resistance (Os05t0554000-03)

OS06G0102300 OsPCS Phytochelatin synthase 2, cadmium (Cd), and arsenic (As) tolerance (Os06t0102300-03)

OS10G0545700 ACR2.1 Dual-specificity tyrosine phosphatase CDC25, arsenic metabolism (Os10t0545700-04)

OS11G0572500 OsAIR2 Similar to zinc finger, RING type (Os11t0572500-01)

OS02G0232900 OsNIP1;1 A member of the nodulin26-like intrinsic protein (NIP) family, arsenite transporter (Os02t0232900-01)

OS02G0822100 SIET3 Similar to arsenite transport subunit B (Os02t0822100-02)

OS05G0442400 MYB-1 R-R-type MYB-like transcription factor (Os05t0442400-01)

OS08G0152000 NIP 3;2 Nodulin 26-like intrinsic membrane protein, arsenite [As(III)] uptake by lateral roots (Os08t0152000-01)

OS08G0152100 NIP 3;3 A member of the nodulin26-like intrinsic protein (NIP) family, arsenite transporter (Os08t0152100-01)

OS09G0521500 Get3 Similar to arsenical pump-driving ATPase (EC 3.6.3.16) (Os09t0521500-01)

OS01G0955700 OsCLT1 CRT-like transporter, glutathione homeostasis, arsenic tolerance (Os01t0955700-01)

contents in japonica and indica rice (Meharg et al., 2009; Jiang
et al., 2012; Norton et al., 2012). In addition, Wang et al. (2020)
reported that the variation in accumulation and translocation
of As among 74 main rice cultivars, including 66 japonica and 8
indica cultivars, was influenced by Si, P, Fe, and Mn contents.

Water management is an effective way to reduce the
absorption of toxic ions, such as As, in crops. Rahaman and
Ashim (2013) reported that arsenic content by approximately
24% is reduced and Fe and Zn are also reduced to lower
levels under the intermittently flooded condition. Although there
are environmental factors for the annual As content of 273
rice varieties, it is consistent with previous studies in that As
content was decreased by 46.8% under the intermittently flooded
condition compared with the flooded condition, and Na, Fe, and
Zn also were decreased by 43.8 and 32.5%, respectively. However,
the intermittently flooded condition induces oxidative stress and
facilitates Cd accumulation, particularly in crops, so the rice core
collections were classified into subspecies, and eQTL analyses
were performed on 23 genes known as As induction or resistance
to identify the genetic factors.

Co-Expression of As-Related Genes
STR5, STR6, STR8, MYB1, MATE, NIP1.1, and NIP3.2 were
identified as essential proteins in the expression networks of 23
As genes of the japonica population, and the clustering coefficient
of these genes was 0.5, which was larger than that of other genes.
The clustering coefficient of GET3 was the smallest at 0.23. STR5,
STR8, GRX4, MRP1, ACR2.1, RCS, and AIR2 were identified
as essential genes with clustering coefficients ranging from 0.45

to 0.5 in the expression network of the indica population. The
clustering coefficients of STR6 and MATE2 were the smallest at
0.23. The average clustering coefficient of japonica population
was 4.28, which was larger than that of indica population, but
the shortest paths accounted for 30% of the total path, which was
less than that of indica. Here, the clustering coefficient describes
the relatedness of two proteins and measures the importance of
edges in a protein–protein interaction network, thus facilitating
identification of key proteins in populations (Wang et al., 2012).
That is, although many essential arsenic genes are present in the
japonica population, the distance between As-induced and As-
resistant genes is longer than that of indica, so it is likely to be
easily exposed to the risk of As. This hypothesis was indirectly
verified through the results of the As content of japonica and
indica in the rice core collections grown in contaminated soil.
On the contrary, the expression levels of STR5, STR8, and AIR2
among the 14 essential genes were -log10(p) > 5, which had
high associations with the SNPs of core collections. Reportedly,
sulfur assimilation and GSH are upregulated in response to
oxidative stress in plants exposed to heavy metals (Na and Salt,
2011). Sulfur assimilation plays an important role in minimizing
As absorption and transfers to crops and arsenic detoxification
(Dixit et al., 2015). STR5, STR6, and STR8 are genes associated
with sulfur assimilation and are known to regulate the As
accumulation (Most and Papenbrock, 2015).

AIR2 (As-induced RING E3 ligase 2) encodes RING E3
ubiquitin ligase. Heterogeneous overexpression of OsAIR2 has
been reported to positively regulate a plant growth in Arabidopsis
or rice in response to As(V) stress. In addition, OsKAT1
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TABLE 2 | eQTLs associated with STR5, STR8, and AIR2 expression levels.

Arsenic

gene

Chromosome Expression quantitative

traits loci (eQTLs)

Haplotype group Subspecies

(number of varieties)

Average

expression levels

Differences in gene

expression between

haplotype groups

STR5 1 trans-eQTLs 25.4–33.6Mb Group 1 japonica

(160)

0.23a

indica

(0)

Others

(0)

Group 2 japonica

(17)

0.35a F-value 2.06

p-value 0.138

indica

(1)

Others

(3)

Group 3 japonica

(0)

0.30a

indica

(42)

Others

(10)

STR8 2 cis-eQTLs 3.0–3.1Mb Group 1 japonica

(177)

0.22a

indica

(27)

Others

(3)

Group 2 japonica

(0)

0.33a F-value 1.63

p-value 0.220

indica

(5)

Others

(0)

Group 3 japonica

(0)

0.21a

indica

(11)

Others

(10)

AIR2 11 cis-eQTLs 19.2–25.8Mb Group1 japonica

(132)

1.89a

indica

(0)

Others

(3)

Group 2 japonica

(41)

1.85a F-value 13.5

p <0.001

indica

(0)

Others

(0)

Group 3 japonica

(4)

1.67b

indica

(43)

Others

(10)

a and b indicates whether there is a statistically significant difference between groups.
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FIGURE 4 | Expression network analysis of As genes between japonica and indica population. (A) The expression network of As-related genes within the japonica

population. (B) The expression network of As-related genes within the indica population. (C) As content of japonica and indica under flooded and intermittently

flooded conditions. a and b indicates whether there is a statistically significant difference between groups.

(3-ketoacyl-CoA thiolase protein), the physical interaction
partner of OsAIR2, is degraded and ubiquitinated by OsAIR2
through the 26S proteasome degradation pathway (Lim et al.,
2014; Hwang et al., 2016, 2017). The eQTLs of STR5 and
STR8 were not directly related to the gene expression, but the
expression level of AIR2 showed a significant difference between
groups at the cis-eQTLs. In particular, these cis-eQTLs include
AIR2 genomic sequences, and homogeneous and heterogeneous
SNPs were observed in Groups 1 (75% japonica) and 3 (100%
indica), respectively. These findings suggest that SNP variations
at the cis-eQTL associated with OsAIR2 regulate resistance to As

stress, and it can be inferred that indica is less likely to accumulate
As than japonica.

A number of trans and cis-eQTL genes were identified, such
as nodulin 20, ABC transporters, leucine-rich repeat domains,
and transcription factors at the eQTLs associated with the
expression of STR5, STR8, and AIR2. Nodulin 20 (EN20) is a
signaling mediator that activates plant defenses under stress, and
OsABCC1, a type C ATP-binding cassette transporter (OsABCC)
family, is known to detoxify As in grains (Wu et al., 2011; Song
et al., 2014). In addition, the leucine-rich repeat domain (LRR) is
involved in negative regulator-programmed cell death, tolerance
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FIGURE 5 | Regulatory factors associated with As gene expression. (A) Genome-scale profiling for STR5 expression levels, and SNPs variations at trans-eQTLs

(25.4–33.6Mb) in the japonica and indica populations. (B) Genome-scale profiling for STR8 expression levels and SNPs variations at cis-eQTLs (3.0–3.1Mb and

19.4–20.0Mb) in the japonica and indica populations. (C) Genome-scale profiling for AIR2 expression levels and SNPs variations at cis-eQTLs (19.2 Mb−25.8Mb) in

the japonica and indica populations. The major allele was indicated as 0 (green), the minor allele as 2 (red), and the heterologous allele as 1 (black).

to oxidative stress, and salt stress, but the biological function of
most of the LRR gene has not been clearly elucidated in the plant
genome (De Lorenzo et al., 2009; Oh et al., 2010; Pitorre et al.,
2010; Hwang et al., 2011).

Identification of QTLs and Candidate
Genes for as Content
In general, GWAS is the most powerful statistical method
that provides a genetic basis for complex traits and has been
applied to major agricultural traits, including toxic minerals,

yield, flowering time, and disease resistance, among others, in rice
(Huang et al., 2010, 2012; Famoso et al., 2011; McCouch et al.,
2016). In rice, the alleles with large effects have been retained
and fixed by evolution, human selection, and inbreeding, and
therefore, GWAS is widely used to investigate these complex
alleles in rice to uncover the genetic basis and effects associated
with various traits.

In this study, GWAS was performed by applying LMM to
arsenic content of the rice core collection under different water
management conditions in the contaminated soil to uncover the
genetic factors associated with As. GWAS results applied with
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FIGURE 6 | Whole genome-scale profiling for As under flooded and intermittently flooded conditions in contaminated soil. (A) Significant SNPs with -log10(p) > 5 were

identified on chromosome 6 under the flooded condition. (B) Significant SNPs with -log10(p) > 5 identified on chromosomes 1 and 5 under the intermittently flooded

condition. (C) Ten candidate genes under the flooded condition were identified within strongly linked SNPs (R2 ≤ 1), and a number of candidate genes were involved

in abiotic stress response. (D) The 150 candidate genes under the intermittently flooded condition were identified within strongly linked SNPs (R2 ≤ 1), and a number

of candidate genes were involved in biosynthetic process, membrane, and plastid.

LMM were verified by comparison with a general linear model
(GLM). A lambda value ranging from 0 to 1 is a measure of
asymmetric association indicating the strength of the relationship
between the independent and dependent variables and is used to
validate the p-value from the GWAS results (Hartwig, 1973; Kim
et al., 2019).

As-associated SNPs were mapped on chromosomes 6 and 5
under flooded conditions and intermittently flooded conditions,
respectively. The association of arsenic with the genome in
crops may vary depending on growing conditions. Norton et al.
(2019) reported various QTLs associated with arsenic through
annual comparisons by water management systems. Moreover,
it is known that microorganisms directly or indirectly affect the
mobility and biological availability of arsenic in rice paddies,
depending on the water management system; then, arsenic
uptake and translocation can be decreased or increased by
altered expression of transporter genes in plants (Kumarathilaka
et al., 2018b). Concordant with the findings of previous studies,
this study confirmed that As-related QTLs showed different
patterns under water management conditions and that there
were several candidate genes involved in physiological responses
under intermittently flooded conditions. In a follow-up study, it

is necessary not only to verify these candidate genes based on
the GWAS results for As, but also to further prove the genetic
relationship between arsenic and functional ions by exploring
SNPs co-localized with other functional ions.

Selection of Low-Arsenic Rice Varieties
The 273 rice accessions were classified according to rice
subspecies in genomic sequences and cis-eQTLs of AIR2.
The groups clustered in cis-eQTLs mostly coincided with the
haplotype groups of AIR2, and indica varieties had lower AIR2
expression and As content compared with japonica. These results
suggest that indica is relatively less likely to be exposed to As
risk compared with japonica and also means that low expression
of AIR2 can reduce As accumulation in rice. Therefore, rice
varieties (eight indica, two temperate japonica, and two tropical
japonica) with low AIR2 expression and low As content were
finally selected based on these results.

CONCLUSION

The correlations between arsenic and functional ions were
affected by rice subspecies and growing condition through the
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FIGURE 7 | Comparison between haplotype group and cis-eQTLs of AIR2. (A) Neighbor-joining tree and clustering groups for 273 accessions at the cis-eQTLs

associated with AIR2 expression levels. (B) Neighboring binding trees and haplotype groups of 273 accessions to the genomic sequence of AIR2.

water management. As was reduced under the intermittently
flooded condition compared with the flooded condition, but
As reduction through the water management has limitations
in terms of the rice-growing condition. Therefore, it was
verified that the arsenic accumulation was lower in indica
than in japonica through the association studies between
transcriptome and genome data of rice core collections. AIR2
(arsenic-induced RING finger protein) expression for indica
was relatively lower than that of japonica in its cis-eQTLs,
and it was confirmed that the arsenic content of the group
including a number of indica was also low in haplotype group
for AIR2. Finally, rice varieties with low AIR2 expression
and low arsenic content were selected. Therefore, the selected
rice varieties are valuable as breeding materials, so verification
through follow-up studies is required. In addition, it is necessary
to develop a low-arsenic marker that can be applied to all
rice varieties by converting three nonsynonymous SNPs into
KASP markers in future through the SNP mutation information
of AIR2.
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