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Flag leaf angle (FLA) is an important outcrossing trait affecting the hybrid seed production

in rice (Oryza sativa L.). Natural variation of FLA has been reported in rice, but the

molecular basis for this variation is largely unknown. In this study, we investigated the

phenotypic values of FLA in 353 rice natural accessions in six environments, which

indicated that there was abundant phenotypic variation. We performed a genome-wide

association study on FLA using 1.3 million single nucleotide polymorphisms (SNPs). A

total of six quantitative trait loci (QTLs) were identified significantly associated with FLA,

of which five were located in previously reported QTLs/genes and one was novel. We

identified two causal gene loci for FLA, namely, OsFLA6 and OsFLA2; OsFLA6 was

co-localized with the gene OsLIC. In addition, the accessions with large and small FLA

values have corresponding high and low OsFLA6 expressions. OsFLA2TT allele could

increase significantly the seed setting percentage in hybrid F1 seed production by field

experiment. We also confirmed that the allele OsFLA2TT increased the FLA compared

with that of the isogenic line carrying allele OsFLA2CC by transgenic complementation

experiment. The allele frequencies of OsFLA6GG and OsFLA2TT decreased gradually

with an increase in latitude in the Northern Hemisphere. Our results should facilitate the

improvement of FLA of parents of hybrid rice.

Keywords: genome-wide association mapping, hybrid seed production, natural variation, OsFLA2, rice

INTRODUCTION

Asian cultivated rice (Oryza sativa L.) is one of the most important staple foods feeding more than
3.5 billion people worldwide (GRiSP, 2013). With the human population increasing and the arable
land decreasing, increasing the rice grain yield per unit area per unit time is an inevitable choice.
The utilization of heterosis is one of the effective strategies to enhance rice grain yield (Yuan, 1997).
However, it entails the yearly production of F1 hybrid seeds. For hybrid seed production inO. sativa,
to remove the barriers to cross-pollination at the initial heading stage, farmers usually cut off one-
third or one-half of the flag leaf blade of the parents, which not only requires more labor but also
high operating skills to avoid injuring the young panicle (Sakamoto et al., 2006; Zhu et al., 2016).
In addition, the wound caused by leaf clipping also had an adverse effect on the normal growth of
the rice plant. If the flag leaf angle (FLA) in female parents is larger than 90◦, leaf clipping can be
omitted. Therefore, breeding a male sterile line with larger FLA can not only omit the procedure of
flag leaf clipping but also facilitate the mechanization of hybrid rice seed production.
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Early research has shown that the FLA trait is controlled by
a pair of major genes and a number of minor gene pairs, with
a small angle being partially dominant (Shen, 1983). To date, 63
quantitative trait loci (QTLs) for FLA have been identified based
on linkage analysis, including 9, 7, 6, 4, 4, 5, 4, 7, 6, 0, 8, and
3 on chromosomes 1–12, respectively (Supplementary Table 1)
(Li et al., 1999; Yan et al., 1999; Dong et al., 2003; Kobayashi et al.,
2003; Luo et al., 2008; Zhang et al., 2008, 2013; Cai, 2009; Hu et al.,
2012; Wang et al., 2012; Bian et al., 2014; Zou et al., 2014; Zhu
et al., 2016; Ham et al., 2019). In addition, 100 QTLs for FLA have
been detected based on association analysis (Huang et al., 2010;
Chen et al., 2012; Lu et al., 2015; DongH. J. et al., 2018; Dong Z. Y.
et al., 2018). Among these QTLs, only one QTL qFla-8-2 has been
fine-mapped and predicted the candidate genes (Zhu et al., 2016).
Several genes for leaf angle (refers to all leaves growing on a stem),
such as lla, OsLIC, ILA1, and OsARF19, have been cloned (Wang
et al., 2005, 2008; Ning et al., 2011; Zhang et al., 2015, 2016), but
no cloned gene responsible for FLA has been reported thus far.
Therefore, it is necessary to discover favorable alleles for FLA to
enhance the yield of hybrid seed production in rice.

In this study, we performed a genome-wide association study
(GWAS) by combining the FLA of 353 rice accessions on six
environments with single nucleotide polymorphism (SNP) data
and identified significant SNP loci. Furthermore, we identified
a novel causative gene OsFLA2 for FLA using the gene-based
association (GBA) method. The function of OsFLA2TT was
validated using the transgenic complementation test. These
results filled a gap in gene cloning and functional analysis of FLA
characteristics. This study sets the stage for further improvement
of the FLA of the parents of hybrid rice.

MATERIALS AND METHODS

Rice Accessions
In our previous study, the three stigma characteristics
of 353 accessions were reported by Dang et al. (2020)
(Supplementary Table 2). In this study, using the same 353
accessions, we investigated the FLA characteristic following the
same field plant and management. These accessions were grown
across six different environments, over 3 years (2017–2019)
and two locations of Nanjing (32◦07’N, 118◦64’E) and Hefei
(31◦52’N, 117◦17’E).

Phenotypic Investigation
By following the method reported by Zhu et al. (2016), the FLA
of the plants was measured with a protractor at the stage of the
panicle on themain stem heading 10 cm above the flag leaf lamina
joint. For each accession, the average FLA value of 10 plants was
used as the phenotypic value.

Abbreviations: CV, coefficients of variation; FLA, flag leaf angle; GBA,

gene-based association; GWAS, genome-wide association study; LD, linkage

disequilibrium; MAF, minimum allele frequency; MLM, mixed linear model; qRT-

PCR, quantitative real-time polymerase chain reaction; QTL, quantitative trait loci;

SNP, single nucleotide polymorphism.

Genome-Wide Association Study
The sequences for the accessions are available at EBI European
Nucleotide Archive with the accession number ERP000106 and
NCBI Sequence Read Archive with the accession numbers
PRJNA171289 and PRJNA554986 (Huang et al., 2012; Chen et al.,
2014; Dang et al., 2020). According to the method reported by Li
and Durbin (2010), we used the Bowtie 2 software to align the
reads to Os-Nipponbare-Reference-IRGSP 1.0. A total of 95% of
reads were mapped to the Nipponbare genome with a mapping
score >60. Then, we used the HaplotypeCaller of GATK 3.8-0
to perform the SNP calling. We used the Beagle software version
4.1 (Browning and Browning, 2009) to impute the missing data
in genotype data. Finally, we obtained 1,326,094 SNPs with a
minor frequency (MAF) >5% and a missing rate <18% and used
them to estimate kinship coefficients and for GWAS. We used
the TASSEL 5.2.1 software (Bradbury et al., 2007) to calculate
the kinship matrix. Based on the mixed linear model (MLM), the
GWAS was conducted using the R package Genomic Association
and Prediction Integrated Tool (Lipka et al., 2012). According
to the methods reported by Yang et al. (2014), if the association
loci exceeded the P-value thresholds (<1 × 10−7) with clear
peak-like signals (≥3 significant SNPs) and were in the 200-kb
region of the leading SNP, we considered the region as a QTL.
We used the R package “LDheatmap” to construct the linkage
disequilibrium (LD) heatmaps surrounding peaks in the GWAS
(Shin et al., 2006). The Manhattan and quantile-quantile plots
were drawn using the R package qqman (Turner, 2014). We
used the correction method of Benjamini and Hochberg (1995)
to calculate the false discovery rate (FDR) and determine the
genome-wide significance thresholds of the GWAS, which was
1.0 × 10−7 at a nominal level of 0.05. The position of SNPs
in OsFLA2 and OsFLA6 is based on data from the MSU Rice
Genome Annotation Project (http://rice.plantbiology.msu.edu).

For GBA analysis, we used the MLM following the equation:
y = xβ + zu + e. Where y represents a vector of phenotype;
x represents a matrix of fixed effects such as gene haplotype; β

represents a vector of effects; z represents an incidence matrix
relating y to u; and e represents a matrix of residual effects. First,
based on polymorphisms localized on the coding regions, we
performed gene haplotype identification using an R script. The
difference in haplotype was used as a dummy variable, which was
used as fixed effects using the R package “rrBLUP” version 4.3
(Endelman, 2011).

RNA Extraction and qRT-PCR
The total RNA was extracted from flag leaf and flag leaf
lamina joint at development stages 5–8 [as per the criterion
described by Itoh et al. (2005)] using the ultrapure RNA kit
(OMEGA BIO-TEK, https://www.omegabiotek.com), sampled
from the six accessions (three accessions with smaller FLA
and three accessions with larger FLA). The RNase-free DNase
I treatment (Vazyme, http://www.vazyme.com) was used to
remove any genomic DNA contamination. In addition, the
HiScript II Q RT SuperMix (Vazyme, http://www.vazyme.com)
was used to perform the first-strand cDNA synthesis by reverse
transcription from 1 µg of RNA. We used the 18S rRNA
gene as an internal control. We performed the qRT-PCR in a
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TABLE 1 | Primers used in this study.

Primer name Forward primers (5′-3′) Reverse primers (5′-3′)

Primers for quantitative real-time RT-PCR:

RT1-18S GAGATGGGTAGGGACGTGGAT TGGTACGTCTCGTCCACCTT

RT2-Os02g0142875 GGAGGCTTGCGGTGAGTATC AAGCAGGCGTTACATTCCCC

RT3-Os06g0704300 GCAGTTCATCGGAGAAGCGA CGGGAATGAAGTGAGTACCGA

Primers for plasmid construction:

cOsFLA2 cagtCACCTGCaaaacaactgggaaacagcagatggaattc cagtCACCTGCaaaatacactagttcttggcttcttgcaca

Primers for genotype identification of gene OsFLA2:

GGTTGTGGCTTCCTAGGTCC ATGACCAACCAACTGGGCAA

FIGURE 1 | Phenotypic characteristics of flag leaf angle (FLA) in indica

subgroup, japonica subgroup, and six environments, respectively. (A)

Phenotypic value distributions of FLA in indica subgroup and japonica

subgroup. The number of varieties within each population was 172 and 181,

respectively. (B) Phenotypic value distributions of FLA in six environments. (C)

Phenotypic statistics of FLA in six environments. The box edges represent the

upper and lower quantiles, with the median value shown by the black line in

the middle of the box. Vertical lines represent the data from the lowest quantile

to the top quantile. Individuals falling outside the range of the whiskers are

shown as asterisks. E1, Nanjing in 2017; E2, Nanjing in 2018; E3, Nanjing in

2019; E4, Hefei in 2017; E5, Hefei in 2018; E6, Hefei in 2019.

96-well thermocycler (Roche Applied Science LightCycler 480)
using SYBR Green (Vazyme, http://www.vazyme.com) and set
the cycling conditions as follows: first, denaturation (95◦C,
5min); second, amplification and quantification program-40
cycles (95◦C for 10 s, 60◦C for 30 s, and 72◦C for 60 s) with a
single fluorescence measurement; third, the melting curve (60–
95◦C) with a heating rate of 0.1◦C per second and continuous
fluorescence measurement; and finally, cooling step (40◦C).
We performed the three independent replicates. The primer
sequences of qRT-PCR are shown in Table 1. We calculated the
relative gene expression of the target gene using the following
equation (Pfaffl, 2001): Exp=2−1Ct, where 1Ct =Cttarget gene -
Ct18S rRNA.

Generation of OsFLA2 Transgenic Plants
The full-length genomic DNA of Os02g0142875 was amplified
by PCR from A7444 rice and cloned into the pBWA(V)HII
vector (Table 1). This construct (pBWA(V)HII-OsFLA2) was
then transformed into Nipponbare and 7001S by Agrobacterium
EHA105, respectively. Additionally, the corresponding empty
vector transformed into Nipponbare was used as a control.
Thirty-two independent T1 seedlings obtained were grown to
maturity under natural conditions. In the next rice-growing
season (May to October), the T2 seeds harvested from T1 plants
at the maturity stage were grown in the paddy field. At the
tillering stage, the three allele genotypes (TT, TC, and CC) on the
Os02g0142875 locus were determined using the primers listed in
Table 1, and the FLA was measured in the Os02g0142875TT and
Os02g0142875CC plants at full heading stage.

Evaluation of the Utilization Value for
OsFLA2 Alleles
We selected isogenic lines 7001SFLA2−CC (small FLA) and
7001SFLA2−TT (large FLA) as the female parents and variety 9311
as themale parent to perform an actual hybrid F1 seed production
experiment. 7001S carried the CC allele. 7001SFLA2−TT obtained
in this study is an isogenic line. The male parent and female
parent inter-planted and the planting-to-row ratio is 2:6:2. At
flowering time, artificial pollination was conducted two times
each day. After 30 days, the panicle from the female parents
was harvested. The seed setting percentage was calculated to
evaluate the potential value of the OsFLA2 allele in hybrid F1
seed production.

RESULTS

Phenotypic Statistics of FLA in Natural
Rice Accessions
The phenotypic value of FLA was investigated in the 353 rice
accessions containing indica and japonica subspecies across six
environments. The distributions of average value over the six
environments for FLA in indica and japonica subspecies are
shown in Figure 1A. Compared with indica rice, the japonica
rice population had lower values for FLA (Figure 1A). In
the 353 accessions, the mean value of FLA was calculated
per environment, ranging from 35.87 ± 20.66◦ to 38.49 ±

21.38◦, with coefficients of variation (CV) across the six
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FIGURE 2 | Quantitative trait locus (QTL) identification for FLA by genome-wide association study (GWAS) in rice. (A) Manhattan plots for the whole population of rice

accessions. The vertical axis indicates the negative log10-transformed P-values. The dots above the red line mean the significant single nucleotide polymorphisms

(SNPs) in the QTL region. The black arrows indicate the QTL identified. (B) Information of the identified QTL.

environments from 55.55 to 58.48% (Figures 1B,C). These
results showed that there existed abundant phenotype variation
in the population studied. The scatterplots of FLA across
different years and locations were carried out and shown in
Supplementary Figure 1, indicating that FLA was genetically
stable in six environments. Based on the results of the joint
analysis of variance for FLA, we found that there were significant
differences among genotypes, no significant differences among
the environments, and significant differences in the interactions
of genotypes with environments (Supplementary Table 3).
These results indicated that although the environment had an
effect on FLA, the abundant phenotypic variation of FLA was
mainly attributable to variation in genotype.

Genome-Wide Association Mapping for
FLA
Based on the mixed linear model with correction of kinship bias,
GWAS on FLA trait of 353 accessions with high-quality SNPs
(MAF > 0.05) was carried out. The significant SNP associations
with FLA were illustrated in Manhattan plots (Figure 2A). We
considered the region as a QTL when more than three significant
SNPs exceeding the threshold value of 1 × 10−7 were in the
200-kb interval of the leading SNP. According to this criterion,
we identified six QTLs associated with FLA (Figure 2B). Among
them, two QTLs, namely, qFLA2 and qFLA6, own a relatively
large number of significant SNPs 12 and 10, respectively. We
considered qFLA2 and qFLA6 as the major QTLs for FLA to
analyze further.

Allele OsFLA6GG Increases FLA
For the association signal in the 29.63–29.83Mb region on
chromosome 6, there were 40 genes for FLA identified
(Figures 3A,B). In this region, 32 of 40 genes contain
nonsynonymous SNPs (Supplementary Tables 4, 5). Only one
nonsynonymous SNP was found to be significantly associated
with FLA (–log10P ≥ 7.0) using two methods of GWAS and
GBA (Supplementary Table 4); it was located within the gene
locus Os06g0704300. Hereafter, gene Os06g0704300 is referred
to as OsFLA6. The full length of OsFLA6 is 3,620 bp, including
11 exons and 10 introns. The SNPs of OsFLA6 occurred in the
2 kb upstream and the coding sequence of the gene. This resulted
in four haplotypes of OsFLA6 being identified (Figure 3C). The
elite haplotypes Hap 2 and Hap 3 were associated with larger FLA
while haplotype Hap 1 and Hap 4 were associated with smaller
FLA (Figure 3D). Among them, only one SNP locus (29,739,644)
was significantly associated with FLA (Supplementary Table 4),
which causes a base change from base A to base G at nucleotide
(nt) 328 in the coding sequence, resulting in an amino acid
change from threonine (T) to alanine (A) at amino acid 110. The
average FLA value of 116 accessions carrying the alleleOsFLA6AA

was 26.5 ± 11.8◦. The average FLA value of 232 accessions
carrying the alleleOsFLA6GG was 37.5± 12.3◦. The differences in
FLA value between alleles OsFLA6AA and OsFLA6GG were highly
significant (Welch’s t-test; P = 6.06E−04) (Figure 3E).

Furthermore, we performed quantitative real-time
polymerase chain reaction (qRT-PCR) analysis of flag leaf
and flag leaf lamina joint at differentiation stages 6, 7, and
8, respectively, sampling from three accessions (i.e., A7444,
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FIGURE 3 | Genome-wide association study for FLA and identification of the candidate gene OsFLA6 (Os06g0704300). (A) Manhattan plots for FLA. Red line means

the significance threshold (–log10 P = 7.0). (B) Local Manhattan plot (top) and linkage disequilibrium (LD) heatmap (bottom) on chromosome 6. The arrow indicates

the position of nucleotide variation in Os06g0704300. The candidate region lies between the red solid lines. (C) Haplotypes of OsFLA6 associated with flag leaf angle

(Continued)
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FIGURE 3 | in rice. (D,E) Box plots of flag leaf angle in accessions containing the different haplotypes (D) and elite alleles (E). Center line, median; box limits, upper

and lower quartiles; whiskers, 1.5× the interquartile range; dots, outliers. Differences between the alleles were statistically analyzed based on Welch’s t-test. (F)

Relative expression of Os06g0704300 in flag leaf and flag leaf lamina joint at development stages 6–8 from the three accessions (i.e., Ludao, Shenlenuo, and A7444)

with a large FLA and the three accessions (i.e., Nipponbare, Kendao 13, and Chenwan 3hao) with a small FLA, determined by qRT-PCR (**P < 0.01, *P < 0.05,

two-tailed Welch’s t-test). Data are presented as means ± SE; n = 3 independent biological replicates.

Shenlenuo, and Ludao) with large FLA and three accessions (i.e.,
Nipponbare, Kendao 13, and Chenwan 3hao) with small FLA.
The results showed that the expression of OsFLA6GG was higher
than that of OsFLA6AA in flag leaf and flag leaf lamina joint at
differentiation stage 7, but no significant difference was found
at stages 6 and 8 (Figure 3F). We also found that the expression
of OsFLA6GG in each of the three accessions with larger FLA
was significantly higher than that of OsFLA6AA in each of the
three accessions with smaller FLA (Figure 3F). Based on the
website of China Rice Data Center (http://www.ricedata.cn/
gene/list/286.htm), we found that the gene locus Os06g0704300
was identical to OsLIC (O. sativa leaf and tiller angle increased
controller), which encodes a CCCH-type zinc finger protein and
regulates leaf angle and tiller angle through the BR signaling
pathway (Wang et al., 2008; Zhang et al., 2012). Research on the
function of LIC has been reported, and we will no longer study
the function of OsFLA6GG.

Introduction of the Allele OsFLA2TT

Increases FLA
For the association signal in the 2.27–2.47Mb region on
chromosome 2, there were 19 genes for FLA identified
(Figures 4A,B). Based on SNP information, 10 of the 19
genes contain nonsynonymous SNPs (Supplementary Tables 6,
7). However, only one nonsynonymous SNP was significantly
associated with FLA using two methods of GWAS and GBA
(Supplementary Table 6); it was located within the gene locus
Os02g0142875. Hereafter, gene Os02g0142875 is referred to as
OsFLA2. The full length of OsFLA2 is 2,177 bp, including three
exons and two introns. Gene OsFLA2 encodes a 95 amino
acid protein. For OsFLA2, there was no putative conserved
domain detected. The SNPs of OsFLA2 occurred in the coding
sequence, the intron, and the 2 kb downstream of the gene.
This resulted in three haplotypes of OsFLA2 being identified
(Figure 4C). The elite haplotype Hap 1 was associated with
larger FLA while haplotypes Hap 2 and Hap 3 were associated
with smaller FLA (Figure 4D). For the five exon SNPs, one
SNP site (2,372,278 bp) was synonymous, and the other four
were nonsynonymous. Among the four nonsynonymous SNPs,
only one SNP site (2,372,437) was significantly associated with
FLA (Supplementary Table 6). The SNP site (2,372,437) causes
a base change from base C to base T at nt 137 in the cDNA
sequence, which results in an amino acid change from serine
(S) to phenylalanine (F) at amino acid 46. The average FLA
values of 286 accessions carrying the allele OsFLA2CC were 28.5
± 10.5◦. The average FLA values of 24 accessions carrying the
allele OsFLA2TT were 51.5± 13.1◦. The difference in FLA values
between the OsFLA2CC and OsFLA2TT genotypes was highly
significant (Welch’s t-test; P = 4.88E−04) (Figure 4E).

The qRT-PCR results showed that there were expressions for
OsFLA2TT and OsFLA2CC in flag leaf and flag leaf lamina joint
at differentiation stages 6, 7, and 8 (Figure 4F). The expression
of OsFLA2TT was higher than that of OsFLA2CC in flag leaf and
flag leaf lamina joint at differentiation stage 7, but no significant
difference was found at stages 6 and 8 (Figure 4F). We also
found that the expression of OsFLA2TT in each of the three
accessions (i.e., A7444, Shenlenuo, and Ludao) with large FLA
was significantly higher than that of OsFLA2CC in each of the
three accessions (i.e., Nipponbare, Kendao 13, and Chenwan
3hao) with small FLA (Figure 4F). These results suggested that
enhanced expression of OsFLA2TT might increase FLA.

According to the results of GWAS, no SNP loci located
in the promoter region of OsFLA2 were associated with
FLA. Based on the website of promoter functional elements
(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/#
opennewwindow), we found that there were no SNP loci in the
cis-element regulatory region. So, we speculated that phenotypic
variation between the accessions with the TT allele and those
with the CC allele was caused by SNP loci in the coding sequence
region. Next, we conducted a transformation of theOsFLA2 gene
to confirm it. The genome sequence of the allele OsFLA2TT and
empty vector were introduced into Nipponbare, respectively.
Compared with the plants of the Nipponbare genome, plants
transformed with the allele OsFLA2TT had a larger FLA, whereas
those transformed with the empty vector showed no phenotypic
change (Figures 4G,H). We investigated the FLA phenotype
of plants including Nipponbare-empty vector, Nipponbare-CC
allele, and Nipponbare-TT allele, respectively. Twenty plants
were investigated for each type. The results showed that the
FLA phenotype value between plants with Nipponbare-empty
vector and Nipponbare-CC allele has no significant difference.
There was a highly significant (P < 0.01) difference in FLA
phenotype value between plants with the Nipponbare-CC allele
and Nipponbare-TT allele. These results showed that OsFLA2
was the causal gene for FLA on chromosome 2.

OsFLA2TT Can Increase the Seed Setting
Percentage in Hybrid F1 Seed Production
The FLA of 7001SFLA2−TT was significantly larger than that
of 7001SFLA2−CC (Figure 5A). We investigated the seed setting
percentage of the two combinations, 7001SFLA2−TT × 9311 and
7001SFLA2−CC × 9311, respectively. The seed setting percentage
of 7001SFLA2−TT was 39.83%, which is significantly (P < 0.05)
higher than that of 7001SFLA2−CC (30.72%) (Figures 5B,C).
These results show that the OsFLA2TT allele could increase
significantly (P < 0.05) the seed setting percentage in hybrid F1
seed production.
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FIGURE 4 | Genome-wide association study for FLA and identification of the causal gene OsFLA2 (Os02g0142875). (A) Manhattan plots for FLA. Red line indicates

the significance threshold (–log10 P = 7.0). (B) Local Manhattan plot (top) and LD heatmap (bottom) on chromosome 2. The arrow indicates the position of nucleotide

(Continued)
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FIGURE 4 | variation in Os02g0142875. The candidate region lies between the red solid lines. (C) Haplotypes of OsFLA2 associated with flag leaf angle in rice. (D,E)

Box plots of flag leaf angle in accessions containing the different haplotypes (D) and elite alleles (E). Center line, median; box limits, upper and lower quartiles;

whiskers, 1.5× the interquartile range; dots, outliers. Differences between the alleles were statistically analyzed based on Welch’s t-test. (F) Relative expression of

Os02g0142875 in flag leaf and flag leaf lamina joint at development stages 6–8 from the three accessions (i.e., Ludao, Haomake, and A7444) with a large FLA and the

three accessions (i.e., Nipponbare, Kendao 13, and Chenwan 3hao) with a small FLA, determined by qRT-PCR (**P < 0.01, two-tailed Welch’s t-test). Data are

presented as means ± SE; n = 3 independent biological replicates. (G) Images of FLA of transgenic plants transformed with the empty vector (VEC), C allele, and T

allele. Scale bar = 3 cm. (H) FLA of transgenic plants. Data are presented as means ± SE (n = 20).

FIGURE 5 | Evaluation of the utilization value for OsFLA2 alleles. (A) Comparison of the FLA of 7001SFLA2−CC and 7001SFLA2−TT . Data represent means ± SD (n = 40

independent plants). **P < 0.01, Student’s t-test. (B) Panicle morphology of 7001SFLA2−CC and 7001SFLA2−TT . Scale bar, 5 cm. (C) Comparison of the seed setting

percentage of 7001SFLA2−CC and 7001SFLA2−TT . Data represent means ± SD (n = 32 independent plants). *P < 0.05, Student’s t-test.

Allele Frequency Distribution of OsFLA2
and OsFLA6
To elucidate the allele types of OsFLA2 and OsFLA6 loci in
wild rice, we analyzed the sequences of 12 wild rice reported
by Dang et al. (2020). The sequencing analysis results showed
that the alleles of both OsFLA2 and OsFLA6 loci were all
found in wild rice (Figure 6). We investigated the regional
differentiation of diverse alleles on OsFLA2 and OsFLA6 gene
loci. The allele OsFLA2TT (large FLA) is mainly distributed
in accessions collected from low-latitude regions, such as
southeastern Asia. For OsFLA2CC (small FLA), we found that it
is mainly distributed in accessions collected from high-latitude
regions, such as northeastern China, and FLA decreases with the
increase of latitude (Figure 6). A similar situation was observed
forOsFLA6, in which the alleleOsFLA6GG wasmainly distributed
in accessions collected from southern China and southeastern
Asia (Figure 6).

Furthermore, by consulting the published database in
rice, we selected 30 wild rice (Oryza rufipogon) (https://
www.ebi.ac.uk/ena/browser/view/PRJEB2829) and 202 O.
sativa (http://ricevarmap.ncpgr.cn/two_cultivars_compare/)
to analyze the allele frequency distribution of OsFLA2
and OsFLA6 (Supplementary Tables 8–11). The results in
Supplementary Figure 2 show a similar allele frequency
distribution of OsFLA2 and OsFLA6 like that in Figure 6 except
TRJ. We speculated the reason is that the TRJ in the database
was from many sources while the TRJ in this study was only
from Indonesia.

DISCUSSION

In this study, we investigated the FLA phenotype data in
353 rice accessions and confirmed that there existed a rich

phenotypic variance. The CV for FLA ranged from 55.55%
(E3) to 58.48% (E4) (Figure 1C). The results of a joint
variance analysis indicated that the variations in FLA were the
main contribution to diverse genotypes, although significant
interactions between genotypes and environments were detected.
In conclusion, these results provide the basis to mine the elite
alleles for FLA.

In this study, we identified six QTLs associated with FLA,
which were located on chromosomes 1, 2, 4, 5, 6, and 9,
respectively (Figure 2). Based on the Gramene website (http://
www.gramene.org/markers/), the BLAST (http://blast.ncbi.nlm.
nih.gov/Blast.cgi), and the China Rice Data Center database
(http://www.ricedata.cn/gene/list/1499.htm), we compared the
QTLs identified in this study with the QTLs reported previously
controlling FLA. The position range of five QTLs was overlapped
with the flanking regions of four QTLs and one gene (OsLIC)
reported previously (Li et al., 1999; Dong et al., 2003; Wang
et al., 2008; Zhang et al., 2012, 2013; Ham et al., 2019)
(Supplementary Table 12), and the remaining one QTL qFLA2
was newly identified in this study.

Two GWAS signals significantly associated with FLA were
identified to nearly single-gene resolution. Gene OsFLA6
coincided with the locations of the gene, OsLIC. Wang et al.
(2008) reported that inhibition of endogenous OsLIC expression
resulted in a significant increase in leaf angle and tiller angle.
Zhang et al. (2012) confirmed that OsLIC modulated the
leaf angle by acting as an antagonistic transcription factor of
BRASSINAZOLE-RESISTANT 1 (BZR1) via the brassinosteroid
signaling pathway. In this study, we further confirmed that
OsFLA6 (OsLIC) could regulate the FLA. Gene OsFLA2 is a
newly identified gene in this study. The full length of OsFLA2 is
2,177 bp, including three exons and two introns. Gene OsFLA2
encodes a 95 amino acid protein. We have demonstrated that a
base C-to-T nonsynonymous mutation at nt 137 in the cDNA
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sequence of OsFLA2 caused the large FLA phenotype by qRT-
PCR, complementation test, and hybrid F1 seed production in
the field.

For OsFLA2, the CC allele and TT allele were both
present in wild rice (Figure 6 and Supplementary Figure 2). The
percentage of the CC allele was greater than that of the TT allele.
We called the CC allele an ancestral allele and the TT allele
a derived allele. Except for TRJ, as the latitude increases, the
percentage of the CC allele was still greater than the TT allele.
For TRJ, the percentage of the TT allele was greater than that of
the CC allele. For OsFLA6, the GG allele and AA allele were both
present in wild rice (Figure 6 and Supplementary Figure 2). The
percentage of the GG allele was greater than that of the AA allele.
The GG allele was the ancestral allele, and the AA allele was
the derived allele. Except for TRJ, as the latitude increases, the
percentage of the AA allele was greater than GG allele. For TRJ,
the percentage of the GG allele was greater than that of the AA
allele. The allele frequency distribution in TRJ was different from
that in other subgroups, and the dominant allele GG was the
one that controls the large FLA. We speculated that the reason
may be due to tropical japonica growth in low-latitude high-
altitude mountains in the field, and the light intensity is weaker
than that in the plain. The small FLA of temperate japonica rice
is beneficial for obtaining high grain yield in pure-line cultivars
(Yang et al., 1984) but is adverse for hybrid seed production
due to the requirement of removing the flag leaf of male-sterile
plants to receive pollen from the male parent (Dong Z. Y. et al.,
2018). Therefore, it is necessary to increase the FLA to facilitate
pollination in the F1 hybrid seed production. The accessions with
the two alleles,OsFLA2TT andOsFLA6GG, can be used to increase
FLA in the maintainer lines (pollen parents used for multiplying
the CMS lines) of hybrid japonica rice using the crossing and
marker-assisted selection breeding method.

Although Wang et al. (2005) cloned the gene OsWRKY11
using a T-DNA insertionmutant llawith a large leaf angle, the leaf
angle of mutant lla was not significantly different from that of the
wild type, and all the leaves of the plant were still uplifted, which
was difficult to be used in hybrid F1 seed production. In this
study,OsFLA2 only controlled the FLA. In addition, the excellent
allele of OsFLA2 was obtained from conventional materials. The
maintainer line with large FLA was selected by back-crossing,
and then the male-sterile line with large FLA was developed by
back-crossing, which can avoid the procedure of cutting leaves
and help to realize mechanized hybrid F1 seed production.
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2019 Hefei.
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