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Understanding the trait–environment relationships has been a core ecological research 
topic in the face of global climate change. However, the strength of trait–environment 
relationships at the local and regional scales in temperate forests remains poorly known. 
In this study, we investigated the local and regional scale forest plots of the natural broad-
leaved temperate forest in northeastern China, to assess what extent community-level 
trait composition depends on environmental drivers across spatial scales. We measured 
five key functional traits (leaf area, specific leaf area, leaf carbon content, leaf nitrogen 
content, and wood density) of woody plant, and quantified functional compositions of 
communities by calculating the “specific” community-weighted mean (CWM) traits. The 
sum of squares decomposition method was used to quantify the relative contribution of 
intraspecific trait variation to total trait variation among communities. Multiple linear 
regression model was then used to explore the community-level trait–environment 
relationships. We found that (i) intraspecific trait variation contributed considerably to total 
trait variation and decreased with the spatial scale from local to regional; (ii) functional 
composition was mainly affected by soil and topography factors at the local scale and 
climate factor at the regional scale, while explaining that variance of environment factors 
were decreased with increasing spatial scale; and (iii) the main environment driver of 
functional composition was varied depending on the traits and spatial scale. This work is 
one of the few multi-scale analyses to investigate the environmental drivers of community 
functional compositions. The extent of intraspecific trait variation and the strength of 
trait–environment relationship showed consistent trends with increasing spatial scale. Our 
findings demonstrate the influence of environmental filtering on both local- and regional-
scale temperate forest communities, and contribute to a comprehensive understanding 
of trait–environment relationships across spatial scales.

Keywords: community functional composition, environmental drivers, functional trait, intraspecific variation, 
spatial scale, temperate forest

INTRODUCTION

Trait-based ecology assumes that there are a series of traits that are functional and that link 
the environment to the performance (e.g., growth and survival) and ultimate fitness of the 
entire plant by variation in these traits (Cornelissen et  al., 2003; Violle et  al., 2007; Schmitz 
et al., 2015). Many ecological issues can be effectively addressed with the deepening understanding 
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of the plant functional traits (Kraft et  al., 2008; Diaz et  al., 
2016). However, trait-based ecology measures the properties 
of individuals, thus it must be  scaled to community and 
ecosystems to predict their dynamics and functioning (Enquist 
et al., 2015). Additionally, it can be better explain the variation 
in multiple ecosystem functions by focusing on the shape and 
shifts of trait distributions in communities (Savage et al., 2007; 
Enquist et  al., 2015). Therefore, examining how the functional 
composition of communities changes with environmental 
conditions is the key to understanding the role of persistent 
environment changes in driving community structure and 
ecosystem processes (Lavorel and Garnier, 2002; Funk et  al., 
2017; Wieczynski et  al., 2019).

The community functional composition has been widely 
characterized by community-weighted mean (CWM) trait value 
(Funk et  al., 2017). The CWM trait value corresponds to the 
average value of the functional trait of all individuals within 
community, which is typically calculated by multiplying species 
mean trait values by their relative abundances (Garnier et  al., 
2004; Violle et al., 2007). However, a limitation of this approach 
is that it ignores the contribution of intraspecific trait variation. 
The justification of using species mean trait value is based on 
the assumption that interspecific variation accounts for more 
fraction of the total trait variability as compared to intraspecific 
variation (Garnier et  al., 2001). While abiotic filters act on 
individuals rather than species, and consequently relying on 
species mean trait values may produce misleading or spurious 
conclusions (Violle et  al., 2012). It is becoming increasingly 
clear that intraspecific variation contributes considerably to 
trait variation and can influence community composition and 
dynamics (Messier et al., 2010; Westerband et al., 2021). Recent 
studies demonstrate that intraspecific variation had large effects 
on overall functional composition (Pichon et al., 2022). Therefore, 
incorporating both inter- and intraspecific trait variation when 
calculating community-weighted metrics will provide a reasonable 
approximation of community functional composition.

Intraspecific trait variation results from genotypic variation, 
phenotypic plasticity, or their interaction (Schlichting, 1986; 
Scheiner, 1993). Consequently, the intraspecific trait variation 
is influenced by the extent of gene flow and the degree of 
environmental heterogeneity (Bolnick et  al., 2003; Baythavong, 
2011). Increasing spatial scale is typically associated with 
increasing environmental heterogeneity and hence with increasing 
trait variation (Messier et  al., 2016). The “spatial variance 
partitioning” (SVP) hypothesis proposes that intraspecific and 
interspecific trait variation are both low at small scales and 
increases with spatial scale, saturating at different points along 
the continuum (Albert et al., 2011). However, intraspecific trait 
variation plateaus when the scale encompasses the entire species’ 
distribution (Siefert et al., 2015), and thus the relative contribution 
of intraspecific trait variation to total trait variation among 
communities is expected to decrease with increasing spatial 
extent from local to regional and global scales (Albert et  al., 
2011). Although the extent of intraspecific trait variation across 
levels of biological organization has been widely reported 
(Westerband et  al., 2021), whether and how it varies with 
spatial scales in temperate forest communities remains unclear. 

Therefore, it is necessary to quantify the contributions of 
intraspecific variation on total trait variation across spatial scales.

Geographical variation of functional traits is closely related 
to environmental conditions. Environmental filtering hypothesis 
proposed that the abiotic environment factors select species 
from the regional pool with similar trait values into communities 
to adapt to the local environment conditions (Keddy, 1992; 
Kraft and Ackerly, 2010). Assessing trait–environment 
relationships across spatial scales can aid in advancing our 
ability to use traits to predict the composition of communities 
in response to novel environmental conditions. Trait–environment 
relationships at the global scale have been gradually unraveled 
in previous studies using global plant trait databases (Bruelheide 
et  al., 2018; Wieczynski et  al., 2019). Nevertheless, these large-
scale trait patterns were failed to account for ecological processes 
operating at local scales that govern the functional profile of 
community assemblages (Pinho et  al., 2021). The functional 
composition of communities sampled at fine-grained plots was 
the direct outcome of the interaction both local and large-scale 
factors (Bruelheide et  al., 2018). For instance, communities 
across Neotropical moist forests share similar sets of functional 
strategies driven by current climatic conditions (Pinho et  al., 
2021). However, it remains unknown to what extent community-
level trait composition depends on regional-scale environmental 
drivers, particularly the effects of local-scale environmental 
factors (e.g., soil and topography factors) in temperate forests.

Temperate forests cover around 16% of the global forest 
area and 34% of global carbon sinks (Hansen et  al., 2010; 
Pan et  al., 2011). These forests are more altered, fragmented, 
and reduced than most other forest ecosystems due to their 
locations in the most densely populated areas of the world 
(Landuyt et  al., 2019). Given that temperate forests are facing 
the risks of biodiversity loss in the context of global climate 
change (Loarie et  al., 2009), an urgent concern of ecological 
research is to deepen the understanding of how their functional 
composition responds to environmental drivers. Generally, the 
functional composition of communities was mainly affected 
by climate factors at the regional scale (Zhou et  al., 2013; 
Pinho et  al., 2021), while soil and topography factors at the 
local scale (Shen et  al., 2016; Libalah et  al., 2017). However, 
the relative importance of these environmental factors, as well 
as the strongest environmental predictor of temperate forest 
communities remains less clear. Thereby, quantifying and assessing 
environmental drivers of functional composition across local 
and regional scales is essential for guiding land policy and 
management decisions for temperate forests.

In this study, we  calculated a “specific” CWM trait value, 
which combines both inter- and intraspecific trait variation 
to assess the trait–environment relationships. Our dataset 
consisted of large region forest plots and local-scale permanent 
forest observation study site of the natural broad-leaved temperate 
forest distributed throughout northeastern China. We  focused 
on the two spatial scales (local and regional), and first quantified 
the contribution of intraspecific variation to the total among-
community variation of different functional traits. Then 
we  assessed how environmental conditions influence the trait 
composition of forest communities. Finally, we  determined the 
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strongest environment predictors of community functional 
compositions. Our study had two principal objectives: (i) to 
test the contribution of intraspecific variation on total trait 
variation and how it changes with spatial scale; and (ii) to 
test the effects of environmental filtering on the functional 
composition of forest communities across different spatial scales. 
We  anticipated that the extent of intraspecific trait variation 
and the strength of trait–environment relationship would both 
decrease with increasing spatial scale.

MATERIALS AND METHODS

Study Area
Our study was conducted in natural broad-leaved temperate 
forests of northeastern China. The study region covers seven 
mountain ranges: the Longgang, the Hadaling, the Changbai, 
the Zhangguangcailing, the Laoyeling, the Wanda, and the 
Lesser Khingan Mountain areas. The area is characterized by 
a temperate continental climate affected by monsoon, with 
four distinct seasons. The annual average temperature ranges 
from −0.4 to 10.4°C, and the annual precipitation ranges from 
368 to 879 mm.

For the regional-scale study, we  established a total of 358 
circular forest plots (0.1 ha) that cover the whole study region 
in the summer of 2017 and 2018 (Figure  1; Zhang et  al., 2020; 
Qiao et  al., 2021). The latitudinal and longitudinal, respectively, 
ranges extend from 39°42′48″ to 50°44′22″ and from 122°02′57″ 
to 133°58′35″. In addition, the site located in the middle of 
the regional study area were used for the local-scale study 
(43°57′54″–43°58′16″N, 127°42′47″–127°43′19″E; Figure  1). A 

permanent forest observation study covering an area of 21.12 ha 
(660 × 320 m) was established in the summer of 2009 (Figure  1; 
Zhang et  al., 2012; Hao et  al., 2018). This was then subdivided 
into a total of 528 square plots (20 × 20 m).

All individual woody trees with a diameter at breast height 
(DBH) > 5 cm were identified at the species level and measured 
in each plot both for the regional and local scales. In these 
plots, a total of 17,239 individuals of 21 species and 27,925 
individuals of 58 species were recorded (Supplementary  
Table S1).

Environment Variables
For the regional-scale study, a total of 15 environment variables 
were obtained, then subdivided into climate, soil, and topography 
(see more details in Supplementary Table S2). Climate variables, 
including mean annual temperature, mean diurnal range, max 
temperature of warmest month, mean annual precipitation, 
precipitation seasonality, precipitation as snow, and solar 
radiation, were extracted from WorldClim 2 and the ClimateAP 
Dataset (Fick and Hijmans, 2017; Wang et  al., 2017). Most of 
the soil variables, that is, coarse fragments, volumetric water 
content, total nitrogen content, C/N ratio, and pH in water, 
were calculated from the WISE30secv.1 (Batjes, 2015). The 
one exception was soil depth, which was measured in the 
field. Two topography variables (elevation and slope) used for 
this study were assessed by our own field observations.

As for the local-scale study, four topography and eight soil 
variables were estimated as proxies of the environmental 
conditions (Supplementary Table S3). The topography variables, 
including elevation, convexity, aspect, and slope, were measured 

FIGURE 1 | Spatial distribution of the surveyed plots.
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and calculated for each 20 × 20 m plot (Zhang et  al., 2012; 
Hao et al., 2020). Since the aspect is a circular variable, we using 
a method (Zhong et al., 2021) standardized it to reflect northerly 
(COSA) and easterly (SINA) facing slopes (range = − 1 to + 1). 
These two variables, respectively, increase with the more northerly 
and easterly directions of aspect. Eight soil properties, namely, 
organic carbon mass content, total nitrogen, available nitrogen, 
total phosphorus, available phosphorus, total potassium, available 
potassium, and soil acidity, were measured from soil samples 
that extracted to a depth of 10 cm in each 40 × 40 m plot. 
These soil variables were then interpolated to grids of 20 × 20 m 
using the Ordinary Kriging in the gstat package.

Trait Data
In this study, we  focused on the key functional traits that are 
believed to influence plant performance and reflect its life-
history strategies (Diaz et  al., 2016). Four-leaf traits and one 
stem trait, including leaf area (LA), specific leaf area (SLA), 
leaf carbon content (LCC), leaf nitrogen content (LNC), and 
wood density (WD), were measured in 2017 and 2018. More 
details of these traits and their significance can be  seen in 
Table 1. We sampled one individual for each particular species 
that occurred in each plot, and they were available for both 
the regional and local-scale plots. We, respectively, sampled 
3,803 and 2,516 individual trees from the local- and regional-
scale plots. We also used random sampling instead of traditional 
sampling protocols to reveal the true extent of the intraspecific 
trait variations (Westerband et  al., 2021). The specific species 
mean trait values were represented by the trait values of a 
given sampled individual. At least five fresh, intact, and fully 
expanded leaf samples were taken from each sampled individual 
on the highest part of the tree crown, which was exposed to 
direct sunlight or high lateral light levels (Liu et  al., 2013). 
Wood core samples were extracted from the tree trunk at a 
height of 1.3 m using an increment borer (5 mm, Suunto, 
Finland). To not affect the next forest censuses of this permanent 

forest observation study site used in the local-scale study, 
we  only extracted wood cores within the regional-scale plots. 
For this reason, subsequent analyses for relationship between 
wood density and environmental conditions were conducted 
only at the regional scale and reported the results only in 
Supporting Information. LA and SLA (leaf area/dry matter) 
were obtained using the standard methods (Cornelissen et  al., 
2003). Leaf elements (LCC and LNC) were gathered using 
elemental analyzer PE2400 SeriesII (PerkinElmer Inc., 
United  States) and J200 Tandem LA/LIBS system (Applied 
Spectra Inc., Fremont, CA, United  States). WD was calculated 
as the ratio of the wood core dry mass (80°C, 72 h) to its 
fresh volume (Williamson and Wiemann, 2010; Hao et al., 2018).

Statistical Analysis
We calculated the CWM for each trait within each community 
using the following equation (Garnier et  al., 2004; Wieczynski 
et  al., 2019):

 
, , , ,CWM = ∑

kn

j k i k i j k
i

P T

Where nk  and Pi k,  are the total number of species and 
relative abundance of species i  in plot k , respectively; and 
Ti j k, ,  is the mean value of trait j  for species i  in plot k ,  
meaning that each species has a specific trait value within 
each plot, rather than a uniform species mean trait value. 
Then we  log-transformed the size-dependent trait (leaf area) 
prior to calculation to eliminate bias (Kerkhoff and Enquist, 
2009). This CWM computation was performed for each plot 
at the local and regional scales.

To quantify the relative contribution of intraspecific trait variation 
on total among-community trait variance, we  followed the sum 
of squares decomposition method proposed by Leps et al. (2011). 
This method consists of following steps. First, for each trait and 
plot, we  computed three types of CWMs. (1) CWMspecific was 
calculated following the previously described equation, which 
includes both intraspecific trait variation and species turnover 
effects. (2) The CWMfixed was calculated using species mean trait 
values averaged across all plots, including only the effects of 
species turnover. (3) The intraspecific variability effect was then 
measured as CWMintra = CWMspecific - CWMfixed (Siefert et al., 2015). 
Second, the total sum of squares (SSspecific) of the community-level 
trait variation was decomposed into “fixed” (SSfixed), “intraspecific” 
(SSintra), and “covariation” (SScov) components (i.e., 
SSspecific = SSfixed + SSintra + SScov). Lastly, the relative contribution of 
intraspecific trait variation was assessed as the ratio between the 
regression sum of squares of the intraspecific trait variation model 
(SSintra) and the total sum of squares of the model including 
both components (SSspecific). Here we focused on the relative rather 
than the absolute extent of intraspecific trait variation, because 
it allows comparison of multiple traits measured in different units 
or on different scales (Siefert et  al., 2015).

The multiple linear regression models were then used to 
assess the effect of environment variables on community functional 
composition. Before fitting these models, all predictors and 

TABLE 1 | Significance of functional traits used in this study.

Functional traits Abbreviation Units Functional 
significance

Leaf area LA mm2 Light acquisition
Specific leaf area SLA mm2/g Leaf economic 

spectrum; light 
interception 
efficiency; plant 
shade tolerance

Leaf carbon 
content

LCC % Carbon assimilation 
rate

Leaf nitrogen 
content

LNC % Leaf economic 
spectrum; 
photosynthetic 
capacity; metabolic 
rate

Wood density WD g/cm3 Wood economic 
spectrum; volume 
growth; stem 
defense
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response variables were standardized to interpret the relative 
importance of the environment variables on a comparable scale 
(Gross et al., 2017). For each model, the variance inflation factors 
(VIF) of all predictors were less than 10, so as to avoid 
multicollinearity. Then, a model selection procedure based on 
minimizing Akaike’s information criterion (AIC, ∆AIC < 2) was 
used to select the best predictors of community functional trait 
composition (Burnham and Anderson, 2002). The dredge function 
in the MuMIn package was used for this procedure (Bartoń, 
2014). The relative importance of the different environmental 
factors was then evaluated using a method similar to a variance 
decomposition analysis (Gross et  al., 2017; Le Bagousse-Pinguet 
et  al., 2017). The relative effects of each environmental factor 
were calculated as the ratio of the sum of its parameter estimate 
to the sum of all parameter estimates in the model, expressed 
as a percentage. All statistical analyses were performed using 
R 4.0.5 (R Core Team, 2021) for both the local and regional scales.

RESULTS

Intraspecific Trait Variation Across Spatial 
Scales
The results showed that intraspecific trait variation contributed 
23–87% of the total among-community trait variation for the 
local scale and 17–72% for the regional scale (Figure  2). The 
relative importance of intraspecific variability differed among 
traits and spatial scales. At the local scale (Figure  2A), a 
relatively large portion of the total variance was attributed to 
intraspecific trait variation for leaf chemical traits (LCC and 
LNC), compared to leaf morphological traits (LA and SLA). 
At the regional scale, the intraspecific variance was highest 
for SLA (72%), and lowest for wood density (WD), which 
had only 17% of the total trait variation being attributed to 
intraspecific trait variation (Figure  2B). We  even observed 

that intraspecific trait variation was equivalent to or surpassed 
interspecific trait variation for most cases (six out of nine). 
Overall, intraspecific trait variation explained an average of 
63% for the local scale and 54% for the regional scale of the 
total trait variation (only for the traits that exist in both scales).

Explained Variance of Environmental 
Factors on Community Functional 
Composition
We observed different trait–environment patterns across the 
two spatial scales (Figure  3). The variance in community 
functional composition explained by each environmental factor 
and their relative importance was varied between functional 
traits (Figure  3). For the local scale, the predictive power of 
the models was greatest for the SLA (Figure  3A, adjusted 
R2 = 0.29), followed by LA (0.22), compared to LCC (0.15) and 
LNC (0.01; insignificant, p = 0.135). Soil factors were responsible 
for an average of 57% (49–68%) of the explained variance in 
community functional composition (not considering the 
insignificant model), which was greater than that explained 
by the topography factors (43%). For the regional scale, the 
predictive power of the models on community functional 
composition was greater for the LA (Figure  3B, adjusted 
R2 = 0.18), and also reached a similar level for the SLA (0.17) 
compared to LCC (0.09) and LNC (0.08). Climate factors 
(60–82%) played a dominant role in determining the functional 
composition of the regional scale, followed by soil (3–40%) 
and finally topography (0–23%). It is also noteworthy that 
when applied to wood density (WD), the model showed the 
greatest predictive power compared to the other traits on the 
regional scale (Supplementary Figure S1, adjusted R2 = 0.25), 
which was also mainly explained by climate factors (70%). 
The predictive power of our models was decreased when 
explaining larger spatial scale trait–environment patterns (three 
out of four traits; Figure  3).

A B

FIGURE 2 | Relative contributions of intraspecific trait variation to explaining variability in total trait variation for traits at (A) local scale and (B) regional scale. LA, 
leaf area; LCC, leaf carbon content; LNC, leaf nitrogen content; SLA, specific leaf area; WD, wood density.
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Environment Predictors of Functional 
Composition
At the local scale, the strongest individual environmental driver 
of each community functional composition varied widely among 
the traits (Figure  4). Specifically, slope (SLO) was the main 
driver and had a significant negative relation with LA. Available 
nitrogen (AN) and elevation (ELE) both had significantly 
negative and positive relationships with SLA. Available potassium 
(AK) was the strongest predictor of LCC, which explained up 
to 28% of the total variance.

At the regional scale, mean annual precipitation (MAP) and 
mean annual temperature (MAT) were among the strongest 
predictors in most traits, signifying the influence of these two 
climatic factors on community functional composition (Figure  5; 
Supplementary Figure S1). However, SLA was weakly related to 
precipitation and temperature, being mainly driven by soil factors 
(soil depth and pH). Several different climate factors (MTWM, 
MDR, and PAS) also exhibited significant relations with trait 
composition. LCC and LNC exhibited very similar trends between 
community functional composition and topography factor, with 
values that were strongly negatively related to slope (SLO). In 
contrast, WD was strongly positively related to slope (SLO; 
Supplementary Figure S1). Interestingly, elevation (ELE) was 
determined to be insignificantly correlated with the trait in all cases.

DISCUSSION

Intraspecific Trait Variation Differed 
Among Traits and Spatial Scales
We first explored how greatly intraspecific trait variation is 
found among communities in the local- and regional-scale 
temperate forests. Community-level trait variations were mainly 

dominated by intraspecific trait variation (i.e., explained an 
average of 63 and 54% for the local- and regional-scale, 
respectively). The results were similar to previous studies in 
that intraspecific trait variation consistently accounted for a 
significant proportion of the total trait variation (Messier et al., 
2010; Siefert et  al., 2015; Anderegg et  al., 2018). Our results 
highlight the contribution of intraspecific variation on the total 
trait variation, thus we  suggest considering it when assessing 
the trait–environment relationships. There is one enlightening 
result we found in our study, namely, that the relative contribution 
of intraspecific trait variation was decreased with spatial scale 
from local to regional for leaf chemical traits (LCC and LNC). 
This finding supports the SVP hypothesis, which lead to general 
predictions that the reduction in the extent of intraspecific 
trait variation at larger scales, and higher interspecific trait 
variation than intraspecific trait variation at larger scales (Albert 
et al., 2011). In contrast, we found that the relative contribution 
of intraspecific trait variation was increased with increasing 
spatial scale for leaf morphological traits (SLA and LA). Therefore, 
the predictions of SVP hypothesis do not hold in some cases, 
because whether intraspecific trait variation will exceed 
interspecific trait variation depends on species distributions, 
gene flow, environmental heterogeneity, and the traits of interest 
(Westerband et  al., 2021).

We also observed considerable differences in the amount 
of intraspecific trait variance depending on the different functional 
traits. Specifically, the most used leaf trait in ecological analyses, 
SLA, showed the higher variation explained by intraspecific 
trait variance (62% for local and 72% for regional scale). 
Meanwhile, LA showed the lowest intraspecific trait variance 
and the nutrient concentration (LCC and LNC) were more 
similarly distributed at both local and regional scales. For the 
wood density of the regional scale, intraspecific variation 

A B

FIGURE 3 | The relative importance of each environmental factor on community functional composition across the (A) local scale and (B) regional scale, expressed 
as the percentage of explained variance. We showed the adjusted R2 and the value of p of the averaged models. LA, leaf area; LCC, leaf carbon content; LNC, leaf 
nitrogen content; SLA, specific leaf area.
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contributed only 17% of the total trait variation. These results 
were consistent with those of previous studies (Albert et  al., 
2010; Kichenin et  al., 2013; Kang et  al., 2014; Messier et  al., 
2016), and these different extents of trait variance were likely 
to reflect varying degrees of phenotypic plasticity and genetic 
regulation (Westerband et al., 2021). However, it should be noted 
that measurement errors also contributed to apparent intraspecific 
variation, and not all trait variation was due to environmental 
acclimation. In addition, this study only focused on the broad-
leaved temperate forests in this study, thus more research is 
required regarding coniferous forests, and even coniferous and 
broad-leaved mixed forests, so as to explore a more comprehensive 
result on intraspecific trait variation.

Trait–Environment Patterns Differ Across 
Spatial Scales
Understanding the relative effects of environmental factors on 
community functional composition across different spatial scales 
remains an important challenge. In this study, we  found that 

trait–environment patterns differ across traits and spatial scales. 
Soil factors explained more variation in community functional 
composition than did topography at the local scale for traits 
linked to the leaf economics spectrum (SLA and LCC). This 
result was consistent with those of previous studies in that 
the traits related to resource investment trade-offs were shifts 
in response to soil fertility gradient at the local-scale (Cornwell 
and Ackerly, 2009; Libalah et  al., 2017). However, the relative 
importance of topography factors found may be  equivalent to 
soil factors for LA, which represent the light acquisition ability. 
This is due to the fact that topography, as an important driver, 
not only affected soil moisture and nutrient availability (John 
Chandran et al., 2007), but also influenced the trees’ interception 
for light (Shen et  al., 2016). Unexpectedly, the association of 
LNC (which was another trait of the leaf economics spectrum) 
to environmental factors was insignificant, given that it has 
rarely been reported in previous studies. This insignificant 
relationship may demonstrate that in temperate broad-leaved 
forests, local environmental conditions are not the driving 
factor of leaf nitrogen content. As for the regional scale, climate 

FIGURE 4 | Effects of environmental variables on community functional composition for the local scale. We show the averaged parameter estimates (standardized 
regression coefficients) of model predictors and the associated 95% confidence intervals. The p-value of each predictor are given as: (.), p < 0.1; *p < 0.05; **p > 0.01; 
***p < 0.001. SOC, organic carbon mass content; PH, soil acidity; TP, total phosphorus; TN, total nitrogen; TK, total potassium; AP, available phosphorus; AN, 
available nitrogen; AK, available potassium; COSA, North aspect; SINA, East aspect; SLO, slope; ELE, elevation; CON, convexity.
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factors (60–82%) played a dominant role in determining the 
functional composition of communities, which was consistent 
with the findings of studies regarding temperate moist forests 
and subtropical evergreen broad-leaved forests (Swenson and 
Weiser, 2010; Huang et  al., 2021). The variance explained by 
soil factor was relatively high for SLA compared to other traits, 
proving that it was also one of the important drivers of specific 
leaf area at a larger scale. We note that the strongest community-
level correlations with environment factors were found for WD, 
reflecting the trade-off between stem traits (wood economics 
spectrum), also exist at the regional scale.

Together, the strong trait–environment correlations provided 
evidence to support the environmental filtering hypothesis at 
both spatial scales (particularly at the local scale). However, 
we  found that the explained variance of environment factors 
was decreased with increasing spatial scale (three out of four 
traits). This result signifies that (i) the local abiotic forces were 
the main driver of functional trait composition of small-scale 
forest communities and that (ii) in addition to environmental 
factors, other factors (e.g., biotic interactions and genetic 

variability) also played an important role in driving regional-
scale community functional composition. Overall, the environment 
represented the important factor shaping the functional 
composition of local and regional temperate forest communities, 
thus highlighting environment variability as potentially being 
the primary driver of this variation. Future work must use 
trait-based models based on trait–environment relationships and 
integrate biotic interactions to predict changes in community 
composition with accurate and consistent environmental datasets.

Predictors of Community Functional 
Composition Across Different Scales
Our study results showed that the main environment predictor 
of each community functional composition was varied depending 
on the traits and spatial scale. For local-scale communities, 
the soil properties, including total potassium, available nitrogen, 
available phosphorus, available potassium, and soil acidity (pH), 
were significantly related to different trait compositions. This 
demonstrates that soil fertility also determined a shift in 
functional traits composition of communities at the local scale, 

FIGURE 5 | Effects of environmental variables on community functional composition for the regional scale. We show the averaged parameter estimates 
(standardized regression coefficients) of model predictors and the associated 95% confidence intervals. The p-value of each predictor are given as: (.), p < 0.1; 
*p < 0.05; **p > 0.01; ***p < 0.001. MAT, mean annual temperature; MDR, mean diurnal range; MTWM, max temperature of warmest month; MAP, mean annual 
precipitation; PS, precipitation seasonality; PAS, precipitation as snow; SR, solar radiation; CFRAG, coarse fragments; TAWC, volumetric water content; TOTN, total 
nitrogen content; CNrt, C/N ratio; PHAQ, pH in water; SD, soil depth; ELE, elevation; SLO, slope.
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which was consistent with the result of a previous study 
performed in a tropical rainforest (Libalah et  al., 2017). In 
addition, slope was the main driver of LA and had a significant 
negative relation, which even had a significant positive effect 
on LCC. Elevation was the strongest predictor of SLA, explaining 
up to 19% of the total variance. Aspect (including SINA and 
COSA) had a strong effect on SLA and LCC, reflecting the 
light and water availability changes with the topography 
conditions (elevation, slope, aspect, and convexity), and resulting 
in different combinations of functional trait composition of 
the plant life-history strategies (Yao et  al., 2021). Together, 
our findings provided evidence that local conditions (soil and 
topography) strongly affected the trait dissimilarity of 
forest communities.

As for the regional-scale communities, we observed that mean 
annual precipitation and temperature were among the strongest 
predictors in most of the measured traits, thus highlighting the 
influence of these two climatic factors on community functional 
composition, which was consistent with the result of previous 
studies performed at both regional and global scales (Maire 
et  al., 2015; Muscarella and Uriarte, 2016; Chelli et  al., 2019). 
While other climate factors, such as snow (PAS), have been 
reported as the influential abiotic variable affecting functional 
composition, in this study the same relation with SLA was also 
found to be  present (Happonen et  al., 2019). In addition, it is 
noteworthy that soil depth exhibited the strongest correlations 
with SLA, which is in line with previous research showing that 
communities revealed a gradual change in resource-use strategies 
from shallow soils to the deeper and more fertile soils (Bernard-
Verdier et al., 2012; Gianasi et al., 2020). Furthermore, we noted 
extremely significant correlations between slope and traits related 
to resource utilization strategy (LCC, LNC, and WD). These 
relations were likely due to the local changes in habitat (especially 
the thermal conditions) induced by slope changes (Auslander 
et  al., 2003). This demonstrates that slope can be  a prominent 
topography factor for predicting shifts in functional composition 
in both local- and regional-scale communities. Unexpectedly, 
the insignificant relationships between elevation and traits 
contrasted with previous work in which communities exhibited 
significant and substantial shifts in trait composition across 
elevation gradient (Hulshof et al., 2013; Wieczynski et al., 2019). 
This observation may provide evidence that elevation is not the 
driver of trait composition of natural broad-leaved 
temperate forests.

CONCLUSION

Assessing the trait–environment relationships across spatial 
scales is necessary for biodiversity conservation and vegetation 
restoration of forest communities. This study is one of the 
few multi-scale analyses to investigate environmental drivers 
of community functional composition in temperate forests. 
We  first explored the extent of trait variation and found 
that intraspecific trait variation contributed considerably to 
total trait variation, which was decreased with the increasing 
spatial scale. Our results highlighted the importance of 

intraspecific variation on total trait variation and suggested 
that link it to the higher-order ecological processes. Next, 
we  observed different trait–environment patterns across 
different spatial scales. Soil and topography factors acted 
together in determining the functional composition of 
communities at the local scale, while climate factor was the 
dominant driver at the regional scale. However, we also found 
that the explained variance of environment factors decreased 
with increasing spatial scale. Finally, we  found the strongest 
environment predictor of community functional composition 
was varied depending on the traits and spatial scale. In 
conclusion, our research performed in this study not only 
contributes to a comprehensive understanding of trait–
environment relationships across spatial scales, but also raises 
an important consideration for designing future trait-
based studies.
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