
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Rebecca Grumet,
Michigan State University,
United States

REVIEWED BY

Lucia Vieira Hoffmann,
Brazilian Agricultural Research
Corporation (EMBRAPA), Brazil
Zhiguo Zhou,
Nanjing Agricultural University, China

*CORRESPONDENCE

Allah Ditta
adbotanist@yahoo.com
Muhammad Kashif Riaz Khan
mkrkhan@gmail.com

SPECIALTY SECTION

This article was submitted to
Plant Breeding,
a section of the journal
Frontiers in Plant Science

RECEIVED 30 March 2022
ACCEPTED 20 September 2022

PUBLISHED 07 October 2022

CITATION

Maryum Z, Luqman T, Nadeem S,
Khan SMUD, Wang B, Ditta A and
Khan MKR (2022) An overview of
salinity stress, mechanism of salinity
tolerance and strategies for its
management in cotton.
Front. Plant Sci. 13:907937.
doi: 10.3389/fpls.2022.907937

COPYRIGHT

© 2022 Maryum, Luqman, Nadeem,
Khan, Wang, Ditta and Khan. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Review
PUBLISHED 07 October 2022

DOI 10.3389/fpls.2022.907937
An overview of salinity stress,
mechanism of salinity tolerance
and strategies for its
management in cotton

Zahra Maryum1, Tahira Luqman1, Sahar Nadeem1,
Sana Muhy Ud Din Khan2, Baohua Wang3, Allah Ditta1,2*

and Muhammad Kashif Riaz Khan1,2*

1Nuclear Institute for Agriculture and Biology-Constituent College (NIAB-C), Pakistan Institute of
Engineering and Applied Science Nilore, Islamabad, Pakistan, 2Plant Breeding and Genetics Division,
Cotton Group, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan, 3School of Life
Sciences, Nantong University, Nantong, China
Salinity stress is one of the primary threats to agricultural crops resulting in

impaired crop growth and development. Although cotton is considered as

reasonably salt tolerant, it is sensitive to salt stress at some critical stages like

germination, flowering, boll formation, resulting in reduced biomass and fiber

production. The mechanism of partial ion exclusion (exclusion of Na+ and/or

Cl–) in cotton appears to be responsible for the pattern of uptake and

accumulation of harmful ions (Na+ and Cl) in tissues of plants exposed to

saline conditions. Maintaining high tissue K+/Na+ and Ca2+/Na+ ratios has been

proposed as a key selection factor for salt tolerance in cotton. The key

adaptation mechanism in cotton under salt stress is excessive sodium

exclusion or compartmentation. Among the cultivated species of cotton,

Egyptian cotton (Gossypium barbadense L.) exhibit better salt tolerance with

good fiber quality traits as compared to most cultivated cotton and it can be

used to improve five quality traits and transfer salt tolerance into Upland or

American cotton (Gossypium hirsutum L.) by interspecific introgression. Cotton

genetic studies on salt tolerance revealed that themajority of growth, yield, and

fiber traits are genetically determined, and controlled by quantitative trait loci

(QTLs). Molecular markers linked to genes or QTLs affecting key traits have

been identified, and they could be utilized as an indirect selection criterion to

enhance breeding efficiency throughmarker-assisted selection (MAS). Transfer

of genes for compatible solute, which are an important aspect of ion

compartmentation, into salt-sensitive species is, theoretically, a simple

strategy to improve tolerance. The expression of particular stress-related

genes is involved in plant adaptation to environmental stressors. As a result,

enhancing tolerance to salt stress can be achieved by marker assisted selection

added with modern gene editing tools can boost the breeding strategies that

defend and uphold the structure and function of cellular components. The

intent of this review was to recapitulate the advancements in salt screening
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methods, tolerant germplasm sources and their inheritance, biochemical,

morpho-physiological, and molecular characteristics, transgenic approaches,

and QTLs for salt tolerance in cotton.
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Gossypium , cotton, salinity stress, salinity tolerance, marker assisted
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1 Introduction

Cotton (Gossypium spp.) is one of the most economically

important crop in the world, as it serves as the chief source of

natural fiber contributing nearly 35% of the total fiber used in

the world. It is also known as “white gold” in some countries due

to the huge amount of revenue it is generating (Ali et al., 2014).

The top five cotton-producing countries in the world are India,

China, the USA, Brazil, and Pakistan (Meyer, 2021). Together

these countries contribute almost 2/3 of the world’s cotton. One

of the biggest textile industries of the world are extending by

cotton’s fiber produce with an annual economic impact of

approximately $600 billion worldwide (Ashraf et al., 2018).

The total annual production of cotton worldwide is closely

25M tons (Khan et al., 2020). Figure 1 is showing production

of top cotton producing countries in thousand metric tonnes.

Pakistan is the world’s 5th largest producer of cotton

(International Cotton Advisory Committee, 2021-2022) and

the 7th largest manufacturer of cloth. It is the major cash crop

of Pakistan. Almost 60% of the overseas earnings of Pakistan are

produced by cotton.
02
Pakistan’s cotton belt lengthens over 1200 km along with the

Indus river among the latitudes of 27°N to 35°N and altitudes

from 27 m to 155 m. The soil changes from clay loam to sandy

with clay dominant towards the south (ADB, 2009).

Cotton is a fine, soft staple fiber that is formed inside a boll or

protective case, alongside the seeds of the plant. It belongs to the

genus Gossypium and the mallow family Malvaceae (Cobley, 1956).

Gossypium comprises more than 50 species out of which four

species are cultivated worldwide i.e. two diploid species (G.

herbaceum and G. arboreum) and two tetraploid species (G.

hirsutum and G. barbadense). However, G. hirsutum that is also

known as American cotton or upland cotton contributes towards

more than 90% of worldwide production of cotton. It is cultivated

on 95% of the cotton-growing area in 17 U.S. states fromVirginia to

California and contributes towards approximately 97% of the USA’s

production of cotton (Meyer, 2018). The reasons because American

cotton is grown in more than 80 countries of the world, are its

greater yield potential and widespread adaptability. G. barbadense,

which is also called Egyptian cotton or Pima cotton, is known for its

extra-long and extra-fine quality staple. Less than 5% of the world’s

cotton production comes from G. barbadense.
FIGURE 1

Top cotton producing countries worldwide in 2021-2022 (in 1,000 metric tons) (International Cotton Advisory Committee, 2021-2022).
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Currently, the cotton which is grown worldwide is the result

of severe selection for the production of high quality fibers to

improve harvesting and processing. Continuous selection for

similar traits has led to some side effects like narrowing the

genetic base and diversity of some traits such as disease

resistance and drought and salt tolerance (Rosenow et al.,

1983). These narrowed-down genetic resources have been

exploited over the years, but, a significant decrease in the

production of cotton has been observed for the last few

decades (Helms, 2000). To overcome this problem, one of the

possible solutions is to bring genes from wild progenitors into

the cultivated species which would bring basic genetic solutions

to different agricultural trials (Gur and Zamir, 2004). Some of

the wild progenitors tolerant to various abiotic stresses are G.

tomentosum and G. darwinii. G. tomentosum exhibits great

tendency of salt and drought tolerance because of its unique

agronomic traits while G. darwinii has shown considerable

amount of drought tolerance, disease resistance, and fiber

fineness (Liu et al., 2015a). Genomic technologies have been

utilized widely for enhancing fiber quality and developing new

cotton cultivars having tolerance to biotic and abiotic stresses. It

has been supported by the fact that genetic manipulation served

as a revolution in the development of improved genomes

(Abelson, 1998). Over the last few decades, several omics

techniques like transcriptomics, proteomics, and metabolomics

have been utilized in comprehension of the processes and

mechanisms regarding abiotic stress responses of a plant (Soda

et al., 2015).

A typical cotton plant’s growth and development show a

distinguishing and unique pattern that has been well defined

(Kerby et al., 2010). As compared to other major field crops,

cotton is known for its very complicated structure because of its

unique indeterminate pattern of growth and sympodial flowering

habit (Mauney, 1986). However, that indeterminate growth

pattern can be divided into different developmental phases that

the crop follows throughout its life. These developmental phases

of cotton plant are divided into five major growth stages: (i)

germination and emergence, (ii) establishment of seedlings, (iii)

development of leaf area and canopy, (iv) flowering and boll

development, and (v) maturity (Oosterhuis, 1990). After extensive

studies, it has been observed that the flowering and boll

development phase is the most critical stage as at this time,

plant requirements for resources increase at an exponential rate.

Hence, at this stage, the plant is more susceptible to poor

management and environmental stresses.

Recent UN projections suggest that the world population

could rise up to more than two billion people from today’s level,

making it 9.15 billion by the year 2050 (Alexandratos and

Bruinsma, 2012), and climatic changes are also evident day by

day. Crop production worldwide faces major challenges from

biotic and abiotic stresses, and rapid climate change is further

contributing towards more acute forms of these biotic and

abiotic stresses. It is now of vital importance to increase crop
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production by at least 40% in arid and semi-arid areas, as the

demands for food, fiber, clean water, and bioenergy are getting

higher day by day (Nakashima et al., 2014; Shaar-Moshe et al.,

2017). Thus, crop production should have to be tailored in such

a way that leads to the development of crops resistant to harsh

climatic conditions including stress tolerant crops, to maintain

world agricultural production.

This review focuses on the,
• effect of salinity on the growth and development of

cotton,

• how cotton plant response to salinity stress and detail of

its defense mechanism, and,

• management strategies to combat the adverse effects of

salt stress in cotton including exploration of cotton

genome for salt tolerant genes.
2. Abiotic stresses in cotton

Abiotic stress is defined as the negative effect of all the non-

living factors on the living organisms in a definite environment.

These stresses include salinity or salt stress, drought, extreme

temperatures (low or high), and other unfavorable environments

(Acquaah, 2009). Among these stresses, high salt levels in soil

and water stress are one of the major causes of low crop

production worldwide. A plant’s genetic response to abiotic

stresses is multigenic, so it is more challenging to identify

these responses, control and manipulate them. That is the

reason why the improvement of crops for abiotic stresses by

conventional breeding methods is limited (Bressan et al., 2009).

Cotton, being a glycophyte, is comparatively more tolerant

to abiotic stresses as compared to other main crops. Yet, severe

environmental conditions like high levels of salinity and water

stress can affect its growth, productivity and quality of produce

(fiber) (Parida et al., 2007). Drought affects 45% of agricultural

land worldwide, while 19.5% out of irrigated lands is considered

saline (Flowers and Yeo, 1995; Dos Reis et al., 2012). Drought

accompanied by salinity stress is projected to cause up to 50%

loss of fertile land in the next 40 years (Wang et al., 2003).

Reportedly, no cotton cultivar is available commercially which is

considered tolerant to abiotic stress with high production, yield,

and fiber quality (Higbie et al., 2010). Although, cotton with a

threshold of 7.7 dSm-1, is categorized as a moderately salt

tolerant crop (Maas and Hoffman, 1977).
3. Salinity stress

Soil salinization is one of the most imperative worldwide

problems that negatively affect the productivity of agricultural

crops. It has adversely affected more than 800 million hectares of
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cultivable land worldwide which makes up more than 6% of total

agricultural land in the world (Roy et al., 2006). Whereas in

Pakistan, salinity has affected 6.28 million hectares of area

(Commission, 2012).

Increase in salt content of soil leads to salinity and the salts

that mainly contribute towards it are sodium chloride (NaCl)

and sodium sulphate (Na2SO4) (Pessarakli and Szabolcs, 2019).

This increase in salt concentration could be due to saline or poor

quality irrigation water (Hasanuzzaman et al., 2013) or mal-

textured soil which has hampered porosity and aeration (Yadav

et al., 2011). Also some areas of the world receive inadequate

rainfall causing hindrance in efficient leaching of salts from root

zone (Francois et al., 1994). However, in Pakistan, one of the

main factor causing salinity is the imprudent use brackish

underground water as irrigation water (Malik et al., 2021).

Worldwide, irrigated agriculture is a major reason for salinity,

which frequently leads to secondary salinization of land and

water resources in arid and semi-arid conditions.

When the plant is in the early seedling and germination

stages, it is convenient to understand the effect of salinity, as

these stages are more prone to damage (Munns and Gilliham,

2015). Salt stress damages plant growth and developmental

stages through the introduction of different other stresses like

water stress, nutritional imbalance, and cytotoxicity caused by

increased uptake of sodium (Na+) and chloride ions (Cl−). In

addition, salt stress is normally followed by oxidative stress due

to the formation of reactive oxygen species (ROS) (Tsugane

et al., 1999; Hernández et al., 2001; Ісаєнков, 2012).
Frontiers in Plant Science 04
There are two major phases in which plant’s responses to salt

stress have been divided. In the first phase, within minutes to

days, an ion independent decline in growth takes place which

leads to closure of stomata and hampering of cell expansion

majorly in the shoot area (Munns and Passioura, 1984). After

few days or even weeks, a second phase occurs and causes an

increase in the levels of cytotoxic ions. It then leads to slowing of

metabolic processes, premature senescence, and eventually cell

death (Munns, 2008; Roy, 2014).

Tolerance to abiotic stress is controlled by the assembly of

different molecular and physiological mechanisms like

osmotic tolerance, ionic tolerance, and tissue tolerance

(Rajendran et al., 2009). The plant exhibits osmotic

tolerance comparatively quickly in which a prompt decrease

in stomatal conductance to conserve water is noticed. It

utilizes quick long distance signaling mechanisms (root to

shoot) (Ismail et al., 2007), (Zimmermann et al., 2009), which

do not differentiate between osmotic effects generated by

NaCl, mannitol, KCl, or polyethylene glycol (Yeo et al.,

1991; Chazen et al., 1995). When salt enters into the root

system, many signal cascades get activated that help in

developing ionic tolerance by limiting the net influx of Na+

into the roots and reducing the net Na+ translocation. Finally,

toxic ions are compartmented into vacuoles to evade their

injurious effects on cytoplasmic processes. This mechanism is

called tissue tolerance. These different mechanisms have been

observed and studied in many plants and they are further

explained in Figure 2.
FIGURE 2

Mechanisms of tissue tolerance, osmotic tolerance and ion exclusion in a plant (Roy, 2014).
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However, there are some differences between halophytes and

glycophytes in terms of their tolerance. These are primarily due

to the greater strength and vigor of the working mechanisms in

halophytes as compared to the glycophytes (Flowers and

Colmer, 2008; Maathuis et al., 2014). Salinity creates a plight

for plants, as it leads towards water and osmotic stress due to

higher levels of inorganic minerals in the environment.

Regardless of years and years of research, one of the most

inexplicable questions related to salinity stress in plants

remains the mechanism of the entry of Na+ and Cl− into

the roots.

Cotton is relatively more tolerant to abiotic stresses;

however, cotton is susceptible to salt stress at critical stages

like germination, flowering, boll formation, resulting in negative

effects on the biomass production and substantial drop in fiber

produce by nearly 60% (Ahmad et al., 2002; RK, 2009).
4. Morphological effects on cotton
plant in response to salt stress

Generally, salinity stress seriously limits cotton growth and

development, for example, reduction in plant stature, fresh and

dry weights of roots and shoots, number of nodes, leaf area

index, stomatal conductance, transpiration rate, photosynthesis,

yield, canopy and root development, and fiber quality (Loka

et al., 2011).
4.1. Root system

Some plants have the potential to accelerate root growth in

response to abiotic stresses at an early stage, resulting in longer

root systems that can collect water from deeper soil. Abiotic

stress tolerance in crops has been linked to increased root growth

calculated as length, volume, weight, and density of plant roots.

Some crops like cotton can have tap roots with length 10 times

the height of the above-ground plant (Larcher, 2003). The ionic

influx in the roots and its translocation to the shoot is essential

for plant growth. Comparatively less suppression of root growth

than shoot growth may be credited to lower retention of sodium

ions in roots. This could also be due to the expression of some

genes under salt stress. Studies have shown that some salt

associated genes are up-regulated under salt stress for 3 hours

or 6 hours like CP1, MPK3, SOS3, AB11, CIPK6, and STZ/ZAT10

(Yao et al., 2011). Root growth was reduced significantly in

different types of soils as salinity increased, however, the

suppression of root growth, and fresh and dry weight was

highest in clay, loam, and intermediate soils, and lowest in

sandy soil (Soliman et al., 1980).
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4.2. Germination

In cotton, some stages are more susceptible to salt stress as

compared to others, like, germination, emergence, and young

seedling stage (Ahmad et al., 2002). Cotton germination and

emergence stages are also delayed in response to saline stress

(Khorsandi and Anagholi, 2009; Ma et al., 2011). In some

studies, cotton plant germination was delayed by up to 4–5

days when exposed to salinity stress of 15–20 dS m-1, as

compared to normal plants. Poor germination results in

decline of plant population, which eventually leads to a

significant decline in cotton yield (Saqib et al., 2002). Seed

germination recorded in sand culture was 68-89% at 150 mM

and 24-40% at 250 mM salt as compared to soil where it was 72-

89% at 15 dS m-1 and 20-53% at 25 dS m-1 (Khan et al., 1995). As

the salt concentration was increased, germination percentage

showed decline which ranged from 17-100% depending upon

the concentration of salt (Sattar et al., 2010). However, cotton

germination was not affected under low concentration (≤1.2%)

of salt but higher concentrations (≥1.2%) affected the

germination adversely (Wang et al., 2007). Both delay and

reduction in germination was observed in cotton grown in

nutrient medium, under salt concentration of 200 mM (Kent

and Läuchli, 1985).
4.3. Shoot system

Cotton growth and development is seriously affected by

salinity level above than 7.7 dS m-1. Even though cotton is

categorized as a comparatively more salt-tolerant crop than

other major crops, still its vegetative growth is affected

negatively at higher concentrations of salt. Salinity stress leads

a reduction in shoot/root ratio as shoot growth is more sensitive

to salt stress than root growth (Khan et al., 1995). Salinity

manifests itself in a variety of ways. Normally cotton plants

under salinity stress appeared to be similar to plants under

drought stress, showing symptoms like smaller and dark blue/

green leaves. This happens due to increased osmotic pressure in

the soil solution, which causes physiological dryness and the

accumulation of one or more elements that may obstruct

nutrient and water uptake (Praharaj and Rajendran, 2004).

Leaves become hard, brittle, and necrotic, resulting in

underdeveloped growth and yield reduction, as salinity level

increases. Other problems linked with salinity are high osmotic

pressure, less availability of nitrogen, phosphorus, manganese,

copper, zinc and iron, low microbial activity, and poor air and

water movement (Pessarakli, 2001). Six-leaf stage is proved to be

most sensitive to stress as compared to other stages (Khan

et al., 1998).
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4.4. Yield and yield related components

Many field studies have been carried out to look into the

effects of drought or salt on lint yield, the most significant end

product of cotton production. Physiological and/or

morphological characters have been reported to show negative

correlations with yield. As salinity level increases, a decline in

cotton yield has been observed because of the reduced number of

bolls and low boll weight. Reduction in the number of mature

bolls is due to several factors such as delayed flowering, low fruit-

bearing positions, and relative increase in flowers and bolls

shedding under salinity conditions (Anagholi et al., 2005). Up

to 60-87% synthesized sucrose is translocated from Subtending

Leaf of Cotton Boll (LSCB) to developing bolls in cotton and it

has a very significant role in cotton yield. Though sucrose

accumulation in LSCB remains unchanged, its effective

translocation towards developing bolls is delayed under salt

stress that eventually leads to reduced boll weight (Peng et al.,

2016). Almost 50% reduction in cotton yield was observed under

17.0 dS m-1 salt concentration (Maas and Hoffman, 1977), yet,

moderate level of salinity showed to cause no harmful effects on

growth. As the level of salinity was increased, shedding and

premature leaf senescence occurred (Rathert, 1983). Some other

studies (Ashraf and Ahmad, 2000; Ashraf, 2002) also reported

almost 50% reduction in yield when salinity was increased from

7.7 dSm-1 to 17.0 dSm-1.
4.5. Fiber quality

Although fiber quality is a genetic trait, it is affected by the

environment too. Studies have shown that salt stress reduced the

fiber strength, length, and maturity but increased the fiber

fineness. Micronaire values also showed decreasing trend when

sodium ions percentage was increased (Longenecker, 1974).

Increase in electrical conductivity (EC) has an impact on

cellulose deposition, photosynthesis process, and sugar

transport which indirectly affects fiber maturity. Due to less

cellulose deposition cross-sectional area is decreased inevitably

and production of mature fiber is reduced (Yfoulis and Fasoulas,

1973). Nevertheless, a study showed that under salt level of

0.42%, an increase in fiber length and decrease in fiber fineness

and elongation was observed (Ye et al., 1997). One of the most

significant factors affecting fiber quality is the timing of the

stress. Two American cotton cultivars of Acala 4–42 and

Deltapine Smooth leaf were introduced with early stress

during flowering season and then again soon after flowering.

No effect on quality of fiber was observed due to early stress but

the stress given after flowering stage reduced the fiber quality

(Marani and Amirav, 1971).
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4.6. Seed oil content

Cottonseed normally contains approximately 20-23% of oil

(Dowd et al., 2010). Another studies showed that dried cottonseed

comprises of 28-44% of oil content having both saturated and

unsaturated fatty acids (Shang et al., 2016). It is usually presumed

that increased salt stress results in the reduction of seed oil content

(Khan and Gregori, 2002). It was observed in six genetically

dissimilar cotton lines having different levels of tolerance to salt

that increase in the salt level of the growth medium led to decrease

in oil content (Ashraf and Ahmad, 2000). In another study, results

showed decrease in oleic and linoleic acid content of cottonseed

obtained from salt stress exposed plants (Ahmad et al., 2007).

However, genotypes with higher tolerance to salt yielded a higher

percentage of seed oil content as compared to salt susceptible

genotypes. In case of cotton, levels of salt tolerance vary within

and between different cotton species as there are variety of plant

characteristics associated with each species. Such diversity of

genomes would be of substantial practical value in improving

salinity tolerance of cotton through selection and breeding as

maximum proportion of this diversity is genetically additive and

based in nature.
5 Physiological mechanisms of
cotton in response to salt stress

5.1 Photosynthesis

Photosynthesis, which is controlled by stomata for CO2/water

exchange and photosynthetic activity in mesophyll cells,

determines plant productivity. The rate of photosynthesis is

lowered at high salinity levels due to disruption in

photosynthetic activities and apparatus. Osmotic stress was

reported to be caused by increased NaCl levels in the soil, which

limited cell expansion and reduced stomatal aperture size, limiting

photosynthetic activity in cotton. The first observable effect of salt

stress is the reduction in leaf surface area. At initial stages, reduced

leaf surface area due to limited cell extensibility is more significant

than lower photosynthetic rate per unit area (Shabala and Lew,

2002). Reduced photosynthetic activity is also due to lower

Ribulose bisphosphate (RuBP) carboxylase efficiency under

restricted RuBP supply, PSII sensitivity, and less regeneration

capacity of RuBP (Seemann and Sharkey, 1986). Salt stress is

known to interfere with photosynthetic biochemistry by

disorienting the chloroplast lamellar system and causing

chloroplast integrity loss, resulting in decreased photosystem

activity in cotton plants. Salt stress may have a secondary effect

on photosynthetic enzymes, mediated by lower CO2 pressure in

the leaves due to stomatal closure.
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According to a recent study, the decline in photosynthesis is

related to decrease in chlorophyll contents and variation in

chlorophyll ultrastructure (Meng et al., 2011). Cotton cultivars

showed a significant drop in chlorophyll contents (a and b) when

salt level was increased (Zhang et al., 2014b). This decline could

be related to the suppression of certain enzymes involved in

chlorophyll synthesis (Lee et al., 2013). As a result, among

physiological parameters, chlorophyll contents could be

considered as an excellent indicator for selecting salt-tolerant

cultivars. Plants subjected to salinity stress showed a decrease in

the expression of carotenoids biosynthesis genes that are

strongly linked to a reduction in photosynthetic rate, which

eventually influenced the yield negatively (Shah et al., 2017).

Previous researches also reported a considerable decrease in

carotenoids content in cotton genotypes as salt stress increases

(Zhang et al., 2014b).
5.2. Concentration of inorganic ions

Soil salinity inhibits plant growth primarily through three

mechanisms: osmotically induced water stress, specific ion

toxicity caused by high levels of sodium and chloride ions, and

nutrient ion imbalance caused by high levels of Na+ and Cl-,

which reduces the uptake of K+, NO-, PO4
3- etc (Greenway and

Munns, 1980). Various studies have reported changes in

inorganic ion concentrations when plants are exposed to salt

stress. Different responses have been recorded, ranging from an

immense rise in Na+ and Cl- ions concentrations to a reduction

in Mg2+, K+, and Ca2+ ions (Jafri and Ahmad, 1995).

Excessive Na+ ion accumulation has lethal effects on plant

physiological processes and also causes reduction in water

availability. A considerable increase in the concentration of

Na+ and Cl- ions was reported with decreased K+/Na+ ratio in

cotton leaves. Salt tolerant plants controlled the exclusion of Na+

ions through their roots, whereas plants that were unable to

maintain Na+ homeostasis were classified as sensitive (Pervaiz

et al., 2007). According to several studies, rather than Na+

exclusion, upkeep of optimum ratio of K+/Na+ ions defines

the plant performance under salt stress (Ding et al., 2010; Dai

et al., 2014). Besides sodium and chloride ions, N, Zn and Mn

were also increased under salinity while Ca2+, P, and S levels

stayed consistent. However, concentrations of K+, Mg2+, Fe, and

Cu ions were decreased significantly under salt stress (Higbie

et al., 2010).

The chloride ion is more dangerous in a variety of species as

compared to sodium ion including cotton (Luo et al., 2002;

Tavakkoli et al., 2010). With higher concentrations of NaCl in

the soil environment, the concentrations of Na+ and Cl- in

cotton roots, xylem sap, and leaf also increase (Hirayama and

Mihara, 1987). When Na+ and Cl- ions move into cells, they

disrupt the ion balance in the cytoplasm, especially the Ca2+

balance. When Na+/Ca2+ ratio increases, a considerable
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concentration of Na+ and Cl- can replace bound Ca2+ in the

cell membrane system that can lead to impairment of structural

integrity and function of membrane. Finally, a sudden increase

in free Ca2+ in cytoplasm can lead to the weakening of cellular

metabolism (Hirayama and Mihara, 1987). However, there are

different mechanisms by which plants can adapt to salinity such

as Na+ or Cl- exclusion, osmotic stress tolerance, and tissue

tolerance to accumulated Na+ or Cl- (Munns and Tester, 2008).

Ionic imbalance limits the access and transport of nutrients

within plants because of Na+ and Cl- ions competition with other

nutrients like Ca2+, NO3
-, and K+ and consequently reduces the

concentration of Ca2+, Mg+2, K+, N, and P in leaves and roots

(Mansour et al., 2005). Though, several studies have found that

the concentrations of S, Ca2+, and K+ in leaves remained stable,

resulting in lower K+/Ca2+ or K+/Na+ ratios (Abd Ella and

Shalaby, 1993).
6. Mechanism of salinity tolerance
in cotton

In order to continue their growth and development in highly

saline soils, plants develop different physiological and

biochemical mechanisms which majorly are; (i) ion

homeostasis and compartmentalization, (ii) ion transport and

uptake, (iii) biosynthesis of osmo-protectants and compatible

solutes, (iv) activation of antioxidant enzyme and synthesis of

antioxidant compounds, (v) synthesis of polyamines, (vi)

generation of nitric oxide (NO), and (vii) hormone

modulation. Some of these are discussed below.
6.1. Ion transport

In order to adapt to a saline environment, halophytes are

known to accumulate high quantities of ions (Na+ and Cl-) in

their tissues (Flowers et al., 1977), whereas mesophytes are

usually identified as the ones which limit the uptake of these

ions (Greenway and Munns, 1980; Wyn Jones, 1981). Salt

tolerance in crop species and specific injury from ions is

accounted by the preferential accumulation of either Na+, Cl-,

or both ions, rather than osmotic stress, which was thought to be

the key factor for salt sensitivity (Grattan, 1996; Jacoby, 1999).

The ratio of K+/Na+ has been proved to be an effective mean for

selection for salt tolerance in various crops, out of many different

suggested physiological traits (Giriraj et al., 1976; Janardhan

et al., 1976; Schleiff, 1978; Murthy, 1979). Shoots of cotton plats

exposed to saline conditions showed low accumulation of Na+

and high K+ (Eaton and Bernardin, 1964). Salt tolerant plants

decrease the influx of Na+ from roots, compartmentalize the

exciting Na+ present in the cytosol to vacuole, and exit of Na+

from root cells to maintain the Na+/K+ ratio (Keisham et al.,
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2018). Plant cells use primary active transport facility through

Na+/H+ antiporters i.e., Na+/H+ exchangers (NHX) for vacuolar

compartmentalization, H+-ATPases, channels i.e. K+ channel

(AKT1), Salt overly sensitive (SOS) pathway for Na+ exit and for

keeping high K+/Na+ ratio in the cytosol, and co-transporters

mediated secondary transport i.e., High affinity Na+ transporter

(HKTs) and High affinity K+ transporter (HAK5) (Conde et al.,

2011; Zhao et al., 2013). The key selection criteria for selection

for salt tolerance is maintaining high ratios of Ca2+/Na+ and K+/

Na+ in response to salinity stress. Up and down regulation of

some genes was shown in salt tolerant genotypes of cotton such

as; up-regulation ofGhHKT1 andGhNXH1 and down regulation

of GhSOS1, AKT1 and HAK-5 maintained the high selective

absorption of K+ and Na+. This proves that salt tolerance in

cotton is greatly associated with regulation of K+ and Na+ ions

by Na+ ion compartmentalization into vacuole as compared to

uptake of K+ ion (Wang et al., 2017b). Salt

Overly Sensitive (SOS) pathway also contributes towards ion

homeostasis and salt tolerance. It contains three major proteins

(Figure 3), SOS1, SOS2, and SOS3.
6.2. Organic solutes

Accumulation of osmo-protectants such as polyamines, sugars,

glycine betaine, amino acids, and polyols for metabolic adjustment

greatly contributes to salt tolerance in order to overcome salt stress.

Organic ions are compartmentalized within the vacuole to balance

the osmotic potential within it. These organic solutes help to

maintain cell turgor, create a gradient force for water uptake, and

stabilize themembranes and proteins against the denaturing activity

of detrimental solutes and salts (Naidoo and Naidoo, 2001; Rontein

et al., 2002).

Glycine betaine is an essential organic solute that functions as

an osmoprotectant and accumulates under conditions such as
Frontiers in Plant Science 08
drought/water stress, salt stress, and temperature extremes (Quan

et al., 2004). Contribution of glycine betain towards osmotic

adjustments under saline conditions has been reported by many

researchers (Khan et al., 1998). A high level of glycine betaine was

observed as an indicator of salt tolerance in transgenic lines of

cotton in which an enzyme Choline Monooxygenase (CAM) was

genetically engineered. Choline Monooxygenase is responsible for

the conversion of choline into betain aldehyde during the catalytic

pathway. Furthermore, the betain aldehyde is catalyzed by various

enzymes into glycine betain (Zhang et al., 2009).

Proline, an amino acid, plays a very vital role in stabilizing

the RUBISCO enzyme and stimulates its functionality even in

the presence of NaCl. After being treated with sea water, the

levels of free proline in G. hirsutum and G. arboreum increased

(Ahmad and Abdullah, 1982). A study found a 36% rise in

proline content in the roots of treated plants compared to

control and a 121% increase in proline level in the leaves after

treatment with NaCl (Meloni et al., 2001). In contrast, another

study stated inconsistent changes in proline or hydroxyproline

content in cotton in response to salinity stress. Thus, proline

concentration is insufficient to meet the osmotic adjustment; yet,

if restricted to the cytosol, it could play an important role

(Golan-Goldhirsh et al., 1990).
6.3. Antioxidants

Increased activity of antioxidants is generally supposed to be an

indicator of salt tolerance in plants (Noreen and Ashraf, 2009). The

generation of reactive oxygen species (ROS) such as superoxide,

hydroxyl radical, and hydrogen peroxide is stimulated by salt stress.

The ROS are neutralized by intracellular antioxidants under normal

conditions, but during salt stress, excessive accumulation of ROS

incites oxidative stress and brutally disrupts normal metabolism,

causing protein breakdown and nucleic acid mutation (Czégény
FIGURE 3

SOS Pathway (Gupta and Huang, 2014).
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et al., 2014). Plants have two types of antioxidant systems to combat

salinity-induced oxidative damage: enzymatic and non-enzymatic.

The enzymatic oxidant system comprises superoxide dismutase

(SOD), peroxidases (POD), glutathione peroxidase, and catalase

(CAT) accompanied by enzymes of ascorbate-glutathione

peroxidase [glutathione reductase (GR) and ascorbate peroxidase

(APX)]. Due to its function in the regulation of O2
- and H2O2

concentrations, SOD is considered a significant antioxidant

enzyme. APX and CAT has a proficient ability of H2O2

scavenging. During the scavenging process, APX and CAT play

an essential role in the presence of SOD as CAT dismutates H2O2 to

H2O, while APX does the same through the ascorbate-glutathione

pathway (Zhang et al., 2014b).

The oxidation of numerous biological substances such as

proteins, lipids, DNA, and RNA occurs when ROS such as

hydroxyl radical (HO•) and singlet oxygen accumulate in the

cell (Tripathy and Oelmüller, 2012). Plants have evolved

antioxidative mechanisms to deal with the formation and

accumulation of reactive oxygen species (ROS). These

mechanisms include: (i) non-enzymatic antioxidants, like

ascorbic acid, carotenoids, a-tocopherol, reduced glutathione,

and flavonoids; and (ii) enzymatic components, like ascorbate

peroxidase (APX), catalase (CAT), guaiacol peroxidase (GPX),

glutathione reductase (GR), monodehydroascorbate reductase

(MDAR), and dehydroascorbate reductase (DHA). Despite the

fact that antioxidative mechanisms are the plant’s first choice for

dealing with production of ROS, a recent study reported that the

balance between ROS production and antioxidative enzyme

activity under drought stress in cotton controls whether

oxidative signaling and/or injury occurs (Zhang et al., 2014c).

Two cultivars of cotton (‘84-S’ and ‘M-503’) having different

levels of tolerance to salt stress were assessed for biochemical and

physiological responses against combination of different abiotic

stresses including salt stress. When compared to control

conditions, the sensitive cultivar 84-S displayed lower CAT and

peroxidase (POX) activities under stress conditions causing higher

H2O2 accumulation and oxidative stress induced lipid peroxidation.

On the other hand, under stress conditions, the tolerant cultivar M-

503 sustained constitutive levels of superoxide dismutase (SOD)

and APX enzyme activities while increasing CAT, POX, and proline

content levels (Sekmen et al., 2014). Another study stated that under

PEG 6000, supplemental Zn improved photosynthetic rate,

chlorophyll a and b content, and biomass of cotton significantly

increased (Wu et al., 2015).
7. Screening or selection for
salt tolerance

Methods for screening soil salinity are quite complex.

Because fields with a uniform salinity are not frequently

available, evaluating for salinity tolerance in the field is
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difficult and often inaccurate. The substantial experimental

errors caused by variations in the levels of soil salinity across a

field lead to minimal progress in salt tolerance enhancement

(Abdelraheem et al., 2015a). Nonetheless, if a field with

homogeneous soil salinity can be located, it can be very useful

in screening a large number of cotton germplasm and selecting

for their relative salt tolerance. For that reason, screening of

germplasm by using pot culture is a suitable method, as it allows

for the creation of graded salt levels by irrigating the plants with

known salinity solutions (Abdelraheem et al., 2016a). But still

due to high level of variation in physical and chemical properties

of soil, it is hard to tell if the plant is growing at the required level

of salinity (Abdelraheem et al., 2016b). The most sought after

solution for that problem is screening of germplasm for salinity

tolerance in hydroponics (water culture). Plants are grown in

hydroponics with a known amount of salinity, allowing

researchers to assess the absolute effect of salt on plant

development and the threshold concentration needed to cause

a reduction in plant growth (Abdelraheem et al., 2015b).

Using a hydroponic setup, a study was performed to assess

multiple genetic mapping populations for drought and salt

tolerance, including a multi-parent advanced generation inter-

cross (MAGIC) population of 550 lines and an association

mapping panel of 376 Upland accessions of cotton. The

seedlings were transferred from pots to a hydroponic system

where they were treated with salt or drought treatments using

PEG, NaCl, or water. Then, fresh and dry weights of the shoots

and roots as well as plant height were measured. Shifting from

pots to hydroponic system allowed improved and extensive

study on growth and architecture of roots, which has been

neglected in the past, as it was difficult to extract and evaluate

roots by using old screening methods. Also hydroponic system

allowed examination of the responses in older plants which

could not be possible in small pot system as seedlings can only be

treated for a little period of time like 3-4 weeks there

(Abdelraheem et al., 2018).

Identifying and evaluating salt-tolerant plants based on plant

biomass or yield, whether in the laboratory or in the field, is a

time-consuming and hectic task. Hence, a number of

physiological indicators have been suggested for identification

and assessment of salt tolerance. For selection of salt tolerance in

cotton, the K+/Na+ ratio has been utilized as an effective criteria

(Akhtar et al., 2010). The best indicators of salinity for cotton

cultivar selection were reported to be seed germination, decrease

in leaf area, Na+ and K+ content, and seedling growth, however

chlorophyll and proline contents were not effective for accurate

assessment of salinity tolerance (Munis et al., 2010). By using a

transducer, emergence force applied by germinating seedlings of

cotton was measured. Increasing the level of salinity decreased

the emergence force and lengthened the time needed to develop

the maximum force (Sexton and Gerard, 1982). Tests like these

could be utilized to measure the salt tolerance of germinating
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seedlings (Stewart et al., 2009). Pollen grain germination has also

been used for salt tolerance screening (Fafu et al., 1997).

Zhang et al. used 88 simple sequence repeat (SSR) markers to

study 47 upland cotton accessions, including 23 salinity-tolerant

and 24 salinity-sensitive cotton materials. They discovered 338

alleles at 88 SSR loci, with an average of 3.841 alleles per locus.

Out of these alleles, 333 alleles were identified in salinity tolerant

germplasm and 312 alleles in salinity sensitive germplasm. In the

salinity tolerant germplasm, average effective number of alleles

(Ne), mean polymorphism information content (PIC), and

average genotype diversity index (H′) were 2.929, 0.613, and

1.083, respectively, while in the salinity sensitive germplasm,

they were 2.883, 0.605, and 1.071. Salinity tolerant and salinity

sensitive germplasms had comparable similarity coefficients. In

salinity tolerant germplasm, they ranged from 0.530 to 0.979,

with a broader range than in salinity tolerant germplasm. The

varieties were divided into three categories: one large group and

two smaller groupings. The significant genetic similarity

coefficients found in Chinese salinity-tolerant germplasm

suggested that the group had narrow pedigrees (Zhang et al.,

2010). As a result of the limited germplasm resources available

and the complexity of tolerance mechanisms in cotton, little

progress has been made in developing significantly salt-tolerant

cultivars using traditional methods. However, such research is

also vital because it not only enhances our knowledge of salt-

tolerant cotton resources, but it is also the most direct and

reliable technique of locating salt-tolerant cotton germplasm.
8. Sources of salinity tolerance
in cotton

Out of four cultivated species of cotton, G. barbadense has

some desired traits like higher levels of tolerance to different

types of biotic and abiotic stress (Zhang et al., 2014a). But G.

barbadense is cultivated on very limited areas and due to hybrid

breakdown, stress tolerance have not been transferred into

commercial American cotton successfully (Zhang et al.,

2014a). Furthermore, due to extensive artificial selection for

economically significant traits during the domestication and

breeding process, genetic diversity of Upland/American cotton

is quite low (Wendel et al., 1992; Abdalla et al., 2001). To screen

germplasm of cotton for salt and drought tolerance, a number of

research studies were performed in the greenhouse. Up to 367

cotton accessions were screened for salinity and drought

tolerance in greenhouse. As a result, 45 accessions were

reported to be salt tolerant while 24 were reported to be

drought tolerant. Moreover, there were some accessions that

showed tolerance to both stresses (Abdelraheem et al., 2016a).

Another study screened more than 1500 recombinant inbred

lines (RILs) from diverse genetic mapping populations and

identified that tolerance to both drought and salinity stress
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et al., 2015a; Abdelraheem et al., 2015b; Abdelraheem et al.,

2016b; Abdelraheem and Zhang, 2016). Barrack et al. assessed

four introgressed Upland cotton lines from a G. hirsutum × G.

barbadense backcross inbred line population that were sown in

two different soil types, i.e., an organic soil and a loam soil with

200mM NaCl for a time period of three weeks. Data of various

traits was collected such as, leaf size, chlorophyll contents and

fluorescence, main stem node number, plant height, shoot

biomass, internode length, and number of fruiting sites.

Results showed genotypic variation, that the optimum time for

screening of cotton for salinity tolerance is seedling (Barrick

et al., 2015). Another study validated that G. barbadense is more

tolerant as compared to G. hirsutum, when theirs seeds are

germinated under 200 mM NaCl salinity level (Tiwari et al.,

2013). Furthermore, Niu et al. conducted an experiment on five

genotypes of cotton, two Pima cotton (‘Pima Cobalt’ and ‘Pima

S-7’) and three Upland cotton (‘DN 1’, ‘DP 491’, and ‘FM 989’),

using concentrations of 100 and 150 mM NaCl and 70 and 111

mM Na2SO4. Compared to control conditions, all genotypes

showed a considerable reduction in growth, but there was no

major difference between Pima and Upland cotton identified in

their response to salinity stress (Niu et al., 2013).
9. Breeding for salt tolerance via
marker-assisted selection (MAS)

Numerous researches have been undertaken since the advent

of genetic markers and marker-assisted selection (MAS)

technology to find genes or quantitative trait loci (QTLs)

affecting salt tolerance in various plant species during their

different developmental stages. The goal of these investigations

was to see if marker-linked QTLs or genes could be used in MAS

breeding for salt tolerance. However, by using MAS technology,

only limited progress has been made in developing salt-tolerant

cultivars. This is in contrast to the widespread use of MAS in

crop breeding for a variety of simple characters in many different

crop species. Nevertheless, by using molecular markers, QTLs

responsible for increased cotton produce under abiotic stress

conditions have been identified. These QTL will aid in the

understanding of the genetic basis for drought and salt

tolerance, as well as the breeding of drought and salt-tolerant

cultivars using MAS.
9.1. QTLs associated with salt tolerance

Since 1994, when the first linkage map in cotton was

constructed (Reinisch et al., 1994) using 705 loci of restricted

fragment polymorphic markers (RFLPs) from an interspecific

cross between Upland and Pima cotton, many linkage maps have
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been constructed to dissect various complex traits in cotton

using different types of markers. However, most of these linkage

maps have been used to discover QTL for yield and yield

components, as well as fiber quality under normal production

conditions, with only a few studies identifying QTL for abiotic

stress tolerant traits.

Several researches have been conducted in numerous crop

species over the last two decades to find QTLs that affect the

diverse plant responses to salt stress at various developmental

stages, including reproduction, seed germination, and seedling

and vegetative growth. Oluoch et al. examined salt tolerance in a

hydroponic environment for two weeks at 150 mM of NaCl,

using a population of 188 F2:3 progeny obtained from a cross

between Upland and an accession of a wild type belonging to G.

tomentosum Nutt. ex Seem. In at least two environments, 11

consistent QTLs were identified on eight chromosomes (9, 11,

15, 16, 21, 23, 24 and 26). One of the major QTL reported was

Qrl-Chr16-1 elucidating the phenotypic variance of 11.97 and

18.44% in two environments. Results showed that in AD genome

of allotetraploid cotton, genes contributing towards salt

tolerance were mostly derived from D subgenome as 10 out of

11 QTLs detected were located on the D subgenome (Oluoch

et al., 2016). Another study was conducted to locate salt and

drought tolerance QTLs in an introgressed Upland cotton

population that was developed under controlled field and

greenhouse conditions, by utilizing 1004 polymorphic DNA

marker loci comprising 481 single nucleotide polymorphism

(SNPs) and 523 SSRs. A total of 165 QTLs were reported to be

found across most of the chromosomes, with each QTL

elucidating 5.98-21.43% of phenotypic variation. Furthermore,

15 QTLs that were common to salt and drought stress tolerances

were identified on 12 chromosomes. Chromosome c5 had a QTL

cluster for plant height which was identified in both greenhouse

and field conditions under drought stress but same cluster was

observed in greenhouse only under salinity stress (Abdelraheem

et al., 2019).

More QTL mapping for tolerance to abiotic stress using

various techniques is required because of restricted number of

QTL for drought and salt tolerance in cotton. Furthermore,

surplus markers and candidate genes are needed for tolerance to

abiotic stresses besides these progresses (Tiwari et al., 2013;

Rodriguez-Uribe et al., 2014; Abdelraheem et al., 2015b).

Genotyping-by-sequencing (GBS) has been employed in a

variety of crops, including cotton, as a less expensive option for

detecting thousands of genome-wide SNP markers across many

individuals from various populations (Elshire et al., 2011; Poland

and Rife, 2012; Gore et al., 2014; Abdelraheem and Zhang,

2016). Moreover, measuring genetic variations of SNPs between

different populations can also be done by utilizing and

developing SNP chips for identification of high levels of

polymorphisms. Permanent mapping populations for salinity

tolerance in cotton should be developed and used in QTL

mapping because replicated experiments utilizing same genetic
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consistently and to comprehend the genetic basis for abiotic

stress tolerance based on QTL mapping. A study directed that

improvement can be made in this field using a large RIL

population to measure the genetic relationship of abiotic stress

tolerance (Asins, 2002).

Association analysis was used in cotton genotypes to find out

eight SSRs linked to salt tolerance, out of which, two were highly

linked and explained phenotypic variations from 7.82 to 6.26%

(Zhao et al., 2016).

Proteomic approaches can be used to detect proteins that are

associated with salinity tolerance. For identification of 58

differently abundant salt responsive proteins in cotton seedling

leaves, iTRAQ was used in a study. Phospho ethanol amine,

phosphate-related differentially abundant proteins (DAPs), 14-

3-3-like protein E and N-methyltransferase 1 were induced in

salinity stress. Twenty-nine salt responsive proteins were

identified to be genotype-specific, with 62.1% and 27.6% of

them being linked to chloroplast and defense response,

respectively (Gong et al., 2017). These outcomes put forward

effectiveness of MAS in identification and development of

genotypes with salinity tolerance.

Using a set of 109 accessions of cotton, marker trait

associations were evaluated. Screening was done with the help

of 250 SSR markers for polymorphism. Results revealed that

markers BNL3140, BNL3103 and NAU478 were definite to be

linked with salt treatment (Saeed et al., 2014). In 108 elite cotton

lines, twenty-six markers on 14 chromosomes and 177 SSR

markers were found to be linked to Verticillium wilt resistance

(Baytar et al., 2017). However, due to the low marker densities

and populations employed in earlier association studies, QTL

mapping for stress tolerance has remained inadequate.

In cotton, whole genome exposure has been accomplished by

genome wide association study (GWAS) by the use of

economical genome-wide DNA markers (Zhu et al., 2008).

This method has a stronger statistical power than biparental

mapping for detecting significant QTL with high resolution to

explicate more phenotypic variation. On salinity tolerance, very

few studies have been performed due to its complicated

phenotyping in cotton. Even though these studies had greater

number of genotypes, still most of them utilized low genome

coverage of SSR markers. Recent studies assessed 323 Upland

cotton accessions for abiotic stress tolerance and carried out

GWAS using 106 SSR markers. Salinity tolerance was reported

to be linked with three SSR markers (Jia et al., 2014). Another

GWAS was performed in 304 Upland cotton genotypes for

salinity tolerance using 145 SSR markers. Results reported

approximately 95 loci to be significantly linked with traits

contributing towards salt tolerance (Du et al., 2016). Lately,

nine candidate intron length polymorphisms (ILPs) markers

were confirmed in upland cotton for salinity by using association

mapping under controlled conditions (Cai et al., 2017). A total of

74 SSR markers were utilized and 148 loci were found, out of
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which eight SSR sites were found to be linked with salinity

tolerance with the help of association analysis (Zhao et al., 2016).

9.1.1 Functional genomics tools for
improvement of salinity tolerance in cotton

Sequencing of genomes of tetraploid cotton (Zhang et al.,

2015), its sub-genomes as well as other Gossypium species, such

as, G. ramondii (Wang et al., 2012), G. barbadense (Liu et al.,

2015b), and G. arboreum (Li et al., 2014), and lately genome

wide resequencing of 352 cotton genotypes (Wang et al., 2017a),

243 diploid genotypes (Du et al., 2018), and 419 accessions (Ma

et al., 2018), provides a wide-ranging genome wide evaluation to

isolate genes, genomic regions, and SNPs, which can eventually

be used for salt stress tolerance in cotton. Cotton genome

sequencing and resequencing provide a foundation for

identifying genes and genome architecture in cotton. Cotton

functional genomics advances can aid in the investigation of

biologically active regions and genes across the entire genome.

We can now investigate salt stress tolerance in cotton using SNP

array platforms, fine and high-density genomic mapping,

transcript abundance, and epigenetic changes. Successively,

sub-genome species sequencing and the construction of dense

and ultra-precise genetic linkage maps will offer a platform for

gene isolation, gene mapping, and high-throughput

development of markers for stress tolerance (Ashraf et al., 2018).

With the advancements in next generation sequencing

(NGS) techniques and in silico methods, whole genome (2.5

Gb) SNPs have been established in allotetraploid cotton.

Development of putative 45,104 intraspecific and 17,954

interspecific SNP marker assays in cotton is valuable (Ashrafi

et al., 2015). These advancements deliver a high throughput

genotyping platform, basic and customary tool for genetic

analysis of economically and agronomically significant traits

associated with stress in cotton. A noteworthy proportion of

the whole genome comprises of copy-number-variations

(CNVs) rather than SNPs. Although, CNVs can be used for

identification of phenotypic variations for complex traits

(Abelson, 1998) as well as, tolerance to abiotic stress, which

are normally not covered by SNPs. CNVs can alter gene

regulation, dosage, and structure, in plant genomes and they

can also affect genes associated with abiotic stress tolerance

(Wang et al., 2017a). In cotton genome, CNV modifications in

989 genes have been detected that are linked with plant cell wall

organization, translational regulation, and plant type (Zhang

et al., 2015).
9.2. Transcriptomic profiling

Transcriptome profiling is a useful approach for extracting

information from sequence data in order to learn about different

gene activities and pathways. Various methods of transcriptome

analysis like suppression subtractive hybridization, DNA
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microarray, and RNA-seq have been developed. RNA-seq has

appeared as a powerful method for analyzing gene expression

variations in plants that reflects the underlying underpinnings of

salt stress responses (Mickelbart et al., 2015; Wang et al., 2017c).

Lately, the whole genome transcriptome was reported that

offers information about expressed sequence tag (EST)

assemblies of inbred line of Upland cotton, TM-1, and

functions as a reference genome for all SNP studies that are

RNA-sequence based (Ashrafi et al., 2015). Trancriptome

libraries of G. barbadense for traits associated with stresses like

salinity, heat, cold, and water stress, were also kept as a reference

for identification of novel stress associated genes (Zhou et al.,

2016). With the help of RNA-Seq analysis of wide-scale gene

expression by next generation sequencing (NGS) technologies

and tetraploid and diploid genome sequences, transcriptome

analysis for salinity and other abiotic stresses in cotton has been

performed (Zhang et al., 2018). The pattern of expression of

differentially expressed genes (DEGs) showed the transcription

of genes related to stress under environmental stress in somatic

embryos in a comparative transcriptome analysis (Jin et al.,

2014). Though, still some challenges remain for RNA-seq, like

the requirement to process and store huge data sets and handling

of the library construction.

In addition to genetic factors, the epigenetic based changes

also control various gene functions in plants. Out of these, DNA

methylation is the most common epigenetic signaling approach,

as it plays a very important role in the evolution of

morphological as well as physiological diversity in plants. In

cotton, fiber development and other plant tissues have showed

seasonal variation in modifications based on DNA methylation

(Phillips, 2008; Suzuki and Bird, 2008; Jin et al., 2013; Osabe

et al., 2014). Furthermore, DNA methylation plays an active role

in development of ovule and fiber. Dependency of RNA-directed

DNA methylation (RdDM) and CHH methylation has been

detected for the stimulation of different genes in ovules. A type of

DNA methylation i.e. chromomethylase 2 (CMT2), silences a

few genes related to fiber development (Song et al., 2015). In

recent times, epigenetic changes were used to modify 519 cotton

genes in cultivated and wild species (Song et al., 2017).

One of the significant post transcriptional regulators of gene

expression are small RNAs called microRNAs (miRNAs).

miRNAs are small single stranded non coding RNAs ranging

from 19 to 25 nucleotides in length (Carrington and Ambros,

2003). Cleavage and translational repression seems to be the

predominant method of post transcriptional regulation in plants

(Schwab et al., 2005; Brodersen et al., 2008). Recent studies

found that some miRNA of some plants respond to stress

situations and some miRNA targets are genes related to stress.

This put forwards that miRNA plays a very significant role in

response of plant to stress. Expression profiles of miRNA in

response to salinity stress have been studied in Arabidopsis

thaliana (Liu et al., 2008), Oryza sativa (Sunkar et al., 2008),

Zea mays (Ding et al., 2009), Gossypium hirsutum (Yin et al.,
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2012), and Caragana intermedia (Zhu et al., 2013). Besides

examining the effects of stress on miRNA, detection of miRNA

targets is also very important. In cotton, though, some miRNA

associated with salinity tolerance have been found to differ under

salt stress conditions (Zhang et al., 2007; Pang et al., 2009; Ruan

et al., 2009; Xue et al., 2013), as little information is available

about their expression profiles in response to salinity stress and

the role of these miRNA in adaptation to salt remains uncertain.

Few genes have been pinned down in cotton that express

their selves under salt stress conditions e.g. DREB (Gao et al.,

2009), MKK (Lu et al., 2013), GhMT3a (Xue et al., 2009), ERF
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(Johnson et al., 2003), and MPK (Zhang et al., 2011). A list of salt

responsive genes in cotton is given in Table 1. A unique gene,

GhNHX1, stimulates the tonoplast, Na+/H+ antiporter and also

controls the defense mechanism of plant against salt stress. It

was also observed that the mRNA level of GhNHX1 was greater

in salt tolerant genetic material as compared to salt sensitive

cultivars, signifying its role in salt tolerance (Wu et al., 2004). A

study is shown in Figure 4 in which a comparison is shown

between salt sensitive and salt tolerant genotypes. The sensitive

one showed greater inhibition in transport of K, P, and Mg and

absorption of P.
TABLE 1 Functional genomics of salt responsive genes in Gossypium hirsutum L.

Genes Function References

GhNHX1 Tonoplast Na+/H+ antiporter (Wu et al., 2004)

GhMT3a Type 3 metallothionein protein (Xue et al., 2009)

GhNAC4
GhNAC6

Encode NAC domain (Meng et al., 2009)

GhDREB Dehydration responsive element binding protein gene (Gao et al., 2009)

GhERF6
GhERF2
GhERF3

ERF-encoding genes (Jin et al., 2010)

GhDi19-1
GhDi19-2

Drought induced protein which is Cys2/His2 zinc-finger proteins (Li et al., 2010)

GhMPK2 Mitogen-activated protein kinase gene (Zhang et al., 2011)

GhNAC1
GhNAC6

Encode NAC domain (Shah et al., 2013)

GhMKK1 Mitogen-activated protein kinase (Lu et al., 2013)

GhSOD1 Superoxide dismutase (Luo et al., 2013)

GhWRKY11
GhWRKY12
GhWRKY13
GhWRKY14
GhWRKY115
GhWRKY20
GhWRKY21
GhWRKY24
GhWRKY30
GhWRKY32
GhWRKY33
GhWRKY34

WRKY transcription factor (Zhou et al., 2014)

GhWRKY39-1 WRKY transcription factor-encoding (Shi et al., 2014)

GhWRKY39 WRKY transcription factor (Shi et al., 2014)

GhAnn1 Annexin gene (Zhang et al., 2015)

GhWRKY41 WRKY transcription factor-encoding (Chu et al., 2015)

GhMAP3K40 Mitogen-activated protein kinase gene (Chen et al., 2015)

GhCCL Cold-circadian rhythm-RNA binding-like protein (Dhandapani et al., 2015)

GhABF2 bZIP-encoding gene (Liang et al., 2016)

GhWRKY25 WRKY transcription factor-encoding (Liu et al., 2016)

GhTPS11 Trehalose-6-phosphate synthase (Wang et al., 2016)

GhWRKY6 WRKY transcription factor (Li et al., 2019)

GhZAT34, GhZAT79 genes of zinc finger proteins (Rehman et al., 2021)
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10. Genome-modification/
transgenic approaches for salt
tolerance improvement in cotton

It is now possible to transfer desirable traits or genes between

plants and species to achieve a desired phenotype using genetic

engineering and biotechnology. Transgenic techniques are

valuable for enhancing plant abiotic stress tolerance following

the discovery of many salt tolerance genes. The transgenic

technique contributed in the development of salt tolerant

transgenic plants as well as the identification of salt

responsive genes.

Transcription factors play a very important role in response

of plant to abiotic stresses. An example of such is GhABF2 which

is a bZIP transcription factor gene. It was overexpressed in

transgenic cotton plants which established salt tolerance through

regulation of genes related to abscisic acid (ABA). These plants

also yielded more compared to control non-transgenic plants,

when exposed to salt stress (Liang et al., 2016).

Increased solute concentration in plant cell vacuoles

(osmotic adjustment) is thought to be a key factor in

improving salt tolerance in plants. Enhancing solute

concentration increases Na+ accumulation in vacuoles while

lowering the risk of Na+ toxicity in the cytoplasm, resulting in

increased salt tolerance in transgenic plants. A transgenic plant

of cotton was produced to over-express an vacuolar Na+/H+

antiporter of Arabidopsis, named AtNHX1 (He et al., 2005; He

et al., 2007). More fiber yield and biomass was generated from

cotton plants with AtNHX1 under high salt concentration.
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Increased sodium transfer into vacuoles occurs due to

overexpression of both of the tonoplast Na+/H+ antiporters,

resulting in increased vacuolar salt content and thus higher

salinity tolerance.

Similarly, cotton plants overexpressing the transcription

factor gene SNAC1 showed higher salinity tolerant with more

vigorous rooting system and lesser transpiration rate as

compared to non-transgenic plants. Another gene, Arabidopsis

AtEDT1/HDG11 was overexpressed in transgenic cotton plants

and these plants showed higher salt and drought tolerance,

extensive root system, higher ROS scavenging enzymes

activity, and more proline content in leaves (Liu et al., 2014;

Yu et al., 2016). In comparison to non-transgenic cotton,

overexpression of the Arabidopsis vacuolar Na+/H+ antiporter

gene AtNHX1 in cotton led to higher drought and salt tolerance

in greenhouse and field conditions, as well as higher fiber yield

(Umezawa et al., 2006). Furthermore, a study co-overexpressed

AtNHX1 and AVP1 genes in cotton and resulted in enhanced

salinity and drought tolerance in transgenic plants (Shen

et al., 2015).

Multiple salt stress-responsive proteins have been reported

to modify miRNAs and affect alternative splicing processes in

upland cotton. After 4 and 24 hours of salt stress, the results of

the stringent screening of mRNA-seq and proteomic data

between the salt-tolerant and salt-susceptible genotypes

identified 63 and 85 candidate genes/proteins, respectively,

relevant to salt tolerance (Peng et al., 2018). The CMO gene

from Atriplex hortensis led to enhanced salt tolerance when

overexpressed in cotton (Huijun et al., 2010). Under salt stress,

several auxin-induced genes, such as GH3 (auxin-conjugating
FIGURE 4

A study showing the comparison between a salt tolerant and salt sensitive cultivar in terms of response of ion content and gene expression (Sun
et al., 2021) .
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enzyme) and IAA, were up-regulated, whereas genes involved in

auxin metabolism (synthesis and degradation) and auxin signal

transduction, such as ARF (auxin response factor) and AFB2,

were down-regulated. Many genes involved in brassinosteroid

production and signal transduction, such as SMT2 (sterol

methyltransferase 2) and BES1 (bri1-EMSsuppressor 1), were

also shown to be considerably down-regulated during salt stress.

Some gibberellin signal transduction pathway genes, such as

GAI (gibberellic acid insensitive), were drastically down-

regulated. Some gibberellin production genes, such as

gibberellin 2-oxidase and gibberellin 20-oxidase, were up or

downregulated. Furthermore, it was found that three probe sets

for CKX7 (cytokinin oxidase 7) were up-regulated (Yao

et al., 2011).

The expression levels of most GhNHX genes are influenced

by salt stress. GhNHX4A expression was significantly up-

regulated by salt stress, precisely, in the endosomal group.

GhNHX4A can partly restore the salt tolerance of the salt

susceptible yeast mutant AXT3 in a yeast functional

complementation test. Salt tolerance of cotton was reduced by

silencing GhNHX4A expression, due to a rise in Na+

accumulation in stems and a drop in K+ accumulation in

roots. The findings of this study could be used to further

characterize the regulatory activities of NHX genes involved in

cotton salt tolerance, particularly the endosomal-type

GhNHX4A (Ma et al., 2020). In response to salt stress in

cotton seedlings, differential hybridization was used to isolate

GhNHX1 (Wu et al., 2004). The mRNA accumulation of

GhNHX1 in cotton seedlings was highly enhanced by salt

s t r e s s through Nor thern b lo t ana l ys i s . Func t ion

complementation was shown by GhNHX1 activity in a yeast

tonoplast Na+/H+ antiporter mutant, thus providing that the

antiporter is present in the vacuolar membrane. Tobacco plants

that were transgenic with over-expressing GhNHX1 showed

enhanced salinity tolerance as compared to non-transgenic

plants (Wu et al., 2004). After stress treatments, the transgenic

GhDREB wheat plants accumulated larger quantities of soluble

sugar and chlorophyll in their leaves, indicating increased

tolerance to severe salt stress (Gao et al., 2009).
10.1. CRISPR/Cas9

Even though transgenic techniques are promising, there are

certain drawbacks, such as extended incubation durations and

low transformation efficiency in case of cotton. The CRISPR/

Cas9 system consists of two components: a clustered regularly

interspaced short palindromic repeat (CRISPR) and an

associated protein 9 (Cas9), both of which are found in

bacteria (Streptococcus pyogenes). The CRISPR/Cas9 system

discovery was a quantum leap, and it now acts as a

multifunctional tool for gene editing in plants. It has been

successfully employed for quick and targeted genome editing
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in a variety of model plant species (Belhaj et al., 2015). In

Arabidopsis, the model plant, the first use of genome editing by

CRISPR/Cas9 was made successful (Shan et al., 2013).

Nevertheless, there have been few reports of CRISPR/Cas9

being used successfully in cotton. Multiple targeted genome

editing in allotetraploid cotton was recently performed by

targeting the GhCLA1 (chloroplast development gene) and

GhARG (arginase discosoma red fluorescent protein 2) genes

(Wang et al., 2017d). Cis-sequences are key regulatory elements

of genes and stress responses in the promoter region of genes. It

has also been reported that these cis-sequences play an

important role in stress regulation (Liu et al., 2014). Targeting

these cis-sequence locations using the CRISPR/Cas9 system has

recently been proposed as a way to develop novel QTLs for

analysis of genotypic and phenotypic variations that can help

increase abiotic stress tolerance in plants like cotton (Zafar et al.,

2020). Technical hurdles and low transformation efficiency, on

the other hand, preclude its widespread usage in cotton.

Some other genetic engineering tools like Zinc finger

nucleases (ZFNs), Transcription activator-like effector

nucleases (TALENs), and Meganucleases (MGNs) are also

being employed recently to modify plant genomes for coping

with various abiotic stresses. ZFNs identify and bind to target

DNA sites. This approach is extremely specific for targeted

genetic engineering. TALENs have been utilized in plant

research programs recently. They contain a non-specific DNA-

cleaving nuclease attached to a DNA-binding domain which can

be conveniently engineered for targeting any sequence (Chantre

Nongpiur et al., 2016).
11. Conclusion and future prospects

Salinity is a grave challenge in guaranteeing food security

around the world, with more than half of countries worldwide

experiencing it. Salt induces ion toxicity, nutritional imbalances,

and somatically induced water stress, all of which have negative

consequences on plant growth, development, and crop

establishment. Salt stress inhibits enzyme metabolic processes,

limits nutrient uptake, and causes nutritional disorders, resulting

in lower yield and fiber quality. Most of the cultivated accessions

of key crop species are extremely or moderately sensitive to salt

stress, and as a result, they do not perform well under saline

conditions in the field. Though cotton is considered as

moderately salt tolerant crop, still its critical developmental

stages can be affected adversely by high salt concentrations.

An inexpensive approach to manage salt stress in cotton could

be the development of cotton cultivars tolerant to salt stress.

Conveniently, genetic sources of salt tolerance have been

identified in most agricultural species, and they can be used in

breeding. However, the majority of germplasms with salt

tolerance have been found in related wild or undomesticated

species, making them unable to use in breeding programs due to
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inherent challenges. In cotton, mechanisms for displaying

tolerance to various abiotic stresses appear to be interrelated

and may share genetic elements.

Salt stress impairs biochemical, molecular, and physiological

processes in cotton, resulting in stunted growth and

development, as well as reduced photosynthetic rate, leaf and

root size, biomass, yield and yield components, and fiber quality.

As a result, variety of traits like these listed above, can be used to

screen cotton for salt tolerance while cultivated in the field or in

the greenhouse.

Because of the negative correlation between yield and abiotic

stress tolerance, linkage drag between genes for desirable and

undesirable traits remains a major barrier in improving cotton

for abiotic stress resistance through direct selections.

Nevertheless, with the use of molecular markers to map QTLs

in bi-parental and multi-parental populations as well as wild

populations, great progress has been achieved in understanding

the genetic basis of salt tolerance. Molecular markers and

mapping technologies have now made it possible to identify

genes or QTLs of interest for complex traits like salt tolerance

and transfer them from un-adapted genetic backgrounds into

present cultivars more accurately with the help of the marker

assisted selection (MAS) process. When using wild germplasm

as genetic resources, one of the benefits of MAS is that it reduces

the challenges associated with linkage drag. With this potential

in mind, substantial efforts have been commenced, and several

genes or QTLs related to salt tolerance in many plant species

have been identified.

Many salt responsive genes have been identified in the last

10–15 years, with some of them being researched further with

the help of transgenic techniques. Through genetic engineering,

many genes linked with plant salt tolerance have been added to

cotton to improve abiotic stress tolerance. It is important to note,

however, that none of these genes have been used in commercial

cotton breeding programs. Due to the interconnection of salt

responses with various other aspects of plant growth, promising

salt tolerance genes are frequently reported to have some

unfavorable impacts on cotton growth via gene-silencing

or overexpression.

The current state of transgenic cotton with improved salt

tolerance is far behind what is required for commercial

production. This is due to the fact that salt tolerance, so far,

has not reached the level expected for cotton grown in salt

affected fields, and also the strains of salt tolerant materials have

rather poor agronomic performance. As a result, future research

should concentrate on maximizing the extensive use of salt-

tolerant genes, as well as successful transformation and

development of new salt-tolerant cotton cultivars. Cotton

improvement hinges on the development of transgenic cotton

variet ies with high salt tolerance and other wel l-

integrated characteristics.
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It is projected that more permanent inter-specific and intra-

specific linkage mapping populations will be established with a

variety of parent genomes for high resolution QTL mapping and

repeated phenotyping for different stresses with the help of

genome wide SNP markers. The QTLs having greater salt

stress tolerance will be identified by MAS and tolerant genes

will be introduced into high yielding cultivated species.

Furthermore, to increase the consistency and range of cotton

germplasm phenotyping for salt stress tolerance, rapid, reliable,

and high throughput screening procedures valid on a broad scale

should be developed.
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