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Seed germination is critical to the life history of plants, playing an important role in the 
successful recruitment, colonization, and even invasion of new individuals within and 
outside population distribution ranges. Cold stratification and temperature are the key 
factors affecting seed germination traits. Studying how these two factors drive geographical 
variation in seed germination is essential to analyze and predict the geographical distribution 
range of alien plants in novel habitats. Spartina alterniflora, native to the United States, 
was introduced into China in 1979 and has spread over 20° of latitude along the eastern 
coast of China. Germination plays a crucial role in S. alterniflora’s large-scale invasion and 
diffusion across latitude. To evaluate the effects of cold stratification and temperature on 
seed germination of S. alterniflora across latitude, we collected seeds at seven locations 
across latitude in China. We exposed these provenances to cold stratification at 4°C (0, 
1, 3, and 5 months) and germination temperature (5°C, 15°C, 25°C, and 35°C) treatments 
in growth chambers. Seed germination was observed for 98 days, and we calculated 
germination rate, germination index, and germination time. Results indicated that longer 
cold stratification significantly promoted germination rate and germination index, but 
decreased germination time. Similarly, higher germination temperature significantly 
promoted germination rate and germination index, but decreased germination time. 
Moreover, there were significant interactive effects on germination traits between cold 
stratification and temperature. Seed germination traits showed linear relationships with 
latitude, indicating that S. alterniflora seeds from different provenances germinated at 
different times and adopted different germination strategies. The stratification and 
temperature are the most important factors regulating the dormancy and germination 
seeds, so they can be important drivers of this variation along latitude. Under scenarios 
of warmer regional temperature, seeds at higher latitudes could germinate earlier and 
have higher germination rate, which would favor a potential northern expansion of this 
invasive plant.
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INTRODUCTION

Seed germination is a critical stage in the life cycle of plants 
and plays a key role in the establishment, naturalization, and 
spread of their populations (Donohue et  al., 2010). Several 
factors that affect germination (including cold stratification and 
germination temperature; Baskin and Baskin, 1998; Gillard 
et al., 2017) vary across latitude and thus drive the geographical 
distribution of plants (Brändle et al., 2003; Leiblein-Wild et al., 
2014; Gillard et  al., 2017). Understanding the importance of 
cold stratification time and germination temperature for seed 
germination characteristics is, therefore, key to analyzing and 
predicting the distribution and range of plant species (Cavieres 
and Arroyo 2000; Gremer et al., 2020), especially in the light 
of anticipated changes to local and regional climates (Walck 
et  al., 2011; Zogas et  al., 2020).

Dormancy ensures that seeds avoid the abiotic stresses 
associated with extreme cold and drought (Wagmann et  al., 
2012; Baskin and Baskin, 2014) and germinate under suitable 
conditions for subsequent growth (Bewley et  al., 2013). In 
temperate and boreal regions, stratification helps break dormancy 
for seeds after the cold, wet, winter period (Baskin and Baskin, 
2014). For example, cold stratification has been shown to 
increase germination percentage and germination rate in species 
such as Arbutus unedo, Corylopsis coreana, Primula beesiana, 
and Sclerocarya birrea (Moyo et  al., 2009; Pipinis, 2017; Kim 
et  al., 2018; Yang et  al., 2020). Although longer stratification 
times are usually needed by species that experience longer 
winters (Zhang et  al., 2019), prolonged seed stratification may 
reduce germination and subsequent seedling survival (Plyler 
and Carrick, 1993; Plyler and Proseus, 1996). Temperature 
also affects seed germination (Baskin and Baskin, 1977). For 
example, higher temperatures increased the germination rates 
of Amaranthus tuberculatus, Setaria faberi, and Abutilon 
theophrasti seeds (Leon et  al., 2004; Chamorro et  al., 2018). 
In many cases, a rise in temperature is a signal for seeds to 
germinate, and a drop in temperature is a signal to go dormant 
(Watt and Bloomberg, 2012).

These environmental factors (cold winter and warming 
spring) that drive stratification and germination temperature 
vary predictably by latitude, but recent studies of seed germination 
at different latitudes have shown contrasting results. Cross-
species analyses have found that some species germinate faster 
at higher latitudes (Chamorro et  al., 2018) and some slower 
(Zhou et  al., 2021), suggesting species-specific responses to 
their environment. Yet, few studies have examined variation 
in seed germination within species over their geographic 
distribution in response to these factors (Baskin and Baskin, 
1998; Molina-Montenegro et al., 2018; Solé-Medina et al., 2020).

An excellent system to study the relative importance of 
drivers of seed germination is the cordgrass Spartina alterniflora 
in China, introduced from the United  States in 1979. The 
distribution now covers a range of over 20° (19°N–40°N) of 
latitude after 40 years of deliberate planting and natural dispersal 
(An et  al., 2007; Zhang et  al., 2017), which poses a serious 
threat to the Chinese coastal and wetland ecosystem (Li et  al., 
2009). Germination appears to play a crucial role in S. alterniflora’s 

large-scale latitude invasion and diffusion (Daehler and Strong, 
1994; Liu et al., 2016), because stratification time and germination 
temperature vary throughout its range (Liu et al., 2021). Spartina 
alterniflora has an optimal cold stratification time of 4 months 
at 4°C (Biber and Caldwell, 2008). Longer or shorter periods 
of stratification reduce germination rates (Stalter, 1973; Seneca, 
1974). Further, the expansion of S. alterniflora populations was 
closely related to local temperature (Loebl et  al., 2006). The 
germination rate of S. alterniflora increased with increasing 
temperature from 5°C to 25°C (Yuan and Shi, 2009). Similarly, 
other traits such as germination characteristics (Liu and Zhang, 
2021), vegetative growth (Liu et al., 2020a,b), flowering phenology 
(Somers and Grant, 1981; Crosby et  al., 2015; Chen et  al., 
2021), seed set (Liu et  al., 2016, 2017a), and life-cycle biomass 
allocation (Seneca, 1974; Liu et  al., 2022) are also related to 
latitude in both invasive and native areas. However, the effects 
of stratification time and temperature gradient on germination 
characteristics have not been considered over a large-scale 
latitude gradient for S. alterniflora.

To evaluate the effects of cold stratification time and 
temperature on seed germination characteristics of populations 
from different latitudes, we sampled populations of S. alterniflora 
along a large-scale latitudinal gradient in coastal China. 
We  exposed collected seeds from these different provenances 
to a range of cold stratification and temperature treatments 
and recorded their germination characteristics. The experiments 
addressed the following three questions: (1) What are the 
relative effects of cold stratification and temperature on seed 
germination? (2) How does seed germination vary along 
latitudinal gradients? (3) How do the effects of cold stratification 
and temperature on germination vary based on latitude?

MATERIALS AND METHODS

Study Species
Spartina alterniflora, native to North America, is self-
incompatible and wind-pollinated. Since its introduction into 
China in 1979, this species is now widely distributed along 
China’s coastline from 19° N to 40° N latitude (Zhang et  al., 
2017). Spartina alterniflora expands mainly through clonal 
growth and sexually reproducing seeds and maintains 
established populations mainly through clonal growth and 
sexual reproduction, and sexual reproduction is the main 
way of long-distance transmission (Daehler and Strong, 1994). 
Seed germination characteristics will strongly influence the 
latitudinal gradient dispersal in China. In general, S. alterniflora 
has no persistent seed bank because seed survival time is 
less than a year. They remain dormant until the following 
spring after they mature (Wang et al., 2006). The adaptability 
of germination to the environment is one of the key driving 
factors affecting distribution (Liu et al., 2021).

Seed Collection and Cold Stratification
In September–November, 2020, we  collected S. alterniflora 
seeds across a wide latitudinal gradient from the introduced 
range in China. We sampled seven locations between 38.15°N 
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and 20.54°N (Figure  1; Table  1). According to the climate 
data (2009–2019) from China Meteorological Data Service 
Center,1 annual mean temperature at the locations varied 
from 14.1°C to 23.5°C, and annual maximum and minimum 
temperature varied from 10.0°C to 27.1°C. To explore seeds’ 
response to the nature temperature range and below or up 
the nature temperature range, we  set up  4 temperature 
treatments of 5°C, 15°C, 25°C, or 35°C. And, days of daily 

1 http://data.cma.cn

average temperature below 4°C indicates the seeds cold 
stratification time (Biber and Caldwell, 2008; Wu et  al., 
2019). It can be  seen that seeds under natural treatments 
go through 0 to over 3 months of temperature below 
4°C. Therefore, we  set up four treatments of 0/1/3/5-month 
cold stratification time.

Within each location we  worked at two sites, separated 
by no <2 km (Liu et  al., 2016; Figure  1). At each site, 
we  established five randomly positioned quadrats of 
0.5 m × 0.5 m. Within each quadrat, we  randomly collected 

FIGURE 1 | Spartina alterniflora seed collection locations in China (circle), and annual mean temperature (indicated by color) and days of average temperature < 4°C 
(indicated by size of circle) variation across latitude. See Table 1 for site code.
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whole inflorescences from 10 individual plants. Previous 
studies have shown that filled seeds contain an embryo and 
endosperm, and can potentially germinate and grow; unfilled 
seeds have neither of these issues and cannot germinate or 
grow (Daehler and Strong, 1994; Ayres et al., 2007). We hand-
sorted filled seeds from unfilled seeds and counted them 
(Daehler and Strong, 1994; Liu et al., 2016). Each provenance 
is with 10 samples, each sample contained more than 400 
filled seeds. Before the germination experiments, the seeds 
were cleaned with ultra-pure water, cover with 10‰ seawater, 
placed in sealed and labeled plastic bags within 1 month 
of collection, and then stored in a refrigerator at 4°C for 
a 0-, 1-, 3-, or 5-month stratification period to break their 
dormancy (Plyler and Carrick, 1993; Koning, 2006). 
We  removed the seeds that germinated before the 
germination experiment.

Germination Experiment
To monitor germination, seeds were placed into Petri dishes 
containing 1 sheet of filter paper and wetted with ultra-pure 
water to keep seeds moist. The filter paper was wetted or 
misted daily to prevent seeds from any drying that would 
cause mortality (Plyler and Carrick, 1993). Dishes were 
placed in a growth chamber under one of four temperature 
regimes: 5°C, 15°C, 25°C, or 35°C. Over the first 10 days, 
the number of germinated seeds was recorded daily. From 
day 11 to 98, observations were made every 2 days. The 
seed germination and flowering phenology varied across 
latitude in the field (Liu et  al., 2017a; Qiu et  al., 2018; 
Chen et al., 2021), so the stratification/storage time between 
seed maturation and germination is different. Samples that 
did not undergo stratification were placed to germinate in 
December. Those that experienced 1 month of stratification 
were placed to germinate at the end of January, those with 
3 months of stratification at the end of March, and those 
with 5 months of stratification at the end of May. Each trial 
was followed for 98 days, by which time the most of seeds 
had reached the germination plateau. The final plateau was 
determined when no germination had occurred for 5 successive 
days for most of the dishes (Grime et  al., 1981). In total, 
therefore, 16 germination trials were run for each location 

(four stratification treatments × four temperature treatments) 
with 20 seeds in each.

To compare germination among treatments and location, 
we  calculated the germination rate (G%), germination  
index (GI), median germination time (T50), and mean 
germination time (MGT). Germination rate reflects seed 
activity, germination index reflects seed germination  
vigor, mean germination time and T50 reflect seed  
germination speed, and the four indices jointly reflect the 
germination potential of S. alterniflora seeds under the action 
of different environmental factors. The cumulative germination 
rate (G%) of S. alterniflora seeds was calculated as  
follows:

 
G

n

N
% %= ∗100

where n is the cumulative germination number at a specified 
time and N is the total number of tested seeds (Su et  al., 
2011; Yang et  al., 2020).

The germination index (GI) was calculated as follows:
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where Gt is the number of germinations at different times 
and Dt is the corresponding number of germination days (Zhou 
et  al., 2021).

The median germination time (T50) was the time for 50% 
of final germination (Ranal and Santana, 2006).

The average germination time (MGT) was calculated as follows:
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where Ni is the number of seeds germinating on  
day i, Di is the number of germination days (Ranal and 
Santana, 2006).

TABLE 1 | Geographic locations and climate (annual mean temperature, annual maximum temperature, annual minimum temperature, and days of daily average 
temperature below 4°C of seven survey locations on the coast of China) of seven populations of Spartina alterniflora were used in this study.

Provenance Abbreviation Latitude (°N) Annual mean 
temperature (°C)

Annual maximum 
temperature (°C)

Annual minimum 
temperature (°C)

Days of daily 
average 

temperature below 
4°C

Dongying DY 38.15 14.1 ± 0.2 19.4 ± 0.2 10.0 ± 0.1 94.5 ± 0.7
Ganyu GY 34.84 14.3 ± 0.2 18.8 ± 0.2 10.2 ± 0.2 79.7 ± 1.0
Chongming CM 31.62 17.4 ± 0.1 21.1 ± 0.1 14.2 ± 0.1 26.4 ± 0.8
Yueqing YQ 28.15 17.9 ± 0.1 20.9 ± 0.1 15.8 ± 0.1 9.6 ± 0.7
Luoyuan LY 26.31 20.3 ± 0.1 24.0 ± 0.2 17.6 ± 0.1 0.4 ± 0.1
Yunxiao YX 24.04 21.4 ± 0.1 25.5 ± 0.1 18.8 ± 0.1 0.1 ± 0.0
Leizhou LZ 20.54 23.5 ± 0.2 27.1 ± 0.2 21.0 ± 0.2 0.1 ± 0.0

Locations are ordered from north to south. ±1 indicates SE.
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Statistical Analysis
To confirm the effects of temperature, cold stratification, and 
their interaction on germination traits, we used a mixed model 
with temperature, cold stratification, and their interaction as 
fixed factors, and with latitude (provenance) as random effects. 
To confirm the differences in latitudinal clines under different 
temperatures, we  used general linear models, and the two-way 
ANOVA with latitude and temperature as main factors, to 
determine the main and interacting effects on germination 
traits under each cold stratification treatment. Data were cube-
root (x)-transformed or cube-root [ln(x + 0.1)]-transformed or 
cube-root (x/10 + 1)-transformed or arcsine [cube-root (x/100)]-
transformed to improve the normality of errors and homogeneity 
of variance when necessary. To explore germination variation 
across latitude, we  used linear regressions to analyze the 
relationships between germination traits (germination rate, 
germination index, T50 and mean germination time) and latitude 
of origin. To identify the gradients in climate, a principal 
component analysis (PCA) was conducted with rda function 
in the vegan package (Oksanen et  al., 2019). To determine 
the latitude effect variation under different treatments, we  did 
the linear regressions between the slopes of germination traits 
vary by latitude under different cold stratification and 
temperature. We performed all analyses in R version 4.1.2 
(R  Core Team, 2021).

RESULTS

Cumulative Germination Varied by 
Stratification Time and Temperature
Cumulative germination percentage varied considerably under 
different treatment conditions (Figure  2). Germination rate at 
98 days ranged from <10% with 1-month stratification at 5°C 
(Figure 2E) to >75% germination with a 5-month stratification 
at 35°C (Figure  2P). Seeds reached germination plateau most 
rapidly at 35°C and 5-month stratification treatment (Figure 2P). 
As we  predicted, in general, with longer stratification time 
and at the higher temperature, germination occurred earlier 
and was more rapid. Even so, germination was also determined 
by latitude. Seeds from lower latitudes tended to have lower 
and slower germination rates.

Germination Traits Response to 
Stratification Time and Temperature
In line with our predictions, longer stratification time and higher 
temperature both increased mean germination rate 
(Chisq P= <158 6 0 0001. , .  for stratification treatments; 
Chisq P= <182 31 0 0001. , .  for temperature treatments) and 
germination index ( 68.29, 0.0001= <Chisq P  for stratification 
treatments; 63.32, 0.0001= <Chisq P  for temperature 
treatments; Figure 3A; Supplementary Figure S1A). Meanwhile, 
longer stratification and higher temperatures tended to 
decrease both mean germination time ( 26.37, 0.0001= <Chisq P  
for stratification treatments; 1684.7 06, .000= <Chisq P  for 
temperature treatments) and T50 ( 124.14, 0.000= <Chisq P  for 

stratification treatments; 1559.2 07, .000= <Chisq P  for 
temperature treatments; Figure 3B; Supplementary Figure S1B). 
Moreover, for germination rate, mean germination time, 
germination index and T50, there was a significant interaction 
between stratification and temperature (Chisq P= <35 82 0 0001. , .  
for germination rate; 98.78, 0.0001= <Chisq P  for mean 
germination time; 19.84, 0.02= =Chisq P  for germination index; 

96.94, 0.0001= <Chisq P  for T50; Table  2).

Germination Variation Across Latitude 
Relating to Stratification Time and 
Temperature
Germination rate increased with latitude, which interacted with 
stratification time and temperature (Figures  4A–D). It can 
be  seen that the slope of germination rate and germination 
index to latitude increased with temperature, while germination 
time decreased (Figure  5; Supplementary Figure S3). Seeds 
exposed to the higher temperature and longer stratification 
had higher germination rates than seeds that were exposed 
to shorter stratification times and lower temperatures, and the 
effects of this were greater in seeds from higher latitudes due 
to the higher slope of germination rate to latitude (Figure 5A). 
A similar interaction was observed for germination index 
(Supplementary Figures S2C,D, S3A), while opposite for T50 
and germination time with decreasing trends (Figure  5B, 
Supplementary Figure S3B). Seeds exposed to colder 
temperatures took longer to germinate than those exposed to 
warmer temperatures, but those from lower latitudes were faster 
to germinate than seeds from higher latitudes at the coldest 
temperature at short stratification times (Figures  4E–H, 5B; 
Supplementary Figures S2E-H, S3B). The combination of 
latitude, cold stratification and the temperature contributed to 
the final germination. Principal component analysis of the five 
climate variables across latitude that the first PC axes explained 
almost all variation in climate gradients (94.67%) and were 
mainly associated with annual min temperature and days of 
daily average temperature below 4°C (Supplementary Figure S4).

DISCUSSION

Experimental exposure to cold stratification and temperature 
treatments affected the germination traits of S. alterniflora seeds 
of different provenances along a latitudinal gradient in China. 
Prolonging stratification time and higher temperature both 
promoted seed germination rate and shortened seed germination 
time. Moreover, these two factors interacted with each other 
to influence the germination characteristics of seeds. We found 
that germination rate and index increased linearly with latitude, 
but germination time decreased with latitude. Cold stratification 
interacted with temperature to influence this relationship. With 
the greatest slope in five-month stratification, lower slope in 
one or three-month stratification, and no relationship in zero 
stratification, germination rate shows the latitude effect. And 
with higher temperature and longer stratification time, the 
latitude effect becomes more significant. The adaptability of 
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S. alterniflora seed germination to temperature and cold 
stratification across latitude is different, which reflects the 
ecological adaptability of S. alterniflora to the coastal ecosystem 
and its invasion potential to large-scale latitude in China. With 
climate change and global warming, it may therefore have the 
potential of evolution. This study predicts global warming is 
likely to accelerate the establishment, naturalization, and spread 
of invasive plants of S. alterniflora in higher latitudes in China.

Effects of Cold Stratification on Seed 
Germination
Cold and wet storage (stratification) is essential to break 
dormancy and promote the germination of seeds of S. alterniflora. 
A minimum of 4–8 weeks at 4°C appears necessary (Biber 
and Caldwell, 2008). Our findings confirm that cold stratification 
is an effective agent for breaking the seed dormancy and 
improving germination in S. alterniflora. The importance of 

cold stratification has been confirmed in many species, including 
Primula beesiana (Yang et  al., 2020), Aster tripolium, and 
Triglochin maritimum (Al-Hawija et  al., 2012), and Guizotia 
scabra, Parthenium hysterophorus, and Verbesina encelioides 
(Karlsson et  al., 2008); while a moderate thermal stratification 
has a positive influence on seed germination in Cirsium arvense 
(Bochenek et al., 2009). This requirement for cold stratification 
also helps to prevent winter germination.

Cold stratification appears to have several benefits. First, 
it can improve superoxide dismutase (SOD) activity in seeds, 
removing any accumulated O2

−, an adaptation of seeds to 
the low-temperature environment in winter. Second, levels 
of abscisic acid (which inhibits germination) decrease 
significantly during cold stratification, coincident with an 
increase in germination capacity (Feurtado et al., 2004). In 
addition, cold stratification can also break seed dormancy in 
halophytes (Kołodziejek and Patykowski, 2015) and allow 

A B C D

E F G H

I J K L

M N O P

FIGURE 2 | The cumulative germination percentage per observation day of different latitude sites under different stratification time (A-D 0-month; E-H 1-month; I-L 
3-month; M-P 5-month) and temperature (A, E, I, M 5 °C; B, F, J, N 15 °C; C, G, K, O 25 °C; D, H, L, P 35 °C).
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germination at the right time to escape direct salt stress. For 
example, S. alterniflora seeds from North Carolina, 
United States, have a dormancy period of 6–12 months (Stalter, 
1973) and germination of invasive Spartina in China coincides 
with spring rains and rises in temperature (Yuan and Shi, 
2009). In contrast to previous studies (Stalter, 1973; Seneca, 
1974), we  found no negative effect of a stratification period 
over 4 months, but that germination rate and index were 
even greater at 5 months. This difference may be  because our 
data are from invasive populations, which may be  different 
from native populations. Stratification shortened T50 and MGT 
above 15°C but showed the opposite pattern at 5°C. Further 
research is needed to support and analyze this condition.

Effects of Temperature on Seed 
Germination
The role of temperature in regulating the seed dormancy of 
halophytes is known for some species (Ajmal Khan et  al., 
2000), such as Halogeton glomeratus, Lepidium latifolium, 
and Peganum harmala (Ahmed and Khan, 2010), and Puccinellia 
nuttalliana and Puccinellia distans (Tarasoff et  al., 2007). 
S. alterniflora is also known to be  sensitive to changes in 
temperature (Kirwan et  al., 2009). The invasive spread of 
S. alterniflora is closely related to local temperature (Loebl 
et  al., 2006; Liu et  al., 2016). It was found that number of 

shoots which indicated clonal growth increased slightly with 
temperature (Liu et  al., 2016). Our results show that 
germination responds positively to higher temperatures, with 
or without a period of cold stratification, consistent with 
previous studies (Zhu et  al., 2011; Hayasaka et  al., 2020). 
In future climate scenarios, the increase with temperature 
on both clonal growth and sexual reproduction may lead 
to population expansion.

Seeds undergo active metabolic reactions during germination. 
As such, within a certain range, germination processes are accelerated 
as temperature increases (Zhang et  al., 2012), but too low or too 
high a temperature will affect germination due to membrane 
permeability, membrane-binding activity, and enzyme denaturation 
(Gul and Weber, 1999; Gulzar et al., 2001). The optimal temperature 
for seed germination is closely related to the original habitat of 
the population (Zhang et al., 2012). Our experimental temperature 
treatments (5°C–35°C) coincided with the suitable range experienced 
in nature, and the field temperatures experienced by S. alterniflora 
are rarely (if ever) more than 35°C (Table 1; Figure 1). In subsequent 
experiments, we can set higher temperature treatments. Temperature 
cues are particularly important for the release of dormancy to 
allow germination and may be  particularly affected by rising 
temperatures due to climate change (Loarie et  al., 2008; Footitt 
et al., 2013, 2018; Baskin and Baskin, 2014). Also, it is noteworthy 
that cold days is important which can delay the germination 
(Milbau et  al., 2009; Chamorro et  al., 2017; Gremer et  al., 2020).

A B

FIGURE 3 | Variation of germination rate (A) and mean germination time (B) of 0/1/3/5-month-stratification Spartina alterniflora seeds under different temperatures 
(5°C–35°C). Values indicate means ± 1 SE.

TABLE 2 | Mixed model analysis of germination rate, mean germination time, germination index and T50 of Spartina alterniflora, cold stratification and temperature as 
fixed effect with latitude (provenance) as random effect.

Factor Germination rate Mean germination time Germination index T50

Chisq Df P Chisq Df P Chisq Df P Chisq Df P

Stratification (S) 158.60 3 <0.0001 26.37 3 <0.0001 68.29 3 <0.0001 24.14 3 <0.0001
Temperature (T) 182.31 3 <0.0001 684.76 3 <0.0001 63.32 3 <0.0001 559.27 3 <0.0001
S * T 35.82 9 <0.0001 98.78 9 <0.0001 19.84 9 0.02 96.94 9 <0.0001

The significant p values were shown in bold (p < 0.05).
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A B C D

E F G H

FIGURE 4 | Effect of temperature/stratification treatments on the germination rate (A–D) and mean germination time (E–H) of Spartina alterniflora seeds from 
different latitudinal provenances (shaded area indicates 95% CI).

A B

FIGURE 5 | Variation of germination rate (A) and mean germination time slopes (B) of latitude influence of 0/1/3/5-month-stratification Spartina alterniflora seeds 
under different temperatures (shaded area indicates 95% CI). Slope was from Figure 4.
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Latitudinal Variation in Seed Germination 
of Spartina alterniflora
Our results show an apparent increase in germination rate in 
seeds from higher latitudes, consistent with the cross-species 
analysis of herbs by Graae et  al. (2009). Moreover, our results 
demonstrate that germination traits of seeds of S. alterniflora 
from different provenances at different latitudes differ significantly 
in response to stratification and ambient temperature. This 
effect of latitude was especially strong in terms of germination 
index with higher temperatures (Chamorro et  al., 2018; Wang 
et al., 2021), which indicates that seed germination of populations 
at higher latitude was more sensitive to temperatures (Cochrane 
et al., 2015). Therefore, population recruitment at higher latitude 
may benefit from warmer climate accelerates germination (Wu 
et  al., 2019). The responses of seeds from different latitudes 
to stratification were significantly different (Fowler and Dwight, 
1964). This is because low-latitude populations lack a cold 
stratification requirement, and high-latitude populations 
experience cold temperatures and need cold stratification to 
release dormancy (Weng et  al., 2006; Cortés-Fernández et  al., 
2021). Reproductive traits, such as seed set and seed survival 
of S. alterniflora also increase with latitude (Liu et  al., 2017a). 
Invasive plant populations are likely very plastic and can adapt 
to different local environments (Feng et  al., 2009; Liu et  al., 
2017a), and their traits will co-vary with these conditions that 
vary with latitude and altitude (Colautti et  al., 2009; Castillo 
et  al., 2014). Although it is difficult to determine the balance 
of genetic vs. environmental influence (Weng et  al., 2006; 
Cortés-Fernández et  al., 2021), our results indicate that 
S. alterniflora, which is distributed over a wide latitudinal range, 
may have significant adaptive variation in seed germination.

With global warming, this variation may lead to a mismatch 
between the optimal germination time of S. alterniflora seeds 
and the environmental cues of previous adaptation (Walck 
et  al., 2011; Cochrane, 2019; Sentinella et  al., 2020). These 
variations in space and time suggest that a warmer climate 
may improve the long-term survival of S. alterniflora, as well 
as its competitive abilities (Kirwan et  al., 2009; Clements and 
Ditommaso, 2011). High-latitude provenances have existing 
high adaptability to a cold environment (Mao et  al., 2015). 
Climate warming may affect the population dynamics of species 
by altering seed germination patterns, especially for frontier 
populations near the boundaries of their distribution (Wu et al., 
2019), which should be  a focus of future research.

Interaction Effects
Cold stratification requirements are especially common in species 
from high latitudes (Wagner and Simons, 2008), as our results 
demonstrated. Previous studies have found that seeds from high-
latitude populations that experience more severe climates have 
deeper dormancies that require longer periods of cold stratification 
to overcome (Cavieres and Arroyo, 2000, 2001; Bernareggi et  al., 
2016). In contrast, low-latitude populations lack a cold stratification 
requirement and experience temperatures conducive for germination 
(Graae et al., 2009). Our finding that cold stratification improves 
seed germination from high latitudes is consistent with the results 

of previous work on arctic and alpine species (Cavieres and 
Arroyo, 2000; Liu et  al., 2017b), which all experience a severe 
abiotic environment.

Local climate will differentially affect populations of 
S. alterniflora across its invasive range (Liu et  al., 2017a). Seeds 
of populations from cooler climates (high-latitude sites) could 
germinate earlier under warmer temperatures as a result of the 
earlier onset of the warm season or regional warming (Picciau 
et  al., 2019). In a climate change context, this response would 
favor a potential expansion toward northern or higher elevation 
sites. On the other hand, similar changes to local climates would 
negatively affect germination in lower latitude sites, which may 
lead to a range reduction at the warmer end of the distribution. 
Within the temperature gradient, we  set up, germination of 
S. alterniflora was always promoted, showing that the existing 
invasion region of S. alterniflora is a suitable range of temperature 
for it. Future work could examine germination potential at even 
higher temperatures (including soil temperature) and conduct 
field observations and real reciprocal experiments in the field.

Our results show that with longer stratification time, 
temperature plays a more important role in seed germination. 
Stratification and temperature, alongside latitude, are thus 
important drivers of population and community dynamics 
(Huang et al., 2016), by their influence on plant fitness, habitat 
selection, or niche construction (Donohue et  al., 2005, 2010). 
Including more than one variable to more fully capture the 
germination process can facilitate an understanding of how 
local climate characteristics can affect germination across the 
distribution of a species. The germination responses of the 
seeds we  tested provide insights into possible future effects 
of climate change on S. alterniflora distribution. This study 
suggests that global warming may accelerate the expansion 
and spread of invasive S. alterniflora in higher latitude coastal 
environments of China.
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