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Late leaf spot (LLS), caused by Nothopassalora personata (Berk. & M.A Curt.), and
groundnut rosette disease (GRD), [caused by groundnut rosette virus (GRV)], represent
the most important biotic constraints to groundnut production in Uganda. Application
of visual scores in selection for disease resistance presents a challenge especially when
breeding experiments are large because it is resource-intensive, subjective, and error-
prone. High-throughput phenotyping (HTP) can alleviate these constraints. The objective
of this study is to determine if HTP derived indices can replace visual scores in a
groundnut breeding program in Uganda. Fifty genotypes were planted under rain-fed
conditions at two locations, Nakabango (GRD hotspot) and NaSARRI (LLS hotspot).
Three handheld sensors (RGB camera, GreenSeeker, and Thermal camera) were used
to collect HTP data on the dates visual scores were taken. Pearson correlation was
made between the indices and visual scores, and logistic models for predicting visual
scores were developed. Normalized difference vegetation index (NDVI) (r = –0.89)
and red-green-blue (RGB) color space indices CSI (r = 0.76), v∗ (r = –0.80), and b∗

(r = –0.75) were highly correlated with LLS visual scores. NDVI (r = –0.72), v∗ (r = –0.71),
b∗ (r = –0.64), and GA (r = –0.67) were best related to the GRD visual symptoms.
Heritability estimates indicated NDVI, green area (GA), greener area (GGA), a∗, and hue
angle having the highest heritability (H2 > 0.75). Logistic models developed using these
indices were 68% accurate for LLS and 45% accurate for GRD. The accuracy of the
models improved to 91 and 84% when the nearest score method was used for LLS
and GRD, respectively. Results presented in this study indicated that use of handheld
remote sensing tools can improve screening for GRD and LLS resistance, and the best
associated indices can be used for indirect selection for resistance and improve genetic
gain in groundnut breeding.
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INTRODUCTION

Groundnut (Arachis hypogaea L.) is the second most important
legume in Uganda after the common bean (Phaseolus vulgaris
L.). It is an important source of protein and vegetable oil
and is grown on over 413,000 hectares in Uganda (Deom and
Okello, 2018), and over 13 million hectares in Sub-Saharan Africa
(SSA; FAOSTAT, 2019). Groundnut productivity in developed
countries is higher compared to that in developing countries. For
example, the productivity in the USA was 4,072 kg/ha in 2021
(USDA-NASS, 2021), while that in Sub-Saharan Area (SSA) was
approximately 950 kg/ha from 2017 to 2019 (FAOSTAT, 2019).
The low productivity in SSA is attributed to low agricultural
inputs, eroded soil fertility, and extensive biotic stress pressure.
Late leaf spot [LLS; caused by Nothopassalora personata (Berk.
& Curt.) U. Braun, C. Nakash, Videira and Crous] (Giordano
et al., 2021) and Groundnut rosette disease (GRD) (caused by
groundnut rosette virus (GRV)) are the most important biotic
constraints to groundnut production in Uganda and SSA (Deom
and Okello, 2018). These two diseases often occur simultaneously
in farmers’ fields causing up to 100% yield loss depending on the
variety and management (Mugisa et al., 2016). Several methods
can be employed to control these diseases. For example, GRD can
be controlled by early planting and use of optimal plant densities
(Farrell, 1976) and spraying insecticides to control the aphid
vectors (Davies, 1975; Wightman and Amin, 1988). LLS can be
controlled by use of biological control agents, such as chitinolytic
bacteria (Kishore et al., 2005) and fungicides (Culbreath et al.,
2002). These practices are rarely adopted by smallholder farmers
in the SSA because of lack of access to information, shortage
of resources, and differential priorities of the crops among
different households.

The development of disease-resistant varieties is viewed as
the most affordable way for smallholder farmers to maintain
stable yields and make economic gains. The development of high-
yielding varieties with improved resistance to diseases involves
phenotyping of large numbers of breeding lines across multiple
breeding locations (Araus and Cairns, 2014). In many breeding
programs, early selection for the identification of genotypes with
improved performance involves the use of breeder scores based
on visual assessment of the plant appearance. For LLS, the breeder
scores used in groundnut breeding include a 1–9 severity scale
(Subrahmanyam et al., 1995), and for the GRD a 1–5 severity
scale (Waliyar et al., 2007). These visual scores are subjective
(Milberg et al., 2008), and fully dependent upon the expertise of
the evaluator. Therefore, to standardize measurements collected
by different evaluators or even the same evaluator at different
time points is difficult. Furthermore, visual assessment of plant
characteristics in breeding programs is labor-intensive, costly,
and time-consuming (Araus and Cairns, 2014) because breeding
experiments involve a large number of genotypes planted
across multiple locations. Although visual assessment is usually
performed by well-trained experts, external factors such as size
of plot, time of sampling, and changes in weather conditions can
lead to variation in the perception even by the same individual
(Borra-Serrano et al., 2018). Visual scores allow the capture
of a substantial proportion of variation attributed to genotypic

differences, however, methodological inaccuracy usually resulted
in low heritability when selection is based on these scores
(Visscher et al., 2008). Heritability, along with accuracy and
repeatability of the selection method, is important in breeding
because traits with high value of heritability are more likely to
significantly contribute to the genetic gain (Cobb et al., 2019).
A high heritability is indicative of great contribution of genetic
factors compared to environmental factors to the expression
of a trait (Holland et al., 2003). Several studies have reported
high heritability of visual scores of LLS (Anderson et al., 1991)
and GRD (Merwe et al., 1999) indicating possibility of attaining
genetic gains using these scores. Alternative methods, which
involve the use of proxy traits, such as canopy temperature
and NDVI, have registered improved heritability, better selection
accuracy, and higher genetic gains in various crops, such as sugar
cane (Saccharum officinarum L.) (Natarajan et al., 2019), cotton
(Gossypium hirsutum L.) (Andrade-Sanchez et al., 2013), and
wheat (Triticum aestivum L.) (Wang et al., 2020).

High-throughput phenotyping (HTP) platforms have the
potential to ameliorate the challenges associated with visual
assessments and, consequently, accelerate genetic gain (Araus
and Cairns, 2014; Araus Ortega et al. 2014, 2018). HTP involves
the use of advanced technologies for fast data collection and
processing, and non-destructive and non-invasive analysis of
plant characteristics (Gehan and Kellogg, 2017). HTP platforms
offer detailed measurements of plant characteristics of interest
(Finkel, 2009). Previous studies have demonstrated the efficacy
of the RGB imaging for assessment of yellow rust (Puccinia
striiformis f. sp. tritici) in wheat (Triticum aestivum L.) (Zaman-
Allah et al., 2015; Zhou et al., 2015), Verticillium wilt (caused
by Verticillium dahliae Kleb) in olive (Olea europaea L.)
(Sancho-Adamson et al., 2019), and lethal necrosis [caused
by a combination of maize chlorotic mottle virus (MCMV)
and sugar cane mosaic virus (SCMV)] in maize (Zea mays
L.) (Kefauver et al., 2015). NDVI has widely been applied in
breeding for resistance to yellow rust in wheat and maize, lethal
necrosis in maize (Kefauver et al., 2015), and powdery mildew
(Blumeria graminis f. sp. tritici) in wheat (Franke and Menz,
2007). Canopy temperature has been applied for stripe rust
phenotyping in wheat (Cheng et al., 2015), and downey mildew
(Pseudoperonospora cubensis (Berk & M.A Curtis) Rostovzev) in
cucumber (Cucumis sativis L.) (Oerke et al., 2006) and tomato
(Solanum lycopersicum L.) (Raza et al., 2015).

In groundnut breeding, application of HTP methods to
complement or replace traditional phenotyping is in incipient
stages. Efforts have been put forward to develop HTP methods
to assess leaf wilting (Sarkar et al., 2021), plant height (Yuan
et al., 2019; Sarkar et al., 2020), and plant population and variety
differentiation using RGB and NDVI (Oakes and Balota, 2017).
No HTP methods are yet available for phenotyping LLS and GRD
resistance in groundnut. The changes in plant physiology and
morphology under LLS and GRD pressure can be phenotyped
remotely and genotypic differences for resistance to these diseases
can be assessed, as in other crops. In this study, handheld tools
were used to develop HTP methods to improve phenotyping
accuracy within groundnut breeding programs in Uganda and
SSA. The overall objective of this study was to evaluate the
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effectiveness of several handheld sensors as low-cost phenotyping
tools for screening LLS and GRD resistance in groundnut
breeding. Specific objectives were as follows: (1) To evaluate
the relationship between sensor-derived vegetation indices (VIs)
with the LLS and GRD conventional visual scores; (2) determine
the heritability of the VIs at different groundnut growth stages;
and (3) develop VI-based regression models for selection for LLS
and GRD resistance in groundnut breeding programs.

MATERIALS AND METHODS

Field Experiment
The experiment was conducted during two planting seasons:
2020A (April–August 2020) and 2020B (September–December
2020), at the National Semi-Arid Recourses Research Institute
(NaSARRI), Serere District, Eastern Uganda (1◦0′00.0′′N,
33◦33′00.0′′E), and Nakabango Technology Verification Center,
Jinja District, Eastern Uganda (0◦31′17.6′′N, 33◦12′49.1′′E).
These locations receive bimodal rainfall seasons throughout the
year; the first between March and May, and the second between
August and October. These locations were chosen because they
were characterized as hot spots for both GRD (Nakabango) and
LLS (Nakabango and NaSARRI) screening in Uganda (Okello
et al., 2010). Breeding genotypes were selected for this study;
50 genotypes consisting of commercial varieties and advanced
breeding lines from NaSARRI, Uganda, and International Crop
Research Institute for the Semi-Arid Tropics (ICRISAT), Malawi.
This selected population included three groundnut market types:
Virginia (bv. hypogaea), Spanish (bv. vulgaris), and Valencia
(bv. fastigiata). The 50 genotypes were selected to represent
the different levels of resistance to GRD and LLS as shown in
(Table 1). The experiment was laid out in 5 x 10 alpha-lattice
design with three replications. The genotypes were planted in
two-row plots of 1-m long × 45 m wide. The experimental
layout was generated from the Breeding Management Systems
(BMS) platform [The IBP Breeding Management System (BMS
Pro) Version 13 (2020)].1 The spacing between the plots within
the blocks was 0.6 m, 0.45 m between rows within the plot,
and 0.15 m between plants within the row. A distance of 0.9 m
was kept between the blocks and 1.5 m between the replicates.
The experiment was maintained under rain-fed conditions and
standard agronomic practices (Okello et al., 2010).

Traditional Visual Assessment/Scoring
Visual scores of disease severity were taken by a groundnut
breeding technician. Disease data was collected four times across
the growing season each data point corresponding with a
particular phenological stage of the groundnut. The data was
collected at growth stages R2 (beginning of peg formation), R4
(beginning of pod formation), R7 (beginning of maturity), and
R8 (harvest maturity) as described by Boote (1982). LLS severity
was scored based on a 1–9 visual scale as described in Table 2
(Subrahmanyam et al., 1995). GRD was scored according to
Equation 1 based on percentage disease incidence at beginning

1https://www.bmspro.io

TABLE 1 | A list of genotypes used in the study showing their market type,
source, and status.

Entry Genotype Market type Source Status

1 ICGV-SM 03590 Spanish ICRISAT Resistant check
LLS

2 DOK 1R Spanish NaSARRI Resistant check;
GRD

3 Serenut 14R Virginia NaSARRI Resistant check;
LLS & GRD

4 Serenut 7T Virginia NaSARRI Resistant check;
LLS & GRD

5 Serenut 11T Virginia NaSARRI Resistant check;
LLS & GRD

6 Serenut 8R Virginia NaSARRI Resistant check;
LLS & GRD

7 Serenut 9T Virginia NaSARRI Resistant check;
LLS & GRD

8 Serenut 4T Spanish NaSARRI Susceptible check;
LLS

9 Serenut 6T Spanish NaSARRI Susceptible check;
LLS

10 JL 24 Spanish ICRISAT Susceptible check;
LLS & GRD

11 Acholi white Valencia NaSARRI Susceptible check;
LLS & GRD

12 RedBeauty Valencia NaSARRI Susceptible check;
LLS & GRD

13 SGV 10010 ER Spanish NaSARRI Test entry

14 DOK 1T Spanish NaSARRI Test entry

15 ICGV 02501 Spanish ICRISAT Test entry

16 SGV 0080 Virginia NaSARRI Test entry

17 ICGV-SM 16502 Spanish ICRISAT Test entry

18 SGV 0060 Virginia NaSARRI Test entry

19 SGV 0075 Virginia NaSARRI Test entry

20 ICGV 01502 Spanish ICRISAT Test entry

21 SGV 07010 Virginia NaSARRI Test entry

22 Serenut 5R Virginia NaSARRI Test entry

23 12CS-015 Spanish USA-UGA Test entry

24 B7-30-9-3 Spanish USA-UGA Test entry

25 ICGV-SM 08556 Spanish ICRISAT Test entry

26 ICGV-SM 01709 Virginia ICRISAT Test entry

27 ICGV-SM 95526 Valencia ICRISAT Test entry

28 ICGV-SM 95355 Virginia ICRISAT Test entry

29 ICGV-SM 16520 Spanish ICRISAT Test entry

30 ICGV 01504 Spanish ICRISAT Test entry

31 SGV 0805 Valencia NaSARRI Test entry

32 ICGV-SM 01731 Virginia ICRISAT Test entry

33 ICGV-SM 95714 Valencia ICRISAT Test entry

34 ICGV-SM 99568 Spanish ICRISAT Test entry

35 ICGV-SM 88710 Virginia ICRISAT Test entry

36 SGV 0071 Virginia NaSARRI Test entry

37 SGV 0084 Virginia NaSARRI Test entry

38 ICGV 01514 Spanish ICRISAT Test entry

39 ICGV-SM 03702 Virginia ICRISAT Test entry

40 SGV 0023 Virginia NaSARRI Test entry

41 SGV 990400 Virginia NaSARRI Test entry

42 ICGV-SM 16501 Spanish ICRISAT Test entry

(Continued)
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TABLE 1 | (Continued)

Entry Genotype Market type Source Status

43 ICGV-SM 0205 Spanish ICRISAT Test entry

44 ICGV 9555 Spanish ICRISAT Test entry

45 SGV 10005 Spanish NaSARRI Test entry

46 ICGV 01515 Spanish ICRISAT Test entry

47 ICGV 01510 Spanish ICRISAT Test entry

48 ICGV-SM 96714 Valencia ICRISAT Test entry

49 SGV 0065 Virginia NaSARRI Test entry

50 SGV 0047 Virginia NaSARRI Test entry

TABLE 2 | The 9 point scale used for screening groundnut for resistance for late
leaf spot (Subrahmanyam et al., 1995).

Score Description Disease
severity (%)

Inference

1 No disease 0 Resistant

2 Lesions present on lower leaves; no
defoliation

1–5 Resistant

3 Lesions present largely on lower leaves,
very few on middle leaves; defoliation of
some leaflets on lower leaves

6–10 Resistant

4 Lesions on lower and middle leaves but
severe on lower leaves, defoliation of some
leaflets evident on lower leaves

11–20 Moderately
resistant

5 Lesions present on all lower and middle
leaves; over 50% defoliation of lower leaves

21–30 Moderately
resistant

6 Severe lesions on lower and middle leaves;
lesions present but less severe on top
leaves; extensive defoliation of lower leaves;
defoliation of some leaflets evident on
middle leaves

31–40 Moderately
resistant

7 Lesions on all leaves but less severe on top
leaves; defoliation of all lower and some
middle leaves

4–60 Susceptible

8 Defoliation of all lower and middle leaves;
severe lesions on top leaves; some
defoliation of top leaves evident

61–80 Susceptible

9 Almost all leaves defoliated, leaving bare
stems; some leaflets may remain, but show
severe leaf spots

81–100 Susceptible

of peg formation, beginning of pod formation, beginning of
maturity and GRD severity at harvest maturity. GRD severity was
scored based on a 1–5 scale (Table 3; Waliyar et al., 2007).

GRD Incidence (%) =
Number of infected plants

Total number of plants
× 100% (1)

High-Throughput Measurements
A Sony α6000 digital camera [model ILCE 6000, 24.3 megapixel
(Sony-α, Tokyo, Japan)], GreenSeeker crop sensor (Trimble Inc.,
Sunnyvale, California, United States), and FLIR C2 Thermal
camera (Teledyne FLIR LCC, Wilsonvile, Oregon, United States)
were used as HTP sensors in this study. HTP measurements were
taken on the same dates as traditional visual scoring. The HTP
measurements were taken between 10:00 and 16:00 h, on sunny
days. To collect the RGB images, the Sony α6000 camera was

TABLE 3 | Groundnut rosette severity scale as described by Waliyar et al. (2007).

Score Genotype reaction Inference

1 No visible symptoms on the
foliage

Highly resistant

2 Rosette symptoms on 1–20%
foliage, but no obvious stunting

Resistant

3 Rosette symptoms on 21–50%
foliage and stunting

Moderately resistant

4 Severe rosette symptoms on
51–70% foliage and stunting

Susceptible

5 Severe symptoms on 71–100%
foliage, stunted or dead plants

Highly susceptible

set to auto so that the lens could adjust to the best sharpness,
brightness, and hue based on available light. The camera zoom
was set at 0 for all images and a 58 mm camera lens was used. The
camera was held at 90 cm above the plant canopy in a zenithal
plane and focusing at the center of each plot. The camera had an
F-stop of f/8.0, a focal length of 16 mm, and an ISO speed ISO-
100 without a flash. The images were saved as Joint Photographic
Experts Group (JPEG) files (6,000 × 4,000) with a resolution of
350 dpi. RGB color space indices were extracted from the images
using the BreedPix 0.2 option of the CIMMYT maize scanner 1.6
plugin (open software2; Copyright 2015 Shawn Carlisle Kefauver,
University of Barcelona; produced as part of Image J/Fiji (open
source software)3 (Schindelin et al., 2012; Rueden et al., 2017).
Figure 1 illustrates the extraction of the RGB indices using
BreedPix, while Table 4 presents the indices and their description.

Canopy NDVI values were determined using a handheld
spectroradiometer (GreenSeeker crop sensor, Trimble
United States) on the same date the RGB images were taken.
The GreenSeeker was held at 60 cm above the plant canopy and
average NDVI readings were taken from each row. The trigger
of the GreenSeeker was pressed at the beginning of the row and
released at the end of the row to obtain the average NDVI of the
row. The average of the two rows was taken to determine the plot
average NDVI reading. The readings were taken when the sun
was overhead to avoid shadows. NDVI was calculated according
to Equation 2.

NDVI = ((NIR− R))/((NIR + R)) (2)

Where R is the reflectance in the red band (660 nm)
and NIR is the reflectance in the reflectance in the near-
infrared band (760 nm).

Canopy temperature (CT) was measured using a FLIR C2
Thermal camera with a focal length of 2 mm. Images were taken
while holding the camera 60–80 cm from the plant at an angle of
45◦, and the images were saved as JPEG files with dimensions of
240 × 320 pixels and a resolution of 72 dpi. FLIR Tools software
was used to extract the canopy temperature readings from the
thermal images in degrees centigrade (Figure 2).

2http://github.com/george-haddad/CIMMYT
3http://fiji.sc/Fiji
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FIGURE 1 | RGB images of groundnut rosette disease resistant (A) and susceptible (B) genotypes taken at 0.8 m above the plant canopy before and after analysis
using BreedPix 0.2 option of the maize scanner 1.6. Images A and B show the original images, images (C,D) show the green area (GA), and images (E,F) show the
greener area (GGA) with all yellowish (hue angle 60–80◦) pixels removed.

TABLE 4 | RGB indices derived from the BreedPix and their description.

RGB Indices Basis of derivation Color space References

Hue Color description in form of angles
[0◦–360◦ (0◦-red; 60◦-yellow; 120◦-green;
240◦-blue)]

His Cheng et al., 2001

Saturation Measure of dilution of pure hue with white
light [0–1]

HSI

Intensity Measure of grayness on a 0 (black)–1
(white) scale

HSI

Lightness Light reflected by a non-luminous body [0
(black)–100 (white scale)]

CIE-Lab

a* Green (a)-Red ( + a) component CIE-Lab Cheng et al., 2001

b* Blue (–b)-Yellow ( + b) component CIE-Lab

u* Green (–u)-Red ( + u) component CIE-Luv

v* Blue (–v)-Yellow ( + v) component CIE-Luv

Green area (GA) Pixels from 60◦–120◦ HIS Casadesus et al., 2007;
Kefauver et al., 2015;

Zhou et al., 2015

Greener area (GGA) Pixels from 80◦–120◦ HIS

Crop senescence index (CSI) 100× (GA−GGA)/GA HIS Zaman-Allah et al.,
2015

ab a∗b∗ CIE-Lab

Normalized difference CIE-lab index (NDLab) 1−a∗−b∗
1−a∗+b∗ + 1 CIE-Lab Buchaillot et al., 2019

uv u∗v∗ CIE-Luv

Normalized difference CIE-luv index (NDLuv) 1−u∗−v∗
1−u∗+v∗ +1 CIE-Luv Buchaillot et al., 2019

*In this case is associated with the CIE-Lab indices a and b and CIE-Luv indices u and v as derived from the BreedPix.
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FIGURE 2 | RGB image of selected plot taken using FLIR C2 camera (left
side) and corresponding thermal image (right side) as seen in FLIR Tools
software.

Statistical Analysis
Pearson Correlation of Visual Scores and Vegetation
Indices
The means of visual measurements and HTP-derived VIs of
each genotype were extracted for each day of data collection
using the R statistical software (R Core Team, 2021). Pearson
correlation was performed between the means of the visual scores
and VIs taken at the same time point and for all data points
combined, and for individual market types and all the market
types combined using the rcorr function of the Hmisc package
of the R software.

Calculation of Broad Sense Heritability
The broad-sense heritability (H2) was calculated as according to
Equation 3

H2
=

σ2
G

σ2
G +

σ2
GE
n +

σ2
e

nr

(3)

Where σ2
g is the genotypic variance, σ2

GE is the variance of the
genotype by environment (location) interaction, σ2

e is the residual
error variance, n is the number of environments (locations)
and r is the number of replications within each environment
(Piepho and Mohring, 2007). The variance components used
were estimated from the analysis of variance (ANOVA) using the
lmer function of the lme4 package (Bates et al., 2015) of the R
statistical software (R Core Team, 2021).

Development of Regression Models
Training of Regression Models
Ordinal logistic regression was used to develop two separate
prediction models, one for the LLS and one for GRD, disease
severity. The models were developed from data collected at R8
(harvest maturity) because the strongest association between
VIs and visual scores was recorded at maturity. Ordinal logistic
regression was applied in this case because the GRD and LLS
scales used in the study were ordinal variables. The NDVI
readings, RGB, and thermal images taken per plot together

with the visual scores allocated to the respective plots were
all used in the models. The regression models were developed
using stepwise regression using the caret (Classification And
Regression Training) package (Max et al., 2021) and the “polr”
function of the MASS package of R. Data from Nakabango for
the 2020A and 2020B seasons was used for training the ordinal
logistic regression models and data from NaSARRI was used to
validate the models. The backward selection method of stepwise
regression was used to select the parameters with the highest
contribution to the model. A full model (all predictors) was fitted
and the least contributing predictors were removed until all the
parameters in the model were statistically significant (P < 0.05).
K-fold cross-validation was used to evaluate the models. The
training data set was randomly split into k-folds (k = 10). The
model was trained on nine subsets and one subset was reserved
for testing the model. The process was repeated until each of the
k-subsets has served as the testing set. The ten sets of results were
then averaged to produce a single model estimation. Akaike’s
Information Criteria (AIC) and Bayesian Information Criteria
(BIC) were used to select the best model. Models with lower
AIC and BIC are better predictors than those with higher values.
The accuracy of the models was derived from the classification
accuracy matrices (Equation 4).

Accuracy =
No. of plots classified correctly

Total plots in the set
× 100 (4)

The nearest score method was also used to improve the
classification accuracy of the models. The visually rated scores
were matched with the model derived scores, and two of the
nearest scores (preceding and succeeding) of the visually rated
scores were also matched. If any of the values (actual values,
preceding or succeeding) matched with the model derived score,
it was assumed as the correct classification (Sarkar et al., 2021).

Validation of Regression Models
The regression models developed using data from Nakabango
were validated using data from NaSARRI. The model was applied
to the validation data set to obtain predicted values. A confusion
matrix (Sarkar et al., 2021) was developed to determine the
accuracy of the model.

RESULTS

Distribution of High-Throughput
Phenotyping Measurements and Visual
Scores
The data presented was collected in Nakabango across the two
growing seasons; 2020A and 2020B. The disease pressure was
higher in Nakabango across the two seasons. The distribution
of the LLS visual scores increased over time peaking at harvest
maturity which coincided with the time of harvest. The Spanish
and Valencia market types had similar patterns of distribution
of LLS scores over time. At all-time points, LLS scores were
higher for Valencia and Spanish type compared to Virginia
(Virginia appear more resistant). At each data collection time,
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more variability in LLS score was registered in Valencia and
Spanish types compared to Virginia. Similarly, for GRD visual
scores, the Spanish and Valencia market types showed a similar
pattern of distribution over time. The variability in GRD visual
symptoms was higher for the Spanish and Valencia, and lower for
the Virginia market type at all-time points.

Valencia and Spanish market types showed similarities in the
distribution of vegetation indices (VIs) indices with Virginia
showing different responses. The NDVI values were similar for
all the market types at beginning of peg formation (Figure 3). At
full pod formation (R4), all market types had similar medians for
the GA, but the variability was greater for Spanish compared to
Valencia and Virginia. At beginning of maturity (R7) and harvest
maturity (R8), Virginia had higher GA values compared to the
other two market types, just like for the NDVI. Within each
market type, the CSI medians were lowest at full pod formation
(R4) and highest at beginning of maturity, but Virginia market
types had lower CSI medians in comparison with Spanish and
Valencia at R7. The spread of the CSI values was highest at
beginning of maturity for all the market types, but higher for
the Spanish and Valencia compared to Virginia. The distributions
of the medians of a∗ and u∗ followed similar trends for all
market types. The medians were highest at beginning of pegging
and lowest at full pod formation. The spread of measurements
was highest at beginning of maturity and lowest at beginning
of peg formation.

Pearson Correlation Between Visual
Scores and Vegetation Indices
The Pearson correlation between visual scores and the vegetation
HTP indices (VIs) was performed using different subsets of
the data (each market type, collection dates and for the
combined dataset of the three market types). The strongest
correlations between LLS visual scores and VIs were recorded
at R2 (beginning of pegging) and R8 (harvest maturity). The
association between the VIs and NDVI show an increase
throughout the season peaking at R8 (r = –0.85, P < 0.001)
(Figure 4). The NDVI was strongly associated with LLS severity
of all market types at harvest maturity, with the strongest
association recorded in the Spanish type (r = –0.89, P < 0.001).
For Valencia, there was non-significant association between
LLS visual score and NDVI until harvest maturity (r = –0.83,
P < 0.001) and for the Virginia type, the association was non-
significant as well until harvest maturity (r = –0.64, P < 0.001).

RGB indices were significantly correlated with the disease
symptoms of all the three market types at harvest [Lightness
(r = –0.74, P < 0.001), v∗ (r = –0.80, P < 0.001), and b∗ (r = –0.75,
P < 0.001)]. At R4 (full pod), CSI (r = 0.76, P < 0.001) was the
most sensitive index to the onset of LLS. Some indices, however,
performed better only for some market types at particular time
points. For example, the RGB indices Hue (r = –0.87, P < 0.001),
a∗ (r = 0.84, P < 0.001), b∗ (r = –0.82, P < 0.001), NDLab
(r = –0.88, P < 0.001), u∗ (r = 0.84, P < 0.001), v∗ (r = –0.82,
P < 0.001), and GA (r = –0.83, P < 0.001) were highly correlated
with disease symptoms of Valencia market type at R7 (beginning
of maturity) but moderately correlated with Virginia and Spanish

FIGURE 3 | Box plots illustrate the distribution of selected VIs of the different
market types across four time points during the growth season.

market type LLS symptoms. At full pod (R4), RGB indices Hue,
Saturation, b∗, v∗, and GA were significantly associated with
disease symptoms of Virginia (r = 0.45, 0.43, 0.53, 0.53, 0.48;
P < 0.001) and Spanish (r = 0.30, 0.59, 0.55, 0.53, 0.26; P < 0.001)
market types but insignificant for the Valencia type. Canopy
temperature (r = 0.42, P < 0.001) was positively correlated with
disease severity, of all the three market types across the different
time points. The correlation of the Valencia type (r = 0.64,
P < 0.001) was stronger compared to that of the Spanish (r = 0.4,
P < 0.001) and Virginia (r = 0.16, P < 0.001) market types.
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FIGURE 4 | Heatmap of Pearson correlations between HTP derived indices and visual scores of Late leaf spot (LLS) severity at different phenological stages of the
growth season for the individual market types and all the market types analyzed together. The dark gray boxes represent missing data.

The association between NDVI and the GRD scores show
a gradual increase over the season peaking at beginning of
maturity. The association between the visual scores and NDVI
was strongest at beginning of maturity (r = –0.73, P < 0.001) and
full maturity (r = –0.72, P < 0.001). The associations among the
Spanish and Valencia market types were stronger compared to
those among the Virginia type at all data collection points.

The RGB indices were significantly associated with GRD
visual scores at beginning of peg formation and at harvest
maturity for all the market types. The strongest associations

were recorded at harvest maturity [v∗ (r = –0.71, P < 0.001),
GA (r = –0.67, P < 0.001), NDLab (r = –0.64, P < 0.001),
GGA (r = –0.6, P < 0.001), Lightness (r = –0.62, P < 0.001)].
For CSI, the associations gradually increased throughout the
season from (r = –0.7, P < 0.001) beginning of peg formation
(R2) and peaking at beginning of maturity (R7) (r = 0.6,
P < 0.001 (Figure 5). The associations were generally higher
for the Valencia type compared to the Spanish and Virginia
type. Early (R2) detection of disease symptoms was possible
among the Valencia market type using RGB indices saturation,
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FIGURE 5 | Heatmap of Pearson correlations between HTP derived indices and visual scores of Groundnut rosette disease (GRD) at different phenological stages of
the growing season for the individual market types and all the market types analyzed together. The dark gray boxes represent missing data.

lightness (r = –0.92, P < 0.001), b∗ (r = –0.88, P < 0.001),
v∗ (r = –0.89, P < 0.001), GA (r = –0.90, P < 0.001), and
CSI (r = 0.87, P < 0.001). Canopy temperature was generally
positively correlated with disease symptoms for all market types.
The associations were highest at beginning of maturity (r = 0.42,
P < 0.001) and non-significant at full pod formation and
harvest maturity. At full pod formation (R4), the Valencia and
Spanish had a negative association compared to the Virginia type
with positive association. However, at beginning of maturity,
the Spanish (r = 0.35, P < 0.001) and Virginia (r = 0.47,

P < 0.001) had a similar trend with positive correlations
compared to Valencia (r = –0.69, P < 0.001) market type with
a negative association.

Identification of Resistant and
Susceptible Genotypes
Identification of the most resistant and susceptible genotypes
based on the visual and NDVI rankings is presented in Table 5.
For LLS, NDVI identified three of the top five most resistant
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genotypes based on the visual score ranking. However, both
NDVI and visual scores each identified different five, most
susceptible, genotypes within the population. For GRD, both
NDVI and visual scores identified three common genotypes out
of the five most resistant and susceptible genotypes (Table 5).

Heritability
Table 6 shows the H2 values calculated for both visually
assessed disease traits and the VIs taken at different time points
throughout the growing season. The H2 of the visual scores
and VIs show a gradual increase throughout the growing season
peaking at R8 (harvest maturity). RGB indices Intensity and
NDLuv had H2 = 0 throughout the growing season. The H2

of the visually assessed LLS scores was higher than that of
both GRD incidence and severity throughout the season. The
H2 of the VIs was highest at R8 with exception of CSI which
was peaked at R4 (pod formation). The heritability of LLS
scores was higher compared to any associated VI at all times
of data collection. The strongly associated VIs at R8 [NDVI
(H2 = 0.87), v∗(H2 = 0.72), and b∗(H2 = 0.60)] and R4 (CSI,
H2 = 0.75) equally had a high heritability. The H2 of the GRD
visual scores was lower than associated indices; However, all VIs
strongly associated with GRD visual scores [NDVI (H2 = 0.87),
v∗ (H2 = 0.72), Hue (H2 = 0.81), GA (H2 = 0.77), and GGA
(H2 = 0.80)] at R8, and CSI (H2 = 0.64) and NDVI (H2 = 0.86) at
R7 (beginning of maturity) all had a higher heritability compared
to the GRD visual scores.

Ordinal Logistic Models to Predict Late
Leaf Spot and Groundnut Rosette
Disease Severity
Late leaf spot severity was scored on a 1–9 scale, however, at R8
(harvest maturity), 6 levels were present and scores were between

TABLE 5 | Table genotype ranking for LLS and GRD using visual scores and
NDVI. The genotype ranking was done using genotype means.

Late leaf spot Groundnut rosette disease

Rank Visual score NDVI Visual score NDVI

1 ICGV-SM
03590a

ICGV-SM 03590a DOK 1Ra ICGV-SM 03590a

2 Serenut 14Ra Serenut 14Ra Serenut 14Ra Serenut 14Ra

3 SGV 990400 Serenut 8Ra Serenut 8Ra Serenut 8Ra

4 Serenut 9Ta Serenut 9Ta Serenut 9Ta Serenut 9Ta

5 SGV 0071 SGV 0060 ICGV-SM 01709 SGV 0060

46 ICGV-SM
08556

Acholi Whiteb JL 24b Acholi Whiteb

47 ICGV-SM16520 ICGV-SM 16501 RedBeautyb ICGV-SM 16501

48 ICGV 01504 ICGV-SM 96714 ICGV-SM 96714 ICGV-SM 96714

49 ICGV-SM
16502

RedBeautyb ICGV-SM 0205 RedBeautyb

50 Serenut 4Ta SGV 10005 Acholi Whiteb SGV 10005

aResistant check, bsusceptible check.
*In this case is associated with the CIE-Lab indices a and b and CIE-Luv indices u
and v as derived from the BreedPix.

TABLE 6 | Broad-sense heritability of HTP derived indices and visual scores for
late leaf spot (LLS) and groundnut rosette virus (GRD) during the 2020A and
2020B growing seasons at different groundnut growth stages.

Phenological stage

Trait R2 R4 R7 R8

NDVI 0.30 0.00 0.86 0.87

Intensity 0.00 0.00 0.00 0.00

Hue 0.54 0.17 0.43 0.81

Saturation 0.58 0.41 0.00 0.20

Lightness 0.00 0.02 0.00 0.54

a* 0.48 0.14 0.53 0.73

b* 0.55 0.32 0.00 0.60

ab 0.41 0.11 0.48 0.68

NDLab 0.29 0.17 0.11 0.34

u* 0.35 0.16 0.51 0.68

v* 0.56 0.27 0.00 0.72

uv 0.00 0.15 0.50 0.64

NDLuv 0.00 0.00 0.00 0.00

GA 0.49 0.09 0.58 0.77

GGA 0.43 0.06 0.64 0.80

CSI 0.39 0.75 0.64 0.66

CT 0.06 0.06 0.00 0.50

Visual score

LLS 0.87 0.87 0.93 0.95

GRD incidence 0.25 0.25 0.44 0.37

GRD severity 0.43 0.43

*In this case is associated with the CIE-Lab indices a and b and CIE-Luv indices u
and v as derived from the BreedPix.

4 and 9. The probability of predicting the LLS VI-derived score
P4 + P5 + P6 + P7 + P8 + P9 = 1. The model for LLS predicted
scores is presented below;

P4 =
1

1 + e(−5.78−β)

P5 =
1

1 + e(−4.17−β)
− P4

P6 =
1

1 + e(−0.36−β)
− P4 − P5

P7 =
1

1 + e(−1.5−β)
− P4 − P5 − P6

P8 =
1

1 + e(−3.72−β)
− P4 − P5 − P6 − P7

P9 = 1− P4 − P5 − P6 − P7 − P8

Where e = 2.718 is the Euler’s number,
β = –1.81NDVI+ 0.88CSI–2.2b∗.
The LLS model with NDVI and RGB indices CSI and b∗

as the best predictors had AIC of 431.94 and BIC of 463.53
compared to the full model (with all the predictors) with AIC
of 492.014and BIC of 520.09. The model had a kappa value of
0.52 and an overall accuracy of 64% (Table 7). The model had
the highest predictability for the visual scores 6 and 9, and the
lowest prediction accuracy for the visual score 4. The specificity
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TABLE 7 | Classification confusion matrix of LLS visual scores and model
predicted scores of the training data set collected at Nakabango.

Predicted score

Breeder score Plots (n) 4 5 6 7 8 9

4 16 3 1 12 0 0 0

5 29 2 7 20 0 0 0

6 82 1 4 69 3 2 3

7 31 0 0 12 12 5 2

8 34 0 0 1 6 17 10

9 55 0 0 1 0 5 49

Total 247

Accuracy 64% 19% 24% 84% 39% 50% 89%

Nearest score 91%

The bold figures represent the visual scores which were correctly classified by
logistic models.

of the model was high with the lowest value being 0.83 for visual
score 6. The highest misclassification of scores was observed at
visual score 7 with 9 scores allocated to score 6 by the model.
The prediction accuracy of the model increased to 91% when the
nearest score method was used.

The Groundnut rosette disease severity was scored on a 1–5
scale. The probability of predicting GRD VI-derived score was
P1 + P2 + P3 + P4 + P5 = 1. The model for GRD predicted is
presented below;

P1 =
1

1 + e(−0.98−β)

P2 =
1

1 + e(−0.33−β)
− P1

P3 =
1

1 + e(−1.12−β)
− P1 − P2

P4 =
1

1 + e(−1.77−β)
− P1 − P2 − P3

P5 = 1− P1 − P2 − P3 − P4

Where e = 2.718 is the Euler’s number,
β = 0.044Hue+ 0.42a∗–0.006uv
The GRD model with RGB indices Hue, a∗, and uv selected as

the best predictors of GRD severity; this model had AIC of 619.2
and BIC of 643.8 compared to the full model (with all predictors)
with AIC of 626.5 and BIC of 700.3. The model had a kappa
of 0.28 and overall model accuracy of 45%. The model had the
highest predictability for the visual scores of 5 followed by 2 and 1.
The lowest prediction accuracy was recorded for the class 4. The
misclassification between classes was highest between 1 and 2.
Twenty-four plots visually scored 1 were given a score of 2 by the
model. Similarly, 26 plots which were scored as 2, were predicted
by the model as 1 (Table 8). The lowest misclassification was for
4 as indicated by the specificity of 1.00. The prediction accuracy
of the model however increased to 84% when the nearest score
method was used.

Validation of the Regression Models
The LLS logistic model was validated using the data collected
at NaSARRI 2020B. The model performed with lower accuracy
of 40% but performed with a similar accuracy when the nearest
score accuracy was used with 88% (Table 9). The Pearson
correlation between the model derived score and the breeder
score of the validation data was moderate (r = 0.58). The
GRD logistic model performed with similar accuracy with the
validation data set with 38 and 91% (Table 10) when the nearest
accuracy was used.

DISCUSSION

Association Between Visual Scores and
High-Throughput Phenotyping Derived
Indices
In this study, the VIs were significantly correlated with the visual
scores of groundnut LLS severity among different groundnut
genotypes and market groups, and at different growth stages.
Overall, NDVI had the strongest relationship with visual

TABLE 8 | Confusion matrix of GRD visual scores and the model predicted scores
of the training dataset of the data collected at Nakabango.

Predicted score

Breeder score Plots (n) 1 2 3 4 5

1 58 31 24 2 0 1

2 80 26 43 6 0 5

3 45 1 20 12 0 12

4 30 1 7 10 0 12

5 35 0 2 8 0 25

Total 248

Accuracy 45% 53% 54% 24% 0% 71%

Nearest score 84%

The bold figures represent the visual scores which were correctly classified by
logistic models.

TABLE 9 | Confusion matrix of LLS visual scores of the breeder scores and
predicted scores of data collected at NaSARRI 2020B.

Predicted score

Breeder score Plots (n) 4 5 6 7 8 9

4 0 0 0 0 0 0 0

5 3 0 0 3 0 0 0

6 52 0 0 21 24 6 1

7 26 0 0 6 15 3 2

8 30 0 0 0 11 15 4

9 38 0 0 3 6 20 9

Total 149

Accuracy 40% 0% 0% 40% 58% 50% 24%

Nearest score 88%

The bold figures represent the visual scores which were correctly classified by
logistic models.
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TABLE 10 | Confusion matrix of GRD severity visual scores and the model
predicted scores of data collected at NaSARRI 2020A and 2020B.

Predicted score

Breeder score Plots scored 1 2 3 4 5

1 135 25 97 12 0 1

2 149 23 92 32 0 2

3 46 2 28 15 0 1

4 15 0 11 4 0 0

5 1 0 0 1 0 0

Total 346

Accuracy 38% 19% 62% 33% 0% 0%

Nearest score 91%

The bold figures represent the visual scores which were correctly classified by
logistic models.

symptoms of the different market types at harvest maturity.
NDVI had a negative relationship with LLS severity, i.e., more
severe LLS disease less NDVI values, and the effect of the
disease was evident at full pod formation (R4) for Spanish.
There was a large variation among the Spanish and Valencia
groups because the susceptible genotypes were easily affected
by the LLS symptoms compared to the Virginia groundnuts
which had a low variation of disease symptoms at this stage
(Figure 6). The correlations were stronger for all market types
(r = –0.85) harvest maturity, because there was a higher disease
variation and a clear distinction between resistant and susceptible
genotypes (Figure 4). Moderate correlations between LLS and
NDVI were observed among the Virginia market type (r = –0.64)
compared to the Spanish (r = –0.89) and Valencia (r = –0.83)
because 75% of the genotypes had scored less than 5 hence
belonging to the resistant group (Figure 6). As shown by others,
higher NDVI values were associated with healthy canopies (in
this case, resistant genotypes) with the ability to absorb red
light and effectively reflect NIR (Liu and Huete, 1995; Govaerts
and Verhulst, 2010). Increased LLS severity is characterized by
increased defoliation (Subrahmanyam et al., 1995) and reduction
of leaf chlorophyll content (Singh et al., 2011), thus reducing
the light-absorbing capacity of canopies for the susceptible
genotypes. Chlorophyll, which is responsible for light absorption,
is linearly related to NDVI (Gitelson and Merzlyak, 1996). The
reduction in reflectance of the near-infrared radiation is due
to the reduction in multiple leaf layers within the canopy, and
the increase in background exposure (Knipling, 1970) therefore,
reducing NDVI with increase in severity.

Several RGB indices were strongly correlated with visual LLS
symptoms (Figure 4). Hue, GA, and Saturation (r = –0.55, –
0.68, –0.66) were moderately correlated with visual scores for
all groundnut market types at harvest maturity (R8). The effect
of LLS on canopy CSI was apparent as early as R4 (at full
pod formation) but the effects on hue and GA became visible
at R7 (beginning of maturity) when there was clear variation
among genotypes. The change of the correlation signs of CSI
from negative at beginning of peg formation (R2) to positive at
beginning of pod formation indicated the effect of the disease
on the canopy color and leaf senescence, i.e. at peg formation

plants were small and, in absence of disease, other factors
influenced senescence; at pod formation disease severity doubled
and this was the main factor for increased crop senescence.
Lower hue and GA values among susceptible genotypes could
be attributed to increased yellowing of the canopy due to a
decrease in leaf chlorophyll (Sarkar et al., 2021). Defoliation of
leaves could also lead to reduced hue and GA since both are
associated with presence of green biomass (Casadesús et al.,
2007). In highly defoliated canopies (as evident in susceptible
genotypes), the soil background is not completely covered. The
hue of bare soil is low (Zhou et al., 2015) therefore, the hue of
highly defoliated canopies (susceptible) is lower than that in well-
developed canopies (resistant genotypes). The correlation among
Virginia groundnuts was lower for both GA (r = –0.3) and hue
(r = –0.04) because of the low variation of both, visual scores
and VIs (Figure 4). b∗ (r = –0.75) and v∗(r = –0.8) were highly
correlated with visual scores of LLS among all market types. This
is attributed to the yellowing of the canopy (Serret et al., 2020)
due to reduced leaf chlorophyll (Singh et al., 2011; Sarkar et al.,
2021). Although these indices were able to identify the canopy
yellowing later in the season, CSI (r = 0.76) identified yellowing
of the canopies due to LLS as early as the pod formation. Early
detection of LLS would aid early selection of resistant genotypes
saving resources in the breeding program. Canopy temperature
(r = 0.42), was however moderately correlated with the visual
scores. Canopy temperature is associated with transpirational
cooling of the plant canopy (Pilon et al., 2018). Cool plant
canopies are associated with healthy canopies. An increase in
canopy temperature is associated with an increase in disease
severity (Oerke et al., 2006). This could be attributed to the
reduction of evaporative surfaces due to defoliation and damage
of leaf surfaces by leaf spot lesions. Results in our study indicated
that LLS severity was promoted by warmer canopy temperatures.

Several RGB indices demonstrated moderate to high
correlations with GRD visual scores with different market types
at different weeks after planting (Figure 5). Generally, the RGB
indices Hue, GA, GGA, v∗, and b∗ were negatively correlated
with GRD symptoms. GRD is characterized by shortening of
stem internodes, rosetting of the leaves, chlorosis of leaves, and
overall stunting of the affected plants (Table 3; Naidu et al., 1998;
Waliyar et al., 2007). Indices such as Hue, GA, and GGA which
are associated with the presence of green biomass (Casadesús
et al., 2007; Casadesús and Villegas, 2014), were, therefore, able
to differentiate the resistant and susceptible genotypes based
on the size of the plant. Healthy plants have larger canopies
compared to the stunted rosette plants, thereby occupying more
green area and consequently covering more soil background.
Since hue angle is also affected by soil background which has a
lower hue value (Zhou et al., 2015), healthy genotypes have a
higher hue angle compared to the stunted susceptible genotypes.
Increased yellowing of susceptible genotypes was observed. This
was evident from the reduction of GA and GGA pixels, and the
increase of b∗ and v∗. Yellowing of leaves has been associated
with chlorophyll reduction due to drought in various crops
(Serret et al., 2020; Sarkar et al., 2021); in our case, this was due
to the high prevalence of chlorotic rosette symptoms (Naidu
et al., 1998) also known as yellow rosette symptoms, for which
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FIGURE 6 | Distribution of visual scores of Late leaf spot (LLS) severity and Groundnut rosette disease (GRD) incidence for genotypes belonging to three groundnut
market types (Spanish, Valencia, and Virginia) at different phenological stages within the season.

Nakabango is well known as a hotspot (Okello et al., 2014). The
chlorotic symptoms were visible early in the season by during the
beginning flowering stage and later in the season, toward harvest.
NDVI (r = –0.72), which has widely been used for monitoring
canopy health status was also negatively correlated with the
GRD symptoms. NDVI is indicative of the amount biomass and
vigor of vegetation within the plot, and therefore plant biomass
(Cabrera-Bosquet et al., 2011). In our case, the reduction of
NDVI among susceptible genotypes could be due to reduction
of the biomass, vigor, and leaf chlorophyll content. Canopy

temperature increased with an increase in GRD severity although
the correlation was weak (r = 0.42) at beginning of maturity.
GRD is associated with damage of the leaf xylem (Favali, 1977)
and this could limit the water transport to the leaves hence
causing reduced transpirational cooling. The findings in this
study support our hypothesis that there are HTP-derived indices
that are correlated with visual scores of LLS and GRD symptoms.
Therefore, indices which are highly correlated with LLS and GRD
scores can be applied as secondary traits for indirect selection for
disease resistance.
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Broad-Sense Heritability
Although the visual scores were highly correlated to several
VIs, this alone is not enough to justify replacement of visual
scores. Broad sense heritability (H2), also known as repeatability
(Piepho and Mohring, 2007) was measured for each of the sensor-
derived indices taken at the same time as the visual scores.
The measurement of H2 using different methods (HTP-derived
traits and visual scores) could be an estimate of measurement
error since the genotypes are constant and environmental effect
should be negligible (Piepho and Mohring, 2007; Crain et al.,
2016). A high H2 is indicative of the precision and predictive
ability for the secondary traits associated with LLS and GRD
resistance (Crain et al., 2016, 2018). Several VIs such as NDVI,
GA, GGA, and v∗ which were strongly associated with the disease
visual scores had comparable or higher H2 making them suitable
for selection. The high heritability is attributed to high genetic
variation which is essential for genetic gain in breeding (Table 6).
High NDVI H2 values have also been reported in other studies
in cotton (0.28–0.9) and wheat (Andrade-Sanchez et al., 2013;
Crain et al., 2016). The high H2 could indicate the consistence of
the measurements across the different environments (Andrade-
Sanchez et al., 2013). The visual scores of LLS had high heritability
(H2 = 0.85) as early as peg formation. This can be attributed
to the high variation within the population for LLS resistance.
Similar results were reported for H2 for LLS resistance based on
leaf defoliation by Anderson et al. (1991). In contrast to LLS, the
broad-sense heritability of GRD was lower compared to those in
previous studies (H2 = 0.74) (Merwe et al., 1999). This could be
attributed to the low variation of VIs at that time of the season
(De Swaef et al., 2021). Therefore, NDVI, hue, v∗, CSI, GA, and
GGA which were highly correlated with the visual scores and had
high H2 can be applied for indirect selection for LLS and GRD
resistance in groundnut breeding, if timing is toward later part
of the season. These findings confirm our hypothesis that HTP
derived indices are highly heritable.

Ordinal Logistic Models
Disease classification models developed in this study were
effective in distinguishing disease symptoms. The LLS and GRD
models had classification accuracies of 64 and 45% respectively.
The LLS select model contained NDVI, CSI, and b∗ indices. The
NDVI in the model is associated with canopy biomass (Cabrera-
Bosquet et al., 2011) and canopy health (Kefauver et al., 2015)
which are both affected by LLS symptoms. The CSI and b∗
represent canopy color changes from green to yellow (Zaman-
Allah et al., 2015). This is associated with chlorophyll detoriation
among susceptible genotypes (Singh et al., 2011). The GRD
model contained RGB indices hue, a∗, and uv which represent
canopy color. These indices are associated with the presence
of green biomass within the plot (Serret et al., 2020). Hue and
a∗ represent the greenness of the canopy while uv represents
both the green and yellow part of the canopy (De Swaef et al.,
2021), which could include the green and chlorotic symptoms of
GRD in our case (Naidu et al., 1998; Waliyar et al., 2007; Okello
et al., 2014). The accuracy of the models increased to 91 and
84% for LLS (Table 7) and GRD (Table 8) classification models,

respectively. The nearest score method takes into account that
different evaluators, or the same evaluator could rate the same
plot differently depending on the time of the day and number of
plots scored (Sarkar et al., 2021). For example, on the 1–9 LLS
scale, a score of 6 could be under scored as a 5 or over scored
as a 7. Similarly, on 1–5 GRD severity scale, a score of 2 could
be scored as a 1 or a 3. The method assumes that the model can
classify a plot as 1 or 3 instead of a 2 because the reflectance from
the plot could be closer to that from a plot scored as a 1 or a 3. This
method is the closet to the visual scores by the breeder also gives
the because it takes into account that the model is trained based
on the visual scores which are not perfect. This misclassification
could also be attributed to the differences among the groundnut
market types; the three market types have different leaf color,
plant height and canopy architecture. These small differences
could affect the visual score from one plot to another. The nearest
scores method has a higher accuracy and it could be actively
applied for selection for LLS and GRD resistance since it increases
chances of selecting for genotypes of interest. For example, when
selecting for resistance for GRD, a cut off is set at score of 2
(resistant). When the nearest score method is applied, there are
higher chances of selecting a score of 1 (highly resistant) or 3
(moderately resistant) (Table 3). The logistic models developed
in this study had high accuracy using the nearest score method
when applied to independent data sets (Tables 9, 10) indicating
the effectiveness of the models and method for selection for
resistance in different environments. The findings of this study
affirm our hypothesis that VI-derived models can be consistent
for routine selection for resistance in breeding programs.

CONCLUSION

Results from this work present novel methods of screening for
LLS and GRD resistance using HTP derived VIs. These results
illustrate that HTP derived indices from handheld sensors such
as the RGB camera, GreenSeeker, and the thermal camera can
complement or even act as alternatives to the visual scores used
by breeders. These novel methods have the potential to enhance
faster and reduced cost development of new varieties. However,
for such methods to adopted by breeders for active deployment
in selection, they have to be highly automated to eliminate
drudgery. The application of individual sensors reduced the
data collection time by almost half, but the cumulative time
spent using the three different sensors was almost the same
as that spent when using conventional methods. Therefore,
these methods did not meet the desired throughput and might
not be feasible in cases where the experiments are very large.
Nonetheless, there is potential to improve the methods described
in this study. More efficient methods of data collection such
as use of unmanned aerial vehicles (UAVs). Recent advances in
plant phenotyping involve the use of unmanned aerial vehicles
(UAVs) to collect several images generating large amounts of
data. Several studies have reported that UAVs are faster and
more effective for phenotyping large populations for traits such
as height and drought tolerance in groundnut breeding (Sarkar
et al., 2020, 2021) hence providing the desired high-throughput.
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This study therefore lays the foundation for investment in
such more advanced equipment in groundnut breeding for
selection for resistance to late leaf spot and groundnut
rosette disease which are the most important foliar diseases
in Uganda and SSA.
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