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The ‘Huangguan’ pear disease spot detection and grading is the key to fruit

processing automation. Due to the variety of individual shapes and disease spot

types of ‘Huangguan’ pear. The traditional computer vision technology and

pattern recognition methods have some limitations in the detection of

‘Huangguan’ pear diseases. In recent years, with the development of deep

learning technology and convolutional neural network provides a new solution

for the fast and accurate detection of ‘Huangguan’ pear diseases. To achieve

automatic grading of ‘Huangguan’ pear appearance quality in a complex

context, this study proposes an integrated framework combining instance

segmentation, semantic segmentation and grading models. In the first stage,

Mask R-CNN and Mask R-CNN with the introduction of the preprocessing

module are used to segment ‘Huangguan’ pears from complex backgrounds. In

the second stage, DeepLabV3+, UNet and PSPNet are used to segment the

‘Huangguan’ pear spots to get the spots, and the ratio of the spot pixel area to

the ‘Huangguan’ pear pixel area is calculated and classified into three grades. In

the third stage, the grades of ‘Huangguan’ pear are obtained using ResNet50,

VGG16 and MobileNetV3. The experimental results show that the model

proposed in this paper can segment the ‘Huangguan’ pear and disease spots

in complex background in steps, and complete the grading of ‘Huangguan’

pear fruit disease severity. According to the experimental results. The Mask R-

CNN that introduced the CLAHE preprocessing module in the first-stage

instance segmentation model is the most accurate. The resulting pixel

accuracy (PA) is 97.38% and the Dice coefficient is 68.08%. DeepLabV3+ is

the most accurate in the second-stage semantic segmentation model. The

pixel accuracy is 94.03% and the Dice coefficient is 67.25%. ResNet50 is the

most accurate among the third-stage classification models. The average

precision (AP) was 97.41% and the F1 (harmonic average assessment) was
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95.43%.In short, it not only provides a new framework for the detection and

identification of ‘Huangguan’ pear fruit diseases in complex backgrounds, but

also lays a theoretical foundation for the assessment and grading of

‘Huangguan’ pear diseases.
KEYWORDS

‘Huangguan’ pear disease, deep convolutional neural networks, instance
segmentation, semantic segmentation, disease severity classification
1 Introduction

Pears are fruits produced and consumed around the world,

growing on a tree and harvested in the Northern Hemisphere in

late summer into October. The pear tree and shrub are a species

of genus Pyrus, in the family Rosaceae, bearing the pomaceous

fruit of the same name (Ikinci et al., 2014). Several species of

pears are valued for their edible fruit and juices, while others are

cultivated as trees. China is the world’s largest producer and

consumer of pears, and its pear cultivation area and output rank

first in the world (Oyom et al., 2022). ‘Huangguan’ pear is a mid-

early mature pear variety cultivated by China. It has the

advantages of large fruit size, high quality, early fruit, and

good yield. It can meet the demand for high-quality pears in

the fruit market. After years of demonstration and promotion,

‘Huangguan’ pear has become one of the main pear tree varieties

in most regions, providing huge economic benefits for

‘Huangguan’ pear producers and exporting countries. It is

worth emphasizing that the economic value of ‘Huangguan’

pear fruit depends to a large extent on the aesthetics of its

appearance. The best-looking fruits are for export, the less

diseased ones are reserved for domestic consumption, and the

worst ones are used for further processing to make canned fruits

or jams. However, the quality grading of ‘Huangguan’ pear is a

time-consuming and laborious process. So far, it has almost

completely relied on human inspection and manual observation

of disease symptoms to judge the grade of ‘Huangguan’ pear.

This method is costly and has highly subjective and low

efficiency and timeliness. However, early automated grading

systems have extensively utilized image processing algorithms

and relied on manually defined image features to build classifiers

(Suykens, 2001; Zeng et al., 2020), limiting the robustness and

generalization (Xu and Mannor, 2012) of detection performance

due to the variance of fruits types, appearances, and

damage defects.

In recent years. With the advancement of agricultural

informatization, deep learning and machine learning are

widely used different areas in agriculture (Dobrota et al., 2021;

Yang et al., 2022a)in particular in crop disease detection (Liu

et al., 2018; Pooja et al., 2018; Yu et al., 2018; Özden, 2021; Tassis
02
et al., 2021; Wang et al., 2021; Wang et al., 2022; Yang et al.,

2022b), experts and scholars have achieved fruitful results in the

research of plant disease identification. Wu et al. (2020b) used

Mask R-CNN and VGG models to judge whether 6400 mango

images are good or bad, with an accuracy rate of 83.6% and

expressed by PCA. Ren et al. (2020) used the tomato plant

diseases in the Plant Village data set and the improved VGG to

propose a model that can identify tomato leaf diseases, with an

accuracy rate of more than 95%.In the food industry, a model

based on CNN was introduced for identification of soft-shell

shrimp. The proposed model attained an average accuracy of

97% (Liu, 2020). Ireri et al. (2019) introduced a tomato grading

machine vision system. The proposed system performed calyx

and stalk scar detection for both defected and healthy tomatoes

based on regions of interest. The radial basic function support

vector machine classifier achieved 97.09% accuracy rate for

healthy and defected tomatoes. Farooq and Sazonov (2017)

used CNN to classify different food groups. The classification

accuracy for 7 and 61 different classes was 94.01% and 70.13%,

respectively. Liang et al. (2019) proposed a plant disease severity

estimation network PD2SENet, which achieves excellent

comprehensive performances. Lu et al. (2017) developed an

application for diagnosing diseases in wheat leaves using two

steps: a disease location step and a classification step. Wu et al.

(2020a) proposed an automatic and efficient apple defect

identification method based on laser-induced light backscatter

imaging and convolutional neural network algorithm. Sofu et al.

(2016) proposed an automatic apple sorting and quality

inspection system that apples were sorted into different classes

by their color, size and weight. It also detected apples affected by

scab, stain and rot. The average grading accuracy rate is 73–96%.

Wang et al. (2017) applied 5 convolutional neural networks with

different structures to estimate the severity of plant diseases, and

fine-tuned the existing network models using transfer learning

to improve the model accuracy. The above research has used

traditional machine learning or deep learning to identify plant

diseases, but the refinement and generalization capabilities need

to be improved. Although some progress has been made in the

research of fruit disease segmentation under complex

background, the research of ‘Huangguan’ pear has not made
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significant progress. Convolutional neural networks have led to a

series of breakthroughs for image classification (He et al., 2015).

This article uses a convolutional neural network (CNN) to

automatically extract data features by introducing local

connections, pooling and other operations. In the first step,

the strength segmentation model was used to remove the

background of ‘Huangguan’ pear, which ensured the fineness

of the next step of grading (He et al., 2018). Then, the semantic

segmentation model was used to segment the disease of

‘Huangguan’ pear, and the proportion of disease pixels in

‘Huangguan’ pear was calculated (Chen et al., 2018). Finally,

by performing transfer learning on ImageNet data. The over-

fitting problem caused by the small sample data domain was

optimized and the grading model was used to achieve the quality

grading of ‘Huangguan’ pear (Akiba et al., 2017). Experiments

show that this method can not only improve the recognition

accuracy of ‘Huangguan’ pear disease, but also is suitable for

classification of ‘Huangguan ’ pear disease images in

generalized scenarios.

The main contributions of this research are as follows:
Fron
For complex background images, a two-stage segmentation

model of ‘Huangguan’ pear disease based on deep

learning was proposed. The model achieved accurate

segmentation of ‘Huangguan’ pear and disease. It

provided the basis for establishing the classification

model of ‘Huangguan’ pear disease severity.

By adopting a three-stage continuous segmentation and

classification method, the complementary advantages of

Mask R-CNN, DeepLabV3+ and Resnet50 models are

fully utilized. Compared with the single-stage model,

this model has better segmentation and classification

effects.

A method for grading the severity of ‘Huangguan’ pear

disease was proposed. By calculating the ratio of the area

of diseased spots to the area of ‘Huangguan’ pear fruit, it
tiers in Plant Science 03
provides technical support for the accurate classification

of the appearance quality of ‘Huangguan’ pear in actual

production.

It can effectively solve the problem of inaccurate grading of

‘Huangguan’ pears caused by manual sorting, which is

time-consuming and laborious and easy to distract. It

provides a new idea for the automatic grading of

‘Huangguan’ pear appearance quality.
2 Materials and methods

2.1 Data set production and processing

The data set used in this article has a total of 5562 images of

‘Huangguan’ pear. Taking into account the diversity of lighting

conditions in practical applications, The data was collected in

three different periods from July to December 2021: In the

morning (8:30–10:00), noon (12:30–14:00) and afternoon

(15:30–17:00) in the laboratory with camera. This leads to

problems such as background noise, distance, location, and

lighting conditions of ‘Huangguan’ pear. It is the existence of

these problems that can improve the generalization ability of the

model in different scenarios and improve the robustness of the

model. Part of the ‘Huangguan’ pear image is shown in Figure 1.

According to the ‘Huangguan’ pear samples displayed in the

data set, the identification and segmentation of ‘Huangguan’

pear fruit disease mainly have the following difficulties: 1)

‘Huangguan’ pear background interferes with segmentation,

and the different brightness of ‘Huangguan’ pear imaging

caused by factors such as light can easily be mistaken for

disease; 2) ‘Huangguan’ pear disease are irregular in shape,

some are small, and the initial disease are difficult to detect

with the naked eye, which increases the difficulty of disease

segmentation; 3) ‘Huangguan’ pear have different shooting
FIGURE 1

Some pictures of ‘Huangguan’ pear.
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backgrounds, and the quality of the background processing

directly affects the classification of ‘Huangguan’ pear.
2.2 Image data enhancement

The sample distribution of each type of disease in the data set

is not uniform, and the limited training data is easy to overfit the

deep learning model. In deep learning, the use of data

augmentation methods to expand the data can improve the

generalization ability of the model. The training data of this

study uses the Image Data Generator online enhancement

method under the Keras framework. That is, an enhancement

method is randomly selected for each batch of data during the

training process, without increasing the number of original data

sets. In order to avoid changing the original data characteristics

and better simulate the differences of samples under real

shooting conditions, the training set of this research mainly

adopts the following data enhancement methods: 1) Flip: Flip

the image vertically to simulate the randomness of the shooting

angle when the sample is collected, and will not change the shape

of the diseased spot and the distribution of the diseased spot on

the leaf. 2) Color jitter: Change the brightness of the image to

randomly jitter between 0.8-1.2 times. Change the contrast of the

image to randomly jitter between 0.6-1.6 times. Change the

chromaticity of the image to jitter randomly between 0.7-1.4

times. Simulate lighting differences and ensure that the

parameters conform to the actual shooting conditions to avoid

image distortion. 3) Add noise: Add salt and pepper noise with a

signal-to-noise ratio of 0.95 to the image to simulate the noise
Frontiers in Plant Science 04
generated during the shooting process and weaken the high-

frequency features to prevent the model from overfitting. The

result of data enhancement is shown in Figure 2.
2.3 Labeling of diseased spots of
‘Huangguan’ pear fruit

To train the disease segmentation model, the disease need to

be marked as shown in Figure 3. The labeling of ‘Huangguan’

pear disease is time-consuming and laborious, with a large

number of small targets. The finer annotations help Mask R-

CNN and DeepLabV3+ to perform finer segmentation of

‘Huangguan’ pears and disease, laying the foundation for the

classification of ‘Huangguan’ pears. The labeling is divided into

three scenes including background, pear and diseased spots, and

labeling is carried out with LabelMe (Russell et al., 2008), an

image semantic segmentation labeling tool.
2.4 Grading method for the severity of
fruit diseases of ‘Huangguan’ pear

The classification of disease severity is the basis for

formulating prevention and control strategies. Three methods

are usually used in practice. The first method is to calculate the

ratio of the number of infected fruits per unit area to the total

number of fruits. The second method is to calculate the ratio of

the number of diseased fruits to the total number of fruits on the

same plant. The third method is to calculate the ratio of the area
B C D E F G HA

B C D
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A

FIGURE 2

The image enhancement of (A) Original image, (B) Vertical flip, (C) 0.8 Brightness, (D) 1.2 Brightness, (E) 0.6 Contrast, (F) 1.6 Contrast,
(G) Change chroma, and (H) Add salt noise.
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of spots on the same fruit to the total area of the fruit. The third

method is the basis for accurately estimating the severity of crop

diseases in a region. Therefore, we used the third method, which

uses the ratio of the spot area to the total area of the same fruit as

the basis for classification of disease severity. This method is

mainly based on the opinions and practical experience of fruit

farmers who have been engaged in fruit grading for many years.

By calculating the ratio of the area of the diseased spot to the

area of the fruit, the severity of the disease of ‘Huangguan’ pear

was classified. Since the ‘Huangguan’ pear fruit to be divided is

located in a complex background, the target ‘Huangguan’ pear

fruit and diseased spots are easily confused with other similar

elements, resulting in over-segmentation or under-

segmentation. Therefore, it is difficult to accurately segment

‘Huangguan’ pear fruit and diseased spots at the same time using

a single-stage network. In order to ensure the accuracy of disease

segmentation, the ‘Huangguan’ pear fruit in the complex

background should be segmented first. Therefore, this study

uses a two-stage segmentation network to classify the severity of

‘Huangguan’ pear diseases, and classifies the ‘Huangguan’ pear

images according to the first, second and third levels. Specific

steps are as follows. In the first stage, the segmentation target is

the ‘Huangguan’ pear fruit and the complex background. The

mask image obtained from the test is used to extract the

‘Huangguan’ pear fruit from the complex background, so as to

obtain the ‘Huangguan’ pear fruit in the simple background. In
Frontiers in Plant Science 05
the second stage of segmentation, the diseased spots in the

‘Huangguan’ pear fruit are taken as the target, and the

proportion of the diseased spots in the ‘Huangguan’ pear fruit

is obtained. As the basis for the classification of disease severity

of ‘Huangguan’ pear. The formula is shown in formula (1).

P =
SDisease
SPear

(1)

Among them, SPear represents the fruit area of ‘Huangguan’

pear after segmentation; SDisease represents the area of the disease

after segmentation; P represents the proportion of diseased spots

on ‘Huangguan’ pear fruit.

After calculating the area of ‘Huangguan’ pear by the disease,

refer to the ‘Huangguan’ Pear Fruit Grade”DB 13/T 1571—2012

issued by China. According to local standards, the proportion of

fruit diseases can be divided into three grades: good and bad.

Among them, 0% of diseases are first-class fruits, 2% or less are

second-class fruits, and diseases greater than 2% are third-

class fruits.
2.5 Evaluation index

In order to reasonably evaluate the performance of the

model, the first two segmentation stages of this study used 3

commonly used evaluation indicators: Pixel Accuracy (PA), dice
B CA

FIGURE 3

Pixel level labeling of ‘Huangguan’ pear fruit and disease spot. (A) Original images, (B) Pear-disease-labels and (C) Composite diagrams.
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and Intersection over Union (IoU). The pixel accuracy is the

ratio of all correctly classified pixels to the total pixels, as shown

in formula (2):

RPA =
Sk
i=0pii

Sk
i=0Sk

j=0pij
(2)

In the formula, k is the number of categories, pii is the

number of pixels that are correctly predicted, and pij represents

the number of pixels whose category i is predicted to be

category j

The Dice coefficient is a function that measures the similarity

of two sets, and is one of the most commonly used evaluation

indicators in semantic segmentation. As shown in formula (3):

Rdice =
2 X ∩ Yj j
Xj j + Yj j (3)

Where X is the predicted pixel and Y is the ground truth.

The intersection ratio is the ratio of the intersection and

union of a certain type of prediction result and the true value of

the model. The intersection ratio is the most commonly used

evaluation index in semantic segmentation, and the expression is

shown in formula (4):

RIoU =
A ∩ B
A ∪ B

(4)

When the value of IOU is between 0 and 1, it represents the

degree of overlap of the two boxes. The higher the value, the

higher the degree of overlap.

The third grading stage uses 5 evaluation indicators

commonly used in grading models, recall, precision, average

precision (AP), F1 score and speed. Recall is the ratio of the

number of correctly detected targets to all actual targets

(Equation (5)). Precision is the number of correctly detected

targets in all detected targets The ratio of (Equation (6)). F1 is

the harmonic average of precision and recall (Equation (7)).

Re call(R) =
TP

TP + FN
(5)

Pr ecision(P) =
TP

TP + FP
(6)

F1 = 2� Pr e� Re c
Pr e + Re c

(7)
2.6 Model training

The hardware configuration used for training and testing in

this research is as follows: Intel(R) Core(TM) i5-10400F CPU @

2.90GHz, 16G RAM, NVIDIA GeForce GTX 1650SUPER

graphics card, 64-bit Windows 10 operating system, CUDA

version 10.0 and TensorFlow version 1.13.2. In order to avoid
Frontiers in Plant Science 06
the influence of hyperparameters on the experimental results,

the hyperparameters of each network are uniformly configured.

After trial and error, the following hyperparameters have been

determined: The learning rate is 1e-4, the epochs is 50, and the

batch size is 16. If training for more than 5 generations does not

further improve the accuracy, start early stopping and

stop training.
3 Model construction

3.1 Input layer

The input image is a color 3-channel image of leaf disease,

and the image size is uniformly adjusted to 416x416 pixels. In

order to enhance the generalization ability of the model, a data

enhancement method is randomly selected during the training

process to process the original image, and the normalized and

standardized data is used as the input of Mask R-CNN.
3.2 Model Mask R-CNN

Mask R-CNN is a new convolutional neural network

proposed by Ren et al. (2015) based on Faster R-CNN, which

realizes instance segmentation. This method can not only detect

the target effectively, but also complete high-quality semantic

segmentation of the target. The main idea is to add a branch to

the original Faster R-CNN to achieve semantic segmentation of

the target. Mask R-CNN uses FPN to improve the feature

extraction network, which better solves the problem of serious

loss of semantic information through the feature extraction layer

of FCN and SegNet (Kendall et al., 2015), and greatly improves

the segmentation of small target defects. For Deeplab-v3 defect

contour segmentation is not clear, Mask R-CNN replaces the

interest area pooling layer with the interest area alignment layer.

That is, the spatial information on the feature map is further

utilized through bilinear interpolation, so as to predict a more

accurate defect contour. Mask R-CNN first uses the FPN based

on Resnet50 to extract the feature map of the defect image, and

then uses RPN to generate the target suggestion box, And use the

Soft-NMS algorithm to filter the ROI (Bodla et al., 2017), and

finally perform category prediction, bounding box prediction,

and target binarization mask for each ROI. The structure of

Mask R-CNN is shown in Figure 4.
3.3 Semantic segmentation model

DeepLabV3+ first uses Xception feature extraction network to

perform feature extraction on the original image (Chollet, 2016),

and then introduces several parallel Atos convolutions at different

rates to obtain larger-scale image feature information. Then use
frontiersin.org
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the spatial pyramid pooling module Atrous Spatial Pyramid

Pooling(ASPP) (Chen et al., 2016), respectively use a variety of

different void rates for extraction. Obtain more semantic feature

information, thereby improving segmentation accuracy. The

Encode-Decode structure is the mainstream structure in the

semantic segmentation network (Badrinarayanan et al., 2015).

The so-called encoding process is to extract the features of the

substation equipment through the feature extraction network, and

then reorganize the feature information through decoding. In this

process, the network is based on the image The label information

is constantly modified parameters, and finally the object semantic

segmentation of supervised learning is realized. The depth

separable convolution can be added to the ASPP and decoder

modules to make the overall model more efficient.

The UNet proposed by (Ronneberger et al., 2015) for

semantic segmentation of biomedical images consists of two

stages: a contraction stage and an expansion stage. The shrinking

stage consists of the FCN architecture, including convolution,

ReLU, and pooling operations. This step is responsible for

extracting features from the image. The second step, also

known as the expansion step, is the opposite of the previous

step. It consists of a series of deconvolution operations followed

by convolution and concatenation of the feature maps obtained

in the first step. The last part of the network reconstructs the

segmented image.

PSPNet (Zhao et al., 2016) adopts a spatial pyramid network

architecture, which not only enhances the fusion of multi-scale
Frontiers in Plant Science 07
information, but also reduces the local and global losses. This

structure is a network architecture that integrates multi-scale

scenarios, including 2 parts of convolutional layer and pyramidal

pooling, which has multiple advantages, not only simple

architecture but also high flexibility. Among them, the

convolutional layer integrates different classical network

architectures to achieve a progressive abstraction from low-

level to high-level features.
3.4 Classification model

He et al. (2015) proposed resnet50 network. The main

contribution is to solve the problem of the decline in

classification accuracy as the depth of CNN deepens. The

proposed residual learning idea accelerates the CNN training

process and effectively avoids the problem of gradient

disappearance and gradient explosion. Using the idea of

residual learning. He et al. (2015) proposed a Shortcut

Connections structure of identity mapping, as shown in

Figure 5. Where X is the input, F(X) is the residual mapping,

Y(X) is the ideal mapping, Y(X) = F(X) + X. By transforming the

fitted residual mapping F(X) into the fitting ideal mapping Y(X),

the output can be changed into the superposition of the input

and the residual mapping, so that the network changes between

the input X and the output More sensitive. It does not add

additional parameters and calculations to the network, but at Y
FIGURE 5

The residual block.
FIGURE 4

The processing flow of ‘Huangguan’ pear by Mask R-CNN network.
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(X) the same time greatly increases the training speed of the

model and improves the training effect. When the number of

layers of the model is deepened, this simple structure can well

solve the degradation problem. In recent years, the ResNet

network has been widely cited in various computer vision

tasks, and has achieved outstanding performance. So this

article chooses ResNet50 as the third stage hierarchical

network model.

The essence of the VGG16 model is an enhanced version of

the AlexNet structure, with an emphasis on the depth of the

CNN design (Simonyan and Zisserman, 2014). Furthermore,

each convolutional layer is followed by a pooling layer. VGG16

has five convolutional layers, each with two or three

convolutional layers. To better extract feature information, this

experiment uses three convolutional layers per segment. In

addition, VGG16 uses 3x3 convolution kernels instead of 7x7

convolution kernels. The 3x3 convolution kernel is the smallest

receptive field size that can feel the focus of up and down, left

and right. And, 2 3x3 convolution kernels are stacked. Their

receptive field is equivalent to a 5x5 convolution kernel. When 3

stacks, their receptive field is equivalent to a 7x7 effect. Since the

receptive field is the same, three 3x3 convolutions use three

nonlinear activation functions to increase the nonlinear

expression ability. Makes the dividing plane more separable.

At the same time, a small convolution kernel is used, which

greatly reduces the amount of parameters. Using the 3x3

convolution kernel stacking form not only increases the

number of network layers but also reduces the amount of

parameters. Due to the large number of layers and the

relatively small convolution kernel, the entire network has

better feature extraction effect.

MobileNetV3 replaces part of the 3×3 depth wise

convolution by introducing a 5×5 depth wise convolution

(Howard et al., 2019). Introduce Squeeze-and-excitation (SE)

module and h-swish (HS) activation function to improve model

accuracy. The last two layers of pointwise convolution do not use

batch normalization. Use the NBN logo in the MobileNetV3

structure diagram. MobileNetV3 combines the following

advantages. The first point is the depth wise separable

convolution of MobileNetV1. The second point is the inverse

residual structure of MobileNetV2 with a linear bottleneck. The

third point is to use h-swish instead of the swish function.
3.5 Three-stage model structure

Different instance segmentation, semantic segmentation and

classification models have different network structures, which

will affect the classification accuracy of ‘Huangguan’ pear and

disease. If the same model is used in the three stages, the feature

extraction ability of the model may be affected due to different

segmentation targets. Therefore, based on the different features

to be extracted at each stage, compare various semantic
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segmentation and hierarchical models to determine a better

model for each stage. Then, combined with the actual

environment’s requirements for segmentation speed, by

adjusting the order of the model and changing the feature

extraction network, segmentation accuracy can be improved

and segmentation time can be shortened.

In this research, the fusion instance, semantic segmentation

and classification network were used to segment the fruits and

lesions of the ‘Huangguan’ pear in two stages through multiple

experiments. Because the single-stage segmentation model of

‘Huangguan’ pear in complex background is difficult to

accurately segment the fruit and lesions of ‘Huangguan’ pear

at the same time, its segmentation accuracy is generally low.

Based on the above ideas, through the comparison of multiple

instance segmentation models, semantic segmentation models

and hierarchical models. Finally, it is determined that the Mask

R-CNN network with a preprocessing module is used to segment

the ‘crown’ pear in the complex background in the first stage,

and the image of the ‘crown’ pear in the simple background can

be obtained. Then, the ‘Huangguan’ pear was segmented by

DeepLabV3+, and the disease rate of the ‘Huangguan’ pear was

calculated. Finally, use ResNet50 for training. The overall flow

chart is shown in Figure 6.
4. Test results and analysis

4.1 Accuracy and effect of ‘Huangguan’
pear background segmentation

The models used in the first stage of this article are CLAHE-

MASK R-CNN and Mask R-CNN. By default, the file with the best

training effect will be saved as a weight file and then used for testing.

In the algorithm of this paper, the CLAHE preprocessing module is

added according to the characteristics of the ‘Huangguan’ pear

background, which improves the local contrast of the edge of the

‘Huangguan’ pear and improves the network’s ability to predict the

details of themask boundary. At the same time, fewer convolutional

layers can ensure that the edge of the ‘Huangguan’ pear target will

not be lost after multi-layer convolution. It can be seen from

Figure 7. That CLAHE-Mask R-CNN can segment the

background other than ‘Huangguan’ pear under the same label

picture. Under the same conditions, when the segmented

background color is similar to ‘Huangguan’ pear, Mask R-CNN

gets the wrong result. The red boxmarks the background that Mask

R-CNN has not segmented completely or the background is

segmented excessively. In this paper, the Mask R-CNN of the

CLAHE module has a better effect on the edge segmentation of

‘Huangguan’ pear. If the accuracy of the first stage segmentation is

not high, it may result in segmentation of the wrong ‘Huangguan’

pear in the second stage, and the final accuracy will be reduced. For

comprehensive comparison, CLAHE-Mask R-CNN is selected as

the first stage segmentation model. It can be seen from Table 1 that
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FIGURE 7

The prediction result of ‘Huangguan’ pear instance segmentation. (A) Original images, (B) CLAHE-Mask R-CNN and (C) Mask R-CNN.
FIGURE 6

Three-stage model network architecture.
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in the first stage, the segmentation accuracy of Mask R-CNN with

the addition of the CLAHE module is significantly higher than that

of Mask R-CNN. The PA of CLAHE-Mask R-CNN reaches

97.38%, which can better provide ‘Huangguan’ pear pictures with

complex background removed for the next stage and increase the

accuracy of the overall model.
4.2 Comparison of segmentation
accuracy and effect of ‘Huangguan’
pear disease

The overall structure of the semantic segmentation

model used in the second stage is shown in Figure 8. Three

models DeepLabV3+, UNet, and PspNet were used to

segment ‘Huangguan’ pear disease. Divide the area of

‘Huangguan ’ pear d i s ea s ed spo t s by the a rea o f

‘Huangguan’ pear to get the proportion of diseased spots,
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which provides accurate data support for the third-step

classification model.

In the semantic segmentation stage, 448 images of

‘Huangguan’ pear were used as test samples, and the labels

were only divided into ‘Huangguan’ pear and diseased spots

without considering the disease category. The test result is the

average of the test results of 448 images. Table 2 shows the

comparison results of the segmentation accuracy of each

algorithm. It can be seen from Table 2 that the segmentation

accuracy of DeepLabV3+ is significantly higher than that of

UNet and PspNet. The accuracy of DeepLabV3+ reached

94.03%. Compared with UNet and PspNet, the accuracy has

increased by 2.81% and 0.62%. At the same time, the disease

segmented by DeepLabV3+ obtained higher Dice coefficient

(0.6725) and IoU coefficient (0.7436). Compared with UNet, it

increased by 2.68% and 7.21%, and compared with PspNet by

0.86% and 3.25%. Various segmentation results are shown

in Figure 9.
TABLE 1 Performance of the first stage model on the test set.

Model PA/% Dice/% IoU/%

CLAHE-Mask R-CNN 97.38 68.08 73.25

Mask R-CNN 94.84 67.72 69.92
frontie
FIGURE 8

‘Huangguan’ pear semantic segmentation network structure diagram.
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It shows the segmentation results of ‘Huangguan’ pear

disease on the DeepLabV3+, UNet, and PspNet models. It can

be seen that DeepLabV3+ can segment small disease. The

segmentation result of UNet will lose some details, the

segmentation boundary will be fuzzy, the similar disease area

will be stuck, and the segmentation edge of UNet will appear

jagged and there will be edge loss. This is because UNet cannot

capture features at different levels, and integrates them through

feature superposition. It is easy to lose data due to repeated

downsampling and upsampling of the deep network. The

convolution operation of the encoder-decoder of DeepLabV3+

can smoothly segment the edges of disease. The segmentation

edge of PspNet is relatively smooth, but it is easy to miss some

disease areas and excessive segmentation of disease areas. Which

means that PspNet does not have obvious response to disease

with similar colors to ‘Huangguan’ pear. It can be seen from the
Frontiers in Plant Science 11
segmentation map that the difficulty of segmentation for

different disease is different. For example, the chicken feet

disease area of ‘Huangguan’ pear is dark yellow and the color

is similar to that of ‘Huangguan’ pear, and the edge of the disease

is not obvious, so the segmentation is more difficult. DeepLabV3

+ can arbitrarily control the resolution of the extracted features

of the encoder, and can effectively and accurately segment the

‘Huangguan’ pear disease by balancing the accuracy and time-

consuming hole convolution. The proportion of diseased spots

in ‘Huangguan’ pears is shown in Figure 10.

The DeepLabV3+ model is used to predict the disease area of

‘Huangguan’ pear, and the predicted disease area and the actual

disease area have a higher IoU. It benefits from the early pixel-

level disease labeling and the introduction of hole convolution in

DeepLabV3+, which has strong semantic segmentation

performance. According to the ratio of the number of pixels of
TABLE 2 Performance of the second stage model on the test set.

Model PA/% Dice/% IoU/%

DeepLabV3+ 94.03 67.25 74.36

UNet 91.22 64.57 67.15

PspNet 93.41 66.39 71.11
frontie
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FIGURE 9

Comparison of the segmentation results of ‘Huangguan’ pear disease. (A) Original Image, (B) DeepLabV3+, (C) UNet and (D) PspNet.
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the diseased spots to the number of pixels of ‘Huangguan’ pear,

the accurate ratio of the diseased spots can be obtained, which

provides an accurate data set for the third stage model.
4.3Analysis of the classification results of
‘Huangguan’ pear

4.3.1 Loss function
The fully connected layer uses the gradient descent

algorithm as the parameter optimizer, and sets the average

cross entropy as the loss function as follows:

L =
1
N
SiLi = −

1
N
SM
i=1yi ln (pi) (8)

(8) Where: N is the total number of samples; M is the

number of categories; yi is the indicator variable (0 or 1), if the
Frontiers in Plant Science 12
category is i, it is 1, otherwise it is 0; pi is the probability that the

observed sample is i; Li Represents the loss value of category i.

4.3.2 Training process
The data set is classified according to the disease grades

segmented by DeepLabV3+. There are a total of 5114 images in

the training set and the verification set, which are allocated at a

ratio of 9:1. There are 448 images in the test set. When training

the classification model, three test models are designed:

ResNet50, VGG16 and MobileNetV3. Among them, the

classification of ‘Huangguan’ pear image is shown in Table 3.

Taking the ResNet50 model training as an example, first use

a part of the third-class fruits in the image divided into 50 evenly

and use equation (9) to train for one round, which can guide the

network to pay attention to the disease part when extracting

features. Then, after training 30 batches of samples without

disease, use the training set with disease for one round to ensure
FIGURE 10

Proportion of ‘Huangguan’ pear disease.
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continuous supervision of the results of disease. An epoch

training will be completed until all training samples with no

disease are finished. At the end of each epoch training, record the

training accuracy and average loss. Use the model trained in this

round to make a prediction for all test samples, and record the

test accuracy and average loss. After training for 150 epochs, the

weight with the smallest disease recognition loss on the test set is

selected as the final model.

4.3.3 Analysis of training results
Use VGG16 model, ResNet50 and MobileNetV3 respectively

for training, and ensure that the parameter settings are the same.

Because each iteration randomly uses an image enhancement

method, the training recognition accuracy will fluctuate slightly.

In the first 5 rounds of training, the training and recognition

accuracy of ResNet50 increased rapidly, and the recognition

accuracy on the test set reached more than 95% earlier than

other models. ResNet50 has the highest recognition accuracy in

the first round of testing. When the number of iteration rounds

is about 60 rounds, the training recognition accuracy of

ResNet50 first tends to 100%. It can be seen from the change

of recognition accuracy that the ResNet50 model can converge

faster, and its training accuracy and loss rate are shown

in Figure 11.

Accurate and efficient ‘Huangguan’ pear appearance quality

classification model is of great significance. The automatic

scoring method will alleviate the problem of rural labor

shortage. In addition, an accurate grading model will indirectly

affect market segments and ensure the reliable and stable quality
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of ‘Huangguan’ Pear agricultural products. As shown in Table 4,

the above experimental results clearly show the effectiveness of

the ResNet50 model on the ‘Huangguan’ pear appearance

quality classification model. The ResNet50 algorithm

maintains a fairly high accuracy. The results show that this

method can be used to realize the automatic grading of the

appearance quality of ‘Huangguan’ pear. In our experiments,

the ResNet50 model takes about 311.2 milliseconds to predict

the appearance quality of each ‘Huangguan’ pear, and there is

not much difference between VGG16 and MobileNetV3. This

speed can fully meet the real-time requirements of classification.

Compared with VGG16 and MobileNetV3, the average

precision of ResNet50 has a higher advantage, which is 11.61%

and 4.94% higher respectively. The prediction result of

‘Huangguan’ pear grade is shown in Figure 12.

It can be seen that the prediction result of ResNet50 on the

appearance quality of ‘Huangguan’ pear is relatively accurate,

and the prediction level and prediction probability are marked

directly above each picture. It can be seen that the ResNet50

model can predict the ‘Huangguan’ pear images with different

light intensity well, and the model has high robustness.
5. Conclusion and future work

In conclusion, this research proposes a three-stage model of

‘Huangguan’ pear disease in complex contexts that combines

instance segmentation, semantic segmentation, and

classification. In the first stage, the complete ‘Huangguan’ pear
TABLE 3 Grade distribution of ‘Huangguan’ pear.

Dataset split A Grade B C

Training set 1264 (27.46%) 1516 (32.95%) 1822 (39.59%)

Validation set 140 (27.35%) 169 (33.00%) 203 (39.65%)

Test set 126 (28.13%) 130 (29.02%) 192 (42.85%)
f

FIGURE 11

The accuracy and loss of the three models for the test set.
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fruit is segmented and extracted using Mask R-CNN with an

preprocessing module. Then in the second stage, DeepLabV3+

was used to segment and extract the diseases of the simple

background ‘Huangguan’ pear fruit extracted in the first stage,

and the proportion was calculated. Through the data obtained in

the second stage, the ‘Huangguan’ pears are divided into three

grades: A, B, and C. In the third stage, the weights are obtained

by training three grades of fruits through ResNet50. In the

prediction stage, after the Mask R-CNN segmentation is

completed, the ResNet50 model is used for prediction, and the

grade of the ‘Huangguan’ pear can be directly obtained. Overall,

the model can improve the accuracy of disease segmentation,

thereby providing a reasonable classification opinion for the
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disease severity of ‘Huangguan’ pear fruits. Finally, the pixel

accuracy of the Mask R-CNN model with preprocessing module

is 97.38%. The pixel accuracy of the DeepLabV3+ model is

94.03%. The average precision of the ResNet50 model is 97.41%.

Overall segmentation and classification performance is

significantly improved compared to the one-stage model. This

method based on machine vision and deep learning is harmless

to ‘Huangguan’ pears and provides technical support for follow-

up research. Currently, all diseases are roughly graded.

‘Huangguan’ pears suffer from a wide variety of diseases. The

next step will be to subdivide the disease of the ‘Huangguan’

pear. Detect and identify various types of diseases to assess their

severity. Thereafter, further work in this direction will continue.
TABLE 4 Comparison results of ‘Huangguan’ pear grading data sets.

Model Classes Precision/% Recall/% AP/% F1/% Speed/ms

ResNet50 A 99.58 97.25 97.41 95.43 311.2

B 95.26

C 97.39

VGG16 A 88.21 85.54 85.80 86.10 430.6

B 83.42

C 85.78

MobileNetV3 A 95.97 93.68 92.47 92.88 198.5

B 89.28

C 92.15
fro
B CA

FIGURE 12

Prediction grade results of ‘Huangguan’ pear. (A) grade A, (B) grade B and (C) grade C.
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