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Cytochrome (Cyt) b559 is a key component of the photosystem II (PSII) complex for

its assembly and proper function. Previous studies have suggested that Cytb559 has

functional roles in early assembly of PSII and in secondary electron transfer pathways that

protect PSII against photoinhibition. In addition, the Cytb559 in various PSII preparations

exhibited multiple different redox potential forms. However, the precise functional roles

of Cytb559 in PSII remain unclear. Recent site-directed mutagenesis studies combined

with functional genomics and biochemical analysis, as well as high-resolution x-ray

crystallography and cryo-electron microscopy studies on native, inactive, and assembly

intermediates of PSII have provided important new structural and mechanistic insights

into the functional roles of Cytb559. This mini-review gives an overview of new exciting

results and their significance for understanding the structural and functional roles of

Cytb559 in PSII.

Keywords: photosynthesis, photosystem II, cytochrome b559, site-directed mutagenesis, photoprotection,

photoinhibition

INTRODUCTION

Cytochrome (Cyt) b559 is an essential component of the photosystem II (PSII) complex for proper
functioning and assembly (reviews by Whitmarsh and Pakrasi, 1996; Stewart and Brudvig, 1998;
Shinopoulos and Brudvig, 2012; Müh and Zouni, 2015; Chu and Chiu, 2016). Cytb559 is present
in the PSII of all oxygenic photosynthetic organisms but is not found in anoxygenic type II
reaction centers of photosynthetic bacteria (Majumder and Blankenship, 2015). Thus, Cytb559
likely co-evolved with the oxygen-evolving function of cyanobacteria. Cytb559 is a heme-bridged
heterodimer protein that is comprised of 1 α and 1 β subunit (subunits PsbE and PsbF encoded
by psbE and psbF, respectively) (Umena et al., 2011; review by Müh and Zouni, 2015). Each
subunit provides a histidine ligand for the non-covalently bound heme, which is located near
the cytoplasmic side of PSII (Babcock et al., 1985). In contrast, most mono-heme cytochromes
are made of a single polypeptide (Majumder and Blankenship, 2015). In addition, the Cytb559 in
different PSII preparations features multiple distinct redox potential forms: high potential (HP)
with Em + 370–400mV, intermediate potential (IP) with Em of about 200mV, and low potential
(LP) with Em of about 0–80mV (Ortega et al., 1988; Thompson et al., 1989; Kaminskaya et al.,
1999; Roncel et al., 2001). The redox potential of the HP form in Cytb559 is unusually high for b-type
cytochromes. The redoxmidpoint potentials of most b-type cytochromes were in the range of−225
to +168mV (Liu et al., 2014). The HP form is typically predominant in native PSII preparations,
whereas the IP and LP forms are predominant in less intact or inactive PSII preparations such
as Tris-washing treatment, which removes manganese and extrinsic proteins of PSII (Ghanotakis
et al., 1986; Thompson et al., 1989; Kaminskaya et al., 1999; Roncel et al., 2003).
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Chiu and Chu Functions of Cytochrome b559 in Photosystem II

Many studies have suggested that Cytb559 may participate in
secondary electron transfer pathways that protect PSII against
photoinhibition (Heber et al., 1979; Thompson and Brudvig,
1988; Barber and De Las Rivas, 1993; Poulson et al., 1995; Faller
et al., 2001; Tracewell and Brudvig, 2008; review by Shinopoulos
and Brudvig, 2012). Cytb559 in the HP form may donate its
electron via a β-carotene molecule (CarD2) to reduce the highly
oxidizing chlorophyll (P680+) in PSII reaction centers under
donor-side photoinhibitory conditions. In addition, Cytb559 may
accept an electron from the acceptor side of PSII [e.g., Q−

B
or reduced plastoquinones (PQs)] to prevent the formation
of reactive oxygen species under acceptor-side photoinhibitory
conditions (Nedbal et al., 1992; Barber and De Las Rivas, 1993;
Bondarava et al., 2003, 2010). Moreover, previous studies showed
that the Cytb559 in tris-treated PSII has superoxide oxidase and
reductase activities (Tiwari and Pospíšil, 2009; Pospisil, 2011).
However, the precise functional roles of Cytb559 in PSII are still
not clear.

Previous mutagenesis studies on the model cyanobacterium
Synechocystis sp. PCC 6803 (hereafter Synechocystis), the
green alga Chlamydomonas reinhardtii, and tobacco (Nicotiana
tabacum) all showed that the assembly of PSII reaction centers
requires the presence of both the α and β subunits of Cytb559
(Pakrasi et al., 1988; Morais et al., 1998; Swiatek et al., 2003).
In addition, several studies demonstrated that Cytb559 subunits
interacted with D2 to form the essential intermediate complex D2
module during the early steps of PSII assembly (Komenda et al.,
2004; Kiss et al., 2019). To study the structural and redox roles of
the heme coordination of Cytb559 in PSII, a series of site-directed
mutants with mutations on histidine heme ligands of Cytb559
was constructed and characterized in the model cyanobacterium
Synechocystis and green alga Chlamydomonas (Pakrasi et al.,
1991; Morais et al., 2001; Hung et al., 2007; Hamilton et al., 2014).
Most of these Cytb559 mutants accumulated only a little active
PSII and, therefore, were unable to grow photoautotrophically.
These previous findings suggest that proper coordination of
the heme cofactor in Cytb559 is important for the assembly or
stability of PSII in Synechocystis (Pakrasi et al., 1991; Hung et al.,
2007, 2010).

TANDEM GENE AMPLIFICATION
RESTORED PSII ACCUMULATION OF
Cytb559 MUTANT CYANOBACTERIA

A recent study developed a novel antenna attenuation method
that restored photoautotrophic growth and PSII accumulation in
several Cytb559 mutant strains of Synechocystis with mutations
in His-22 residues (heme ligands) of PsbE and PsbF (Figure 1A;
Chiu et al., 2022). Whole-genome sequencing revealed that
both types of autotrophic transformants (spontaneously

Abbreviations: Car, β-carotene; Cryo-EM, cryo-electron microscopy; Cytb559,
cytochrome b559; EPR, electron paramagnetic resonance; LHCII, light-harvesting
complex II; HP, high potential; IP, intermediate potential; LP, low potential; PQ,
plastoquinone; PQH2, plastoquinol; PSII, photosystem II; QB, the secondary
quinone electron acceptor in PSII; QC, the third plastoquinone-binding site
in PSII.

generated in the early study or generated from the new
antenna attenuation method in this recent study) carried 5–15
copies of tandem amplifications of chromosomal segments
containing the mutated psbEFLJ operon (Figure 1B). Multiple
copies of the psbEFLJ operon in these transformants were
maintained only during autotrophic growth, whereas the
number of copies gradually decreased under photoheterotrophic
conditions (Figure 1C). This situation led to a 10- to 20-
fold increase in transcript level of the mutated Cytb559 gene
(Figure 1D). The resulting overproduction of mutation-
destabilized Cytb559 subunits allowed for sufficient PSII
accumulation and restored the photoautotrophic growth
of the strains. This study demonstrated how tandem gene
amplification restored PSII accumulation and photoautotrophic
growth in Cytb559 mutants of cyanobacteria, which may
be an important adaptive mechanism of cyanobacteria
for survival.

In contrast, in Thermosynechococcus elongatus, the heme
coordination of Cytb559 is not required for the assembly of
PSII variants with psbA3 as the D1 subunit (Sugiura et al.,
2015; Nakamura et al., 2019). Although the H23Aα and H23Mα

Cytb559 mutants of T. elongatus assembled only apo-Cytb559
as unambiguously shown by electron paramagnetic resonance
(EPR) analysis, they grew photoautotrophically and accumulated
active PSII at the wild-type level (Sugiura et al., 2015). The
greater structural stability of the thermophilic PSII complex is an
important factor why heme ligand mutations do not significantly
impair the PSII assembly in T. elongatus.

STRUCTURAL DETERMINANTS OF
REDOX POTENTIALS OF Cytb559

One of the distinct features of Cytb559 in PSII is the
presence of different redox potential forms. The HP form of
Cytb559 predominates in native PSII preparations of plants and
Thermosynechococcus. In addition, for some unknown reason,
intact PSII preparations from Synechocystis contained primarily
the IP form of Cytb559 but lacked the HP form (Ortega
et al., 1994; Chiu et al., 2009). Under Tris-washing treatments,
inactive PSII preparations from plants and Synechocystis usually
contained predominantly the LP form (Thompson et al., 1989;
Berthomieu et al., 1992; Mamedov et al., 2007; Chiu et al., 2009),
whereas inactive PSII preparations from Thermosynechococcus
contained primarily the IP form and lacked the LP form (Roncel
et al., 2003). Therefore, the redox properties of Cytb559 in PSII
significantly differ in different species.

Structural determinants of the different redox-potential forms
of Cytb559 are still not clear. Previous studies suggested that
the different redox-potential forms may be due to changes in
hydrophobicity of the heme ligation environment (Krishtalik
et al., 1993; Roncel et al., 2003), mutual orientation of the planes
of histidine heme ligands (Babcock et al., 1985), or protonation
or H-bonding pattern of the heme ligation environment (Ortega
et al., 1988; Berthomieu et al., 1992; Roncel et al., 2001). A
recent cryo-electron microscopy (cryo-EM) study (Kato et al.,
2021) presented a 1.95-Å resolution structural model of the
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FIGURE 1 | Photosynthetic growth and genetic properties of cytochrome b559 (Cytb559) autotrophic transformants. (A) General properties of 2 distinct types of Cytb559
autotrophic transformants. (B) Copy number, size, and location of repeat elements in autotrophic transformant cells. (C) Quantitative droplet digital polymerase chain

reaction (PCR) analysis of the time course of copy number variation of psbEFLJ in autotrophic transformants grown under photoheterotrophic conditions and then

returned to photoautotrophic conditions. (D) Model for tandem gene amplification of chromosome segments containing the psbEFLJ operon (asterisk) in autotrophic

transformants recovering their photosynthetic growth [Reprinted with permission from Chiu et al. (2022), open access article by the New Phytologist Foundation].

native PSII preparation (PSII-D) from Thermosynechococcus,
expected to predominantly feature the HP form of Cytb559.
The bonding distances for the His–Fe heme ligation of
Cytb559 are about 2.1Å (Figure 2A, Supplementary Table 1).
The 1.93-Å resolution cryo-EM structural model of intact
PSII preparations from Synechocystis (Gisriel et al., 2022),
which may predominantly feature the IP form of Cytb559,
show an apparent elongation in bonding distances (about
2.4Å) for the His–Fe heme ligation of Cytb559 (Figure 2B,
Supplementary Table 1). In addition, the His–Fe bond of
the His 22 residue on the β subunit to the heme is slightly
tilted from the heme normal (Supplementary Figure 1).
The 2.53-Å resolution cryo-EM structural models of

inactive PSII preparations (Apo-PSII-M) of Synechocystis
(Gisriel et al., 2020), which may predominantly feature the LP
form of Cytb559 (Ortega et al., 1994; Chiu et al., 2009), show
a further increase in bonding distances (about 2.5–2.6 Å) of
His–Fe ligation to the heme, tilting of His–Fe bonds, as well
as an apparent alteration in the orientations and electrostatic
interactions of heme propionate groups of Cytb559 (Figure 2C,
Supplementary Table 1, Supplementary Figure 1B). These
structural changes in His–Fe bonds and heme ligation
environments of the Cytb559 in inactive PSII are likely induced
by conformational changes in the Cytb559 α and β subunits
associated with loss of extrinsic polypeptides and psbJ (Gisriel
et al., 2020).
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FIGURE 2 | Heme coordination environments of Cytb559 in cryo-EM structural models of different types of PSII preparations. (A) Native PSII dimer (PSII-D) of

Thermosynechococcus (PDB 7D1U); (B) native PSII-D of Synechocystis (PDB 7RCV); (C) inactive PSII monomer (Apo-PSII-M) of Synechocystis (PDB 6WJ6); (D)

inactive PSII-LHCII supercomplex from Arabidopsis (PDB 7OUI); (E) Apo-PSII-M of Thermosynechococcus (PDB 7NHO); and (F) PSII assembly intermediate (PSII-I) of

Thermosynechococcus (PDB 7NHP). The figures were created using PyMol.

In addition, striking changes in the His–Fe ligation as
well as orientation and interacting environments of the
heme propionates of Cytb559 were observed in the 2.7-Å
resolution cryo-EM structural model of inactive LHCII-PSII
supercomplex of Arabidopsis (Graça et al., 2021; Figure 2D,
Supplementary Table 1). The bonding distances of His-Fe

ligations of the heme in Cytb559 of inactive PSII of Arabidopsis
were 3 and 1.9 Å. In addition, a recent Cryo-EM study using
the 1psbJ mutant of Thermosynechococcus reported a structure
for the Apo-PSII monomer (Apo-PSII-M) without psbJ (Zabret
et al., 2021). The heme-coordination structure of Cytb559 in
Apo-PSII-M was distorted. The bonding distances of His-Fe
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ligations of the heme in Cytb559 of T. elongatus were unevenly
elongated from 2.1 Å in the native PSII (Figure 2A) to 2.4
and 2.8Å in Apo-PSII-M (Figure 2E). In addition, a conserved
electrostatic interaction between the arginine 18 residue on the
beta subunit of Cytb559 and a heme propionate was replaced
by the arginine 8 residue on the α subunit of Cytb559 in the
Apo-PSII-M of Thermosynechococcus. In contrast, the heme
coordination structures of Cytb559 in the active PSII-LHCII
supercomplex of pea (Su et al., 2017) and the native PSII
monomer of Thermosynechococcus (Yu et al., 2021) were very
similar to that in the native PSII dimer of Thermosynechococcus
(Supplementary Table 1).

Taken together, the differences in the bonding of His–Fe
ligation and the electrostatic environment of the two heme
propionate groups of Cytb559 may serve as important structural
determinants for different redox forms of Cytb559 in various
PSII preparations. These striking structural changes in the
heme ligation environment for inactive PSII is expected to
change the hydrophobicity of the heme ligation environment
(Krishtalik et al., 1993; Roncel et al., 2003) and may also facilitate
the binding of exogenous ligands for superoxide oxidase and
reductase activities (Tiwari and Pospíšil, 2009; Pospisil, 2011).
Of note, a previous FTIR study reported significant structural
changes in the environment of a histidine ligand and a propionic
group of the heme between the LP and HP forms of Cytb559
(Berthomieu et al., 1992). In addition, previous site-directed
mutant results also demonstrated that changes in bonding of
His–Fe heme ligation and the electrostatic environment of the
heme propionates of Cytb559 strongly influenced the ratio of
different redox forms of Cytb559 in mutant PSII (Hung et al.,
2010; Chiu et al., 2013; Guerrero et al., 2014). However, because
the peripheral location of Cytb559 in the PSII complex may result
in uncertainty on heme iron coordination structure (refer to the
B values in Supplementary Table 1), structural models at higher
resolution may be required to validate whether the variations in
the structure of His–Fe ligation are significant in current lower-
resolution models of inactive and assembly intermediates of PSII
(Figure 2, Supplementary Table 1).

PSBY PROTEIN IS REQUIRED FOR THE
HIGH REDOX POTENTIAL FORM OF
Cytb559 IN ARABIDOPSIS

A recent study on 1psbY Arabidopsis mutants showed that
Cytb559 was present in only its oxidized LP form in the absence of
the PsbY protein (von Sydow et al., 2016). No HP form of Cytb559
was found in 1psbY Arabidopsis mutants. In contrast, wild-
type and complement mutant plants contained about 50% of the
HP form of Cytb559. PsbY was proposed to protect the heme
of Cytb559 against reducing agents or affect the coordination
environment of Cytb559, thus leading to changes in its redox
properties (von Sydow et al., 2016). The steady-state oxygen
evolution activities in mutant plants were comparable to that
in wild-type plants under normal light conditions but mutant
plants were more susceptible to photoinhibition than the wild
type under high light conditions (von Sydow et al., 2016).

A THYLAKOID MEMBRANE-BOUND
RUBREDOXIN MAY ACT TOGETHER WITH
Cytb559 IN DE NOVO ASSEMBLY AND
REPAIR OF PSII

A conserved thylakoid membrane-bound rubredoxin (RBD1
in photosynthetic eukaryotes and RubA in cyanobacteria) is
required for PSII biogenesis in diverse oxygenic photoautotrophs
(Calderon et al., 2013; García-Cerdán et al., 2019; Kiss et al.,
2019; Che et al., 2022). RubA-deficient mutant strains of
Synechocystis were unable to maintain photoautotrophic growth
under fluctuating light and showed severe defects in assembly of
the heterodimeric D1/D2 reaction center complex (Kiss et al.,
2019). A recent study on RBD1 mutants using C. reinhardtii
indicated that the transmembrane domain of RBD1 is essential
for de novo PSII assembly, and that its rubredoxin domain
is involved in PSII repair (García-Cerdán et al., 2019). In
addition, the rubredoxin domain of RBD1 (and RubA) is exposed
to the cytoplasm and exhibits a redox midpoint potential of
+114mV. Reduction of RBD1 content can be mediated by
ferredoxin-NADP+ reductase in vitro (García-Cerdán et al.,
2019). These results suggest that RBD1 (and RubA) may act
together with Cytb559 to protect the intermediates of PSII
reaction center complexes against photooxidative damage during
de novo assembly and repair (García-Cerdán et al., 2019; Kiss
et al., 2019).

PSB28 PROTEIN BINDS TO Cytb559 IN THE
RC47 COMPLEX DURING THE ASSEMBLY
OF PSII

A recent study that conducted chemical cross-linking combined
with mass spectrometry predicted the location of Psb28 to be
in close proximity to the N-terminal domain of the Cytb559
protein (Weisz et al., 2017). In addition, this study proposed a
protective role for Psb28, whereby it blocks electron transport
in the acceptor side of PSII to protect the RC47 complex against
excess photodamage during the assembly process. Another recent
study, which conducted cryo-EM, solved the structure of the PSII
assembly intermediate from a deletion strain of the psbJ of T.
elongatus (Zabret et al., 2021). The deletion of PsbJ stalled PSII
assembly at a specific transition and induced the accumulation
of assembly factors Psb27 and Psb28. The cryo-EM map (2.94Å)
of PSII-I (for the PSII intermediate) provided a snapshot of
the attachment of the CP43 module to the pre-assembled RC47
complex (Zabret et al., 2021). This PSII-I contains 3 assembly
factors (Psb27, Psb28, and Psb34). In the structure of PSII-I,
Psb28 binds on cytosolic faces of the D1 and D2 subunits, directly
above the QB binding site. The binding of Psb28 induced large
conformational changes at the PSII acceptor sideof the RC47
complex, which distorted the QBbinding pocket and replaced
the bicarbonate ligand of non-heme iron with glutamate. This
distinct structural motif is also present in reaction centers
of non-oxygenic photosynthetic bacteria (Zabret et al., 2021).
These results reveal the structural and functional roles of psb28
in protecting the RC47 complex against damage during PSII
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assembly. Furthermore, the structure of the heme coordination
of Cytb559 in PSII-I was significantly distorted. The bonding
distances for axial heme ligations of Cytb559 were elongated
(2.6 and 2.8Å), and the electrostatic interactions between two
propionate groups of the heme and 2 conserved arginine residues
were weakened or broken (Figure 2F, Supplementary Table 1).

THE QC SITE MAY BE INVOLVED IN
MODULATING SHORT-TERM LIGHT
RESPONSES IN PSII OF CYANOBACTERIA

A previous study on the 2.9-Å resolution PSII crystal structure
revealed the binding of a PQ molecule, QC, in a hydrophobic
cavity near Cytb559 (Guskov et al., 2009). Previous studies
proposed that the QC site may be involved in exchange of
PQ/plastoquinol (PQH2) on the QB site from the pool (Guskov
et al., 2009; Müh et al., 2012) or in modulating the redox potential
and reactivity of Cytb559 (Kruk and Strzałka, 1999; Kruk and
Strzalka, 2001; Kaminskaya et al., 2007a,b; Bondarava et al.,
2010). However, the binding of PQ to the QC site appeared
to be weak or transient (Koji and Takumi, 2014; Van Eerden
et al., 2017), and the QC molecule was not detected in recent
high-resolution crystal structure models of native PSII from T.
vulcanus (Umena et al., 2011; Suga et al., 2015).

Several QC-site Synechocystis mutant strains (e.g., S28Aβ ,
V32Fβ , and A16FJ) showed significantly higher photosynthesis
growth rate and biomass accumulation than wild-type strains
(Huang et al., 2016, 2018). In addition, the ratios of redox
potential forms of Cytb559 for QC-site mutant PSII core
complexes were similar to those for the wild type. Furthermore,
QC-site mutant cells had distinct effects on short-term light
responses (state transition and blue light-inducing non-
photochemical quenching) (Huang et al., 2016, 2018). Taken
together, the results suggest that the mutations on the QC

site of PSII may modulate short-term light adaptations of the
photosynthetic apparatus in Synechocystis.

CONCLUSIONS AND PERSPECTIVES

Recent mutagenesis studies combined with high-resolution
protein crystallography and cryo-EM structural analysis as
well as functional genomics and biochemical analysis have
greatly advanced our understanding of the structural and
functional roles of Cytb559 in the assembly, proper function,
and photoprotection of PSII. Studies have revealed possible
structural determinants for different redox forms of Cytb559 in
various PSII preparations. In addition, several assembly factors
and protein subunits may act together with Cytb559 to protect
the intermediates of PSII reaction center complexes during de
novo assembly and repair. These integrated approaches may
lead to the final proof of the molecular mechanisms of Cytb559
in PSII.
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