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Forest succession analysis can predict forest change trends in the study area, which

provides an important basis for other studies. Remote sensing is a recognized and

effective tool in forestry succession analysis. Many forest modeling studies use statistic

values, but only a few uses remote sensing images. In this study, we propose a machine

learning-based digital twin approach for forestry. A data processing algorithm was

designed to process Landsat 7 remote sensing data as model’s input. An LSTM-based

model was constructed to fit historical image data of the study area. The experimental

results show that this study’s digital twin method can effectively forecast the study area’s

future image.

Keywords: digital twin, remote sensing, machine learning, spatial temporal prediction, Landsat 7

1. INTRODUCTION

Forests are vital to ecosystems. Researchers could discover correlations in the area over time by
analyzing changes in forest lands. Time series data analysis of forests makes ecological decision-
making more efficient and reliable (Powell et al., 2013). The advancement of computer technology
has provided researchers with many valuable tools that allow them to model and analyze data more
accurately. Digital modeling has become an attractive and practical topic in several fields. Digital
twin (DT) represents the digital modeling of a real-world object (Negri et al., 2017). Theoretically,
the study of the DT model is equivalent to the research on the corresponding actual object. If DT
technology is applied to forestry, the study area can be approximated using a digital model.

We adopt some feasible approaches from a review of agricultural DT (Cor et al., 2021) because
there is no forestry DT review article in our survey. Agricultural DT uses images and point-cloud
data from agricultural machines and drones, necessitating the use of a powerful computer for data
processing (Polák et al., 2021). Using remote sensing images to analyze forest land could be done
on a personal computer. The agricultural DT requires the edge computing devices on farms for
real-time monitoring (Nasirahmadi and Hensel, 2022); however, forest lands do not have such
conditions, making it difficult to obtain additional forest data. Therefore, remote sensing images
provide crucial data in forestry DT. Remote sensing images are used as a widely recognized tool for
land surface characterization in forestry analysis, including forest disturbance prediction (Buma
and Livneh, 2017), tree species analysis (Fricker et al., 2015), and forest canopy analysis (Joshi et al.,
2006). Xuebin et al. (2021) constructed a forest map of the southern Great Plains using data from
multiple satellites. Healey et al. (2018) used a random forest algorithm to measure forest variation.
Ewa et al. (2020) used models such as XGB (Chen and Guestrin, 2016) to predict forest species.
However, no research has been conducted on spatial-temporal prediction of forest remote sensing
images, i.e., predicting future forest images using historical image data. Therefore, we propose a
long short-term memory (LSTM, Hochreiter and Schmidhuber, 1997) based method to achieve
forest image and forest prediction twins.
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We obtain United States geological survey (USGS) Landsat
7 data from 2001 to 2021 at yearly intervals for this study (US,
1974). QGIS (QGIS Development Team, 2009) processes multi-
view remote sensing images over a year to obtain a complete
image of the study area. We use the cropping algorithm to
convert high-resolution images into small blocks to minimize the
depth of the machine learning model. Finally, the LSTM-based
machine learning model is constructed to predict future image
data from historical remote sensing image data. The project’s
process diagram is given Figure 1.

This study is organized as follows: Section 1 introduces the
advantages of the forest DT and present the corresponding
implementation method. Section 2 formulates the forestry image
DT problem and presents the details of the LSTM-based model.
Section 3 analyzes the results to verify our method for forest DT.

2. METHOD

2.1. Data Processing
The study area is a forest-steppe nature reserve in Gansu
Province, China (Figure 2) . We begin by obtaining the area’s
boundary from the government’s website. In USGS Earth
Explorer, we choose Landsat 7 ETM + C2 L1 data set for
this work. Five views of data were selected according to the
boundaries, and their WRS coordinates are 132034, 133033,
134033, and 135033. Then, we collect 20 years of remote sensing
data from 2001 to 2021.

Five data views are included every year due to the reserve’s
size. For each year, the images are filled (gap-filling), merged,

FIGURE 1 | Project work flow.

FIGURE 2 | The study area.

and clipped using QGIS to obtain the complete study area
from GDAL library (GDAL/OGR Contributors, 2020) and
GRASS7 library (GRASS Development Team, 2017). Finally,
21 year-by-year large remote sensing images were obtained.
The code for data processing can be found on https://
github.com/JChrysanthemum/ForestyDT/tree/datatprocess, and
the processed data can be found on https://www.kaggle.com/
datasets/jchrysanthemum/qmnp-landsat7?select=Dataset.

However, modeling using the above images may suffer from
insufficient data, oversized models, and low accuracy. We use a
cropping algorithm to convert large images into smaller ones.
As show in Figure 2, the clipped area is an extension of the
study area to ensure that the machine learning model can use all
pixels in the study area. Describing these algorithms may take
up a lot of space since the cropping algorithm in this study uses
tricks such as sliding windows, variable window size, and joint
domain detection. The key steps of the algorithm are represented
in Figure 3.

We first traverse the entire region based on the cut size and
move steps, as shown in Figure 3A. Adjacent data blocks have
overlaps designed to smoothen the final prediction. We discard
data blocks that do not contain any pixels from the study region
after traversal, as shown in Figure 3B. We use a gradient ascent
strategy to discover data blocks in uncovered areas of study
regions in as few steps as possible, and the results are shown in
Figure 3C. The coordinates used for cropping are the algorithm’s
output, as shown in Figure 3D. Finally, we crop the images of
each band to generate a dataset, which is used for subsequent
model training. The dataset contains 42,840 images from 8 bands.
Each one is a grayscale image with a size of 128× 128 pixels.
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FIGURE 3 | Cropping remote sensing images.

2.2. Forest Image DT Formulation
We provide a formulaic description of the forest image DT
in this section, which serves as the theoretical basis for the
model design. Forest image DT uses historical remote sensing
data for modeling, which predicts later frames using former
frames. Reducing the data variability sequentially can improve
the robustness of models. We calculate the mean and variance
of the images over 20 years for each block and apply max-
min regularization to them. The regularized input image can
be represented as a square matrix m ∈ Rn. Suppose the total
frames of observable data is n, where j consecutive observations
are denoted as m̃n−j+1 · · · m̃n. The first n + 1 data, mn+1

is unobservable and the corresponding maximum estimate is
denoted as m̂n+1. Then, the prediction of the next data from j
consecutive observations can be expressed as follows:

m̂n+1 = argmax
mn+1

P(mn+1|m̃n−j+1 · · · m̃n) (1)

2.3. Forest Image DT Model
Our model consists of three components: a feature extraction
network, a LSTM, and a generative network. The feature
extraction network uses a convolutional structure to downscale
the remote sensing image data. The LSTM uses several
downscaled neighboring frames as input, then outputs the feature
vectors of the predicted frames. The generative network generates
the predicted frames using the features obtained from the LSTM
network.

2.3.1. LSTM Model and Feature Extraction Model
The order of observable historical images m̃ is 16,384 for
each block. It has low dimensionality as a picture but high

dimensionality as a time series. Therefore, we used a two-layer
convolutional network, f , as feature extraction network to reduce
the dimensionality of each image data. In our experiments, the
training of the other models became unstable without a feature
extraction network. The training loss converges very slowly if
the images are input directly to the LSTM network for temporal
feature extraction.

ṽi = f (m̃i), i ∈ n− j+ 1 · · · n (2)

The dimensionality of feature vector v is significantly smaller
than the image m̃ due to the feature extraction network, f . We
use the LSTM model to extract the temporal features from the
reduced vectors in the next step. LSTM is a special recurrent
neural network that is good at learning the dependencies from
long sequences. The cell state is the LSTM’s key structure, as it
controls whether the newly added state is forgotten or retained.
The LSTMoutputs the final state by accepting several consecutive
historical data.

z = lstm(ṽn−j+1, · · · , ṽn) (3)

The final state, z, obtained from LSTM through vectors
ṽn−j+1 · · · ṽn is the temporal feature vector for a generative
adversarial network (GAN, Goodfellow et al., 2014) model.

2.3.2. Generator Model
GAN could generate new data similar beyond the original data
set, consisting of a generator and discriminator. However, GAN
product new images, not reproduce images in data set. The new
images generated by GAN have the features of several images
in the dataset but may not be similar to a particular image. We
want the predicted image in our DT model to be as similar
to the actual image as possible. Therefore, we only used the
generator in GAN and optimized it with the other models. We
use the design of conditional GAN (CGAN) in the model since
the predicted images are divided into many blocks (Mirza and
Osindero, 2014). We use the data coordinates as the conditions,
e.g., 0111 denotes the seventh block in the grid. Our method
can model many blocks at the same time by incorporating the
additional condition.

2.3.3. Model Design
The model in this study consists of the aforementioned three
parts as shown in Figure 4.

mn+1 can be replaced by G(z, c) in Equation 1 since we use
a generator to rebuild future image. Next, the feature extraction
network extracts downscaled m̃n−j+1 · · · m̃n into ṽn−j+1 · · · ṽn.
Feature vectors, ṽn−j+1 · · · ṽn, are associated with the generating
condition, z, using the LSTM model. The final result is an
approximation of the actual image, achieving the goal of the DT
model. Finally, equation 1 can be expressed as follows:

m̂n+1 = argmax
z

p(G(z)|m̃n−j+1 · · · m̃n)

≈ argmax
z

p(G(z)|ṽn−j+1 · · · ṽn) (4)

≈ G(lstm(ṽn−j+1, · · · , ṽn))

Frontiers in Plant Science | www.frontiersin.org 3 June 2022 | Volume 13 | Article 916900

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Jiang et al. Forestry DT on ML

FIGURE 4 | Data flow of the model.

Algorithm 1:Model training

Data: feature extraction network f , LSTM network lstm,
generator network G, training epochs itr, data set ds

Result: Trained modelModel(f , lstm,G)
1 for i in itr do
2 for {[m̃1, m̃2, · · · , m̃j, ],mj+1, c} i in ds do
3 [ṽ1, ṽ2, · · · , ṽj, ]← f ([m̃1, m̃2, · · · , m̃j, ])
4 z← lstm([ṽ1, ṽ2, · · · , ṽj, ])
5 loss = MSE(G(z,c),mj+1)
6 G.back(loss)
7 lstm.back(loss)
8 f.back(loss)

9 returnModel(f,lstm,G)

2.4. Model Training
Many researchers also use the generator as part of the model,
which has two different trainingmethods. The first method trains
the GAN alone, then combines the pretrained generator with
the other models for training. The second method trains the
generator with the other models simultaneously. We tried the
first method several times, but overall model’s training became
unstable and collapse frequently. As for the second method, it
behaves more robustly. Since embedded GAN training is not
the focus of this work, we only use the second approach. Then,
we added a parametric Gaussian distribution layer to the end of
LSTM, as the GANmodel input requires a Gaussian distribution.

Using the feature extraction network f , LSTM network lstm,
generator network G, training epochs itr, and data set ds, as
inputs, Algorithm 1 outputs the trained model in the end.
Lines 1–10 indicate the model’s itr training times. Line 3
indicates that the input matrices are compressed into feature
vectors by the feature extraction network. Line 4 indicates

that the feature vector is transformed into a temporal feature
sequence through the LSTM. Lines 6–9 indicate that the
three networks are trained sequentially by back-propagating the
loss.

3. RESULT AND ANALYSIS

The analysis of remote sensing images requires
several different band combinations. Here, we use
a B432 combination as an example. In this study,
data from 2001 to 2020 were used for training, and
data from 2021 were used for prediction. In addition,
we test four classical models: LSTM Wasserstein-
GAN (WGAN) model (Xu et al., 2019), convolutional
LSTM model (Liu et al., 2017), auto-encoding (AE)
CGAN model and AE WGAN model (Makhzani
et al., 2016). The code of all models can be found on
https://github.com/JChrysanthemum/ForestyDT/tree/main

The models take data from 2018-2020 as input, resulting in
255 blocks for 2021. Second, the blocks aremerged to obtain three
band images of study area. Then, the band images are stacked
to get false-color images, which are used for feature detection.
For simplicity, we get the vegetation segmented image from
false-color image by color. In the following, we will evaluate the
predicted blocks and the segmented images.

First, we evaluate blocks using normalized root mean square
error (NRMSE) to measure their similarities. Where yi denotes
the true value, ȳ denotes the mean of the true value, ŷi denotes
the predicted value, and σ denotes the standard deviation.

NRMSE =

√

∑n
i=1

(

yi − ŷ
)2

nσ 2
, RMSE =

√

∑n
i=1

(

yi − ŷ
)2

n
(5)

Next, we use the correct rate (CR) to measure the overlap
between predicted and true segmented images. numhit indicates
the number of correctly predicted pixels, while nummiss is the
opposite.

CR =
numhit

numhit + nummiss
(6)

For each band of 255 blocks, we calculate the NRMSE
between predicted and true values. Then derive the mean and
standard deviation of NRMSE scores. For the segmented images,
we calculated their CR. The results are shown in Table 1 and
Figure 5.

Figure 5A plots the mean NRMSE for three bands, and
Figure 5B plots the mean NRMSE and CR. Obviously, most
scores of LSTM-CGAN are optimal. Next, we further analyze the
predicted images of LSTM-CGAN.

We sort the RMSE score for these images, as shown in
Figure 6A. Taking B3 as an example, we derived the standard
deviation of each block over 20 years. Note that we use RMSE
instead of NRMSE, because NRMSE are affected by the standard
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deviation. Then, the standard deviations and the corresponding
RMSE scores are plotted as shown in Figure 6B.

In Figure 6A, the three curves displayed the same trend, with
B3 being the best. In Figure 6B, the trend of NRMSE is opposite
to the standard deviation, showing that the temporal stability of
the images affects the final prediction.

We group the blocks based on the NRMSE scores in Figure 7

to reveal inaccurate prediction cases.
Figure 7 shows eight pairs of images for each band, which

are equally divided into four intervals. For each pair of images,
the left one is the true value, and the right one is the predicted
image. A low score indicates a high similarity between the two
images. The predicted and true values are similar in columns
Q1 and Q2. The predictions in columns Q3 and Q4 are biased
but still have some common regions with true value. We selected
four typically dissimilar conditions, indicated by colored dashed
boxes in Figure 7. Figure 7A shows that the prediction and true
values are not in one color interval. This block had different color
distributions from 2018 to 2020. This may result in bias in the
model’s prediction interval. Figure 7B shows that the prediction
has an additional cloud. It is almost impossible to guarantee

TABLE 1 | Model scores comparison.

Model
NRMSE (Mean, Std Dev) CR

B2 B3 B4 B432

LSTM-CGAN (0.50, 0.23) (0.40, 0.17) (0.48, 0.17) 0.80

LSTM-Conv (0.54, 0.30) (0.41, 0.19) (0.51, 0.17) 0.71

LSTM-WGAN (0.52, 0.27) (0.42, 0.19) (0.51, 0.16) 0.71

AE-CGAN (0.52, 0.25) (0.42, 0.18) (0.51, 0.16) 0.71

AE-WGAN (0.51, 0.25) (0.42, 0.18) (0.51, 0.16) 0.77

that every piece of data in remote sensing data with a long-
time span over large areas is cloud-free. The cloud coverage
model in a region cannot be built if meteorological data for
the region are not available. Figure 7C is the simultaneous
occurrence of cases (Figures 7A,B). Figure 7D shows that the
changes in the region are not reflected in the prediction. For
this region, the changes that occurred in 2021 did not occur
in the previous years. Therefore, the inconsistency between the
predicted and true values may be influenced by the inconsistency
in the data. It is difficult to optimize the model to get a
better prediction without meteorological data such as local light
radiation data.

FIGURE 6 | (A,B) LSTM-CGAN scores.

FIGURE 5 | (A,B) NRMSE and CR of models.
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FIGURE 7 | NRMSE scores and the prediction.

FIGURE 8 | Model prediction for B2, B3, B4, and B432.

The final result comparison is shown in Figure 8.
From the figure, the generated image is similar to

the predicted image. It proves that the method in this

paper achieves a digital twin of the forest, which provides
a basis for other studies by predicting future remote
sensing images.
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4. CONCLUSION

In this paper, a digital twin method for forestry image
prediction is designed to predict future remote sensing data
by using historical Landsat 7 remote sensing data. A forestry
image cropping algorithm was designed to reduce the large-
scale remote sensing images into smaller blocks according
to the study area to model large-scale forestry images. An
LSTM-based model was designed to predict future remotely
sensed images using remote sensing image time series for
training. The prediction results show that the method can
predict the development of forestry images to a certain
extent and works effectively as a forestry prediction twin.
Our method achieves a digital twin of large areas of forest
that can predict future remote sensing images. This allows
forestry canopy, species and distribution succession to be
obtained from images, making the analysis more direct
and concrete.
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