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Nigella is a small genus belonging to the Ranunculaceae family which is presumably
originated and distributed in Aegean and the adjacent Western-Irano-Turanian region.
Comparative repeat analysis of N. sativa, N. damascena and N. bucharica was
performed using low-pass Illumina genomic reads followed by karyotyping and FISH
mapping of seven Nigella species using the in silico identified repeats and ribosomal
DNA (rDNA) probes. High- and moderate-copy repeat sequences occupy 57.52, 59.01,
and 64.73% of N. sativa, N. damascena and N. bucharica genomes, respectively.
Roughly, half of the genomes are retrotransposons (class I transposons), while DNA
transposons (class II transposons) contributed to only about 2% of the genomes.
The analyzed Nigella species possess large genomes of about 7.4 to 12.4 Gbp/1C.
Only two satellite repeats in N. sativa, one in N. damascena and four in N. bucharica
were identified, which were mostly (peri)centromeric and represented about 1% of
each genome. A high variation in number and position of 45S rDNA loci were found
among Nigella species. Interestingly, in N. hispanica, each chromosome revealed at
least one 45S rDNA site and one of them occurs in hemizygous condition. Based on the
chromosome numbers, genome size and (peri)centromeric satellites, three karyotype
groups were observed: Two with 2n = 2x = 12 and a karyotype formula of 10m + 2t
(including N. sativa, N. arvensis, N. hispanica as the first group and N. damascena and
N. orientalis as the second group) and a more distant group with 2n = 2x = 14 and a
karyotype formula of 8m + 2st + 4t (including N. integrifolia and N. bucharica). These
karyotype groups agreed with the phylogenetic analysis using ITS and rbcL sequences.
We conclude that variation in (peri)centromeric sequences, number and localization of
rDNA sites as well as chromosome number (dysploidy) are involved in the diversification
of the genus Nigella.

Keywords: repetitive sequences, satellites, karyotype evolution, Nigella genus, repeatome analysis

Frontiers in Plant Science | www.frontiersin.org 1 June 2022 | Volume 13 | Article 917310

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.917310
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpls.2022.917310
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.917310&domain=pdf&date_stamp=2022-06-09
https://www.frontiersin.org/articles/10.3389/fpls.2022.917310/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-917310 June 2, 2022 Time: 18:49 # 2

Orooji et al. Comparative Genome Analysis in the Genus Nigella

INTRODUCTION

Nigella (fennel flower) is a small genus in the tribe Nigelleae (with
18 species) of the Ranunculaceae family (Zohary, 1983; Dönmez
et al., 2021) (Supplementary Table 1), native to Southern Europe,
North Africa, South Asia, Southwest Asia and Middle East (Tutin,
1964; Zohary, 1983; Raab-Straube et al., 2014) (Supplementary
Figure 1). Fourteen species belong to Nigella, among which
N. sativa L. (black cumin) is the most popular medical plant and
additionally its seeds are used as spices. N. damascena L. and
N. arvensis are annual ornamental and medicinal plants (Ghosh
and Datta, 2006; Malhotra, 2012; Shaker et al., 2017). Komaroffia
bucharica and K. integrifolia belong to the Komaroffia tribe (the
sister tribe of Nigelleae), that Zohary accepted as synonyms for
Nigella bucharica and N. integrifolia (Zohary, 1983; Heiss et al.,
2011; Dönmez et al., 2021). N. bucharica and N. integrifolia
are of great importance for beekeeping, as they provide bees
with nectar and pollen in south Uzbekistan (Atamuratova
et al., 2021). The diploid species, N. sativa, N. damascena,
N. arvensis, N. hispanica and N. orientalis (2n = 2x = 12),
have five metacentric and one telocentric chromosome pairs,
but N. bucharica and N. integrifolia (2n = 2x = 14) have
four metacentric, two submetacentric and one subtelocentric
chromosome pairs (Gilot-Delhalle et al., 1976). The 1C-values
of N. sativa and N. damascena were determined to be 10.39
Gbp (Bennett and Smith, 1976) and 10.29 Gbp (Evans et al.,
1972; Kuznetsova et al., 2017; Leitch et al., 2019), respectively.
There is little information about the genome composition
and cytogenetic characteristics of Nigella species although
such information is important to understand the phylogenetic
relationship in this genus.

Repetitive DNAs are highly enriched in plant genomes, and
repetitive fractions among plant genomes are highly variable,
ranging for example from 13–14% in the small genome of
Arabidopsis thaliana (157 Mbp/1C) (Bennett et al., 2003), to up to
92% in Allium cepa with a rather large genome (16 Gbp/1C) (Fu
et al., 2019). Transposons and tandem repeat DNAs (including
satellites and ribosomal DNAs) are major repetitive sequences in
eukaryotic genomes (Wicker et al., 2007; Mehrotra and Goyal,
2014; Bao et al., 2015; Piégu et al., 2015; Maumus and Quesneville,
2016). Satellites are commonly used as molecular and cytogenetic
markers in studies of the genetic diversity and chromosome
evolution due to their species-, or even chromosome-specificity
(Elder and Turner, 1995; Ugarkovic and Plohl, 2002; Garrido-
Ramos, 2017; Samoluk et al., 2017; Belyayev et al., 2019).
Although 45S (18S-5.8S-25S) and 5S rDNA have been widely
used as cytological markers for chromosome identification
and investigations of chromosomal rearrangements occurring
between related species (Mukai et al., 1991; Zoldos et al.,
1999; Frello and Heslop-Harrison, 2000; Tagashira and Kondo,
2001; Datson and Murray, 2003), the ITS sequences of 45S
rDNA are rather variable between species. In addition to
large-scale chromosomal rearrangements, such as inversions
and translocations, the high variation in copy number and
distribution of tandem repeats can lead to genome divergence
and karyotype changes between closely related species (Appels
et al., 1980; Mukai et al., 1991; Levin and Donald, 2002).

In this study, we analyzed and compared the repeat
composition of N. sativa, N. damascena and N. bucharica using
low-coverage genome sequences. Furthermore, we generated
karyotypes of seven Nigella species using FISH mapping of major
satellite repeats and rDNAs. Types and patterns of satellite repeats
and number of chromosomes agreed with the phylogenetic
relationships revealed by using ITS and rbcL sequences.

MATERIALS AND METHODS

Plant Materials
Seeds of seven Nigella species, N. sativa, N. damascena,
N. arvensis, N. bucharica, N. hispanica, N. integrifolia and
N. orientalis, were provided by the IPK Genebank in Germany
(Table 1, Supplementary Table 1, and Supplementary Figure 2).
All species were used for phylogenetic analysis and FISH
karyotyping. N. sativa, N. damascena and N. bucharica were
further used in a comparative analysis of their genome
repetitive compositions.

Genome Size Measurement
To isolate nuclei, approximately 0.5 cm2 of fresh leaf tissue
from a Nigella species and the internal reference standard, Pisum
sativum L. subsp. sativum convar. sativum var. ponderosum
Alef., Sorte Viktoria, Kifejtö Borsó, Gatersleben Gene Bank
accession number: PIS 630, were chopped together in a petri dish
using the reagent kit ‘CyStain PI Absolute P’ (Sysmex-Partec)
following the manufacturer’s instructions. The nuclei suspension
was filtered through a 50-µm CellTrics filter (Sysmex-Partec) and
measured on a CyFlow Space flow cytometer (Partec-Sysmex).
For each genotype, at least six independent measurements were
performed. The absolute DNA content (pg/2C) was calculated
based on the values of the G1 peak means and converted
to the corresponding genome size (Mbp/1C) according to
Dolezel et al. (2003).

DNA Extraction and Sequencing
Genomic DNAs were extracted from the leaves of N. sativa,
N. damascena and N. bucharica using the CTAB method
described in Saghai-Maroof et al. (1984), Aboul-Maaty and
Oraby (2019). Paired-end (2 × 150 bp) genome sequencing
was performed using the Illumina HiSeq 2500 system in a
low-coverage scale by Novogene (China). The coverage of
sequenced genome was calculated according to the following
equation: Coverage = (Number of reads × size of each read)/1C
content of the genome.

Graph-Based Identification of Genome
Repetitive Sequences
The quality and GC content of paired-end reads of each species
was checked using FastQC (Andrews, 2010) implanted in the
RepeatExplorer. The sequence reads were filtered by the quality
of 95% of bases equal to or above the quality cut of value of 10.
Paired reads were joint using FASTA interlacer tool and pairs
with no overlap were selected for the graph-based clustering
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TABLE 1 | Nigella species and accessions used in the present study.

Nigella species Accession numbera Chromosome number
(2n = 2x)

Genome size
(Gb/1C)

Pair number of 45S rDNA loci Pair number of 5S rDNA loci

N. arvensis L. NIGE 5 12 7.851 4 1

N. bucharica Schipcz. NIGE 15 14 7.398 3 1

N. damascena L. NIGE 101 12 11.826 4 2

N. hispanica L. NIGE 28 12 8.732 10 1

N. integrifolia Regel NIGE 31 14 7.443 3 1

N. orientalis L. NIGE 34 12 12.441 3 3

N. sativa L. NIGE 61 12 11.719 3 2

aAccession number of the Nigella species in IPK Genebank, Gatersleben, Germany.

analysis. The identification and characterization of the repetitive
DNA families were then performed using the RepeatExplorer
pipeline (Novak et al., 2013; Novák et al., 2017, 2020) with the
default setting of 90% similarity over 55% of the read length.
Consensus sequences of the identified repeat monomers were
reconstructed by TAREAN (TAndem REpeat ANalyzer) (Novák
et al., 2017). Comparative RepeatExplorer analysis was performed
to identify shared and species-specific repeat clusters. The “Nd,”
“Ns,” and “Nb” were used as prefix codes of N. damascena,
N. sativa and N. bucharica, respectively. The sequence dataset
of each species was then down-sampled to 20% of each genome
size (16 million reads for N. sativa and N. damascena and 10
million reads for N. bucharica), followed by a concatenation
into a single data file. The settings for comparative clustering
analysis were the same as those for individual analysis mentioned
above. The sizes of repeat clusters were normalized based on
the genome size of analyzed species using optparse package
of R version 4.0.2 (The R Project for Statistical Computing,
Vienna, Austria).

The monomer of (peri)centromeric satellite sequences were
aligned using Clustal Omega (Madeira et al., 2019) and viewed
in MView (Brown et al., 1998). The 18S, 5.8S, and 26S coding
regions of the identified 45S rDNA and the coding region of 5S
rDNA were distinguished by referring to the publicly available
rDNA coding sequences in NCBI.

Polymerase Chain Reaction
To amplify the repeat DNAs, the consensus sequences of satellite
repeats and one LTR element identified were used to design
primers using Primer3 (Untergasser et al., 2012). The monomer
and primer sequences were listed in Supplementary Table 2.
The PCR mixture contained 25 ng of genomic DNA as template,
2.5 mM of each dNTP, 2.5 mM MgCl2, 5 pmol of each primer, and
0.5 U Taq DNA polymerase. PCR amplification was performed
for 5 min at 94◦C, followed by 30 cycles of 30 s at 94◦C, 1 min
at 52-60◦C (depending on primers), 1 min at 72◦C and a final
extension for 7 min at 72◦C. The size of PCR products was
checked in 1% agarose gel by electrophoresis.

Probe Preparation
PCR products were purified by ethanol precipitation. One
microgram of each purified PCR products was labeled
with Atto488-11-dUTP or Atto550-11-dUTP using a nick

translation kit (Jena Bioscience, Germany), recovered by
ethanol precipitation and used as FISH probes. For rDNA
probes, the 45S rDNA and 5S rDNA containing clones pTa71
(Gerlach and Bedbrook, 1979) and pTa794 (Gerlach and Dyer,
1980), respectively, were labeled with Atto488-11-dUTP and
Atto550-11-dUTP by nick translation as mentioned above. To
investigate whether Nigella species possess Arabidopsis-like
telomeric repeats, FISH was performed using Arabidopsis-type
telomere repeats (TTTAGGG)n as a probe, which was generated
by non-template PCR according to IJdo et al. (1991) using
(TTTAGGG)3 and (CCCTAAA)3 as primers. One microgram
of the purified PCR product was labeled with Atto550-11-dUTP
as described above, recovered by ethanol precipitation and
used as FISH probes.

Slide Preparation
Nigella seeds were germinated on moist filter paper in petri
dishes for 3–6 days at room temperature. Roots were subjected
to nitrous oxide (N2O) gas at 10 bar pressure for 2 h to arrest
dividing cells at metaphase. Treated roots were fixed in ice-cold
90% acetic acid for 10 min, then transferred to 75% ethanol
and stored at −20◦C until use. Roots were first washed in ice-
cold water, followed by 0.01 M citrate buffer (0.01 M citric acid
and 0.01 M sodium citrate, pH 4.8) each for 10 minutes. Root
meristems were placed in a microtube containing 30 µl enzyme
mixture [0.7% cellulase (CalBiochem 219466), 0.7% cellulase
R10 (Duchefa C8001), 1% cytohelicase (Sigma C8274) and 1%
pectolyase (Sigma P3026) in 0.01 M citrate buffer] and were
digested at 37◦C for 60 to 90 minutes. Slides were prepared using
the dropping method according to Abdolmalaki et al. (2019). The
specimens were fixed in 4% paraformaldehyde in 1× PBS (3 mM
NaH2PO4, 7 mM Na2HPO4, 0.13 M NaCl, pH 7.4) for 10 min
at room temperature, followed by washing in 2 × SSC (0.3 M
sodium chloride, 0.03 M sodium citrate, pH 7.0) and dehydrating
in 96% ethanol.

Fluorescence in situ Hybridization
FISH and reprobing was performed according to Abdolmalaki
et al. (2019). Briefly, 20 µl of hybridization mixture, containing
2 × SSC, 50% formamide, 20% dextran sulfate, 1 µg sheared
salmon testes DNA and 20–30 ng of each labeled probe, was
applied on each slide and covered with a plastic coverslip.
Specimens were then denatured at 80◦C for 2 min on a hot plate
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and were incubated in a humidified plastic container at 37◦C,
overnight. Coverslips were removed and slides were washed in
2 × SSC for 20 minutes in a water bath at 56◦C. Slides were

dehydrated in 96% ethanol and dried at room temperature.
A drop of Vectashield mounting medium (Vector Laboratories)
containing 1 µg/ml DAPI (4′, 6-diamidino-2-phenylindole) was

FIGURE 1 | Phylogeny and idiograms of Nigella. A maximum likelihood phylogenetic tree of Nigella species with 500 bootstrap replications inferred from
ITS1-5.8S-ITS2 and rbcL sequences. A. carmichaelii has been included as an outgroup. The tree has been annotated with idiograms (showing the locations of the
identified satellite repeats and 45S and 5S arrays), karyotypic parameters and the estimated DNA C-values. The asterisk in N. hispanica indicates the hemizygous
locus. Chr.: Chromosome; A1: intrachromosomal asymmetry index; and A2: interchromosomal asymmetry index; Levan: the description of chromosome morphology
was based on the nomenclature proposed by Levan et al. (1964), AR: arm ratio (long arm/short arm).
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added to each slide as counterstain and a glass coverslip was
applied. Slides were inspected with a fluorescence Olympus BX51
microscope (Olympus, Japan), and images were captured using a
DP72 digital camera (Olympus, Japan).

Numerical Characterization of
Karyotypes
Chromosomal and karyotypic indices for numerical
characterization of mitotic metaphase chromosomes of
the Nigella species were measured using IdeoKar software
(Mahmoudi and Mirzaghaderi, 2021). The calculated indices
include total chromosome length of the haploid complement
(HCL); mean chromosome length (CL), and mean centromeric
index (CI). Karyotype asymmetry was determined using
the A1 (intrachromosomal asymmetry index) and A2
(interchromosomal asymmetry index) indices calculated
using 6(b/B)/n and s/x equations, respectively, where b and
B are the mean lengths of the short and long arms of each
homologous chromosome pair, respectively; n is the number of
homologs, and s and x are standard deviation and mean of the
chromosome length, respectively (Romero-Zarco, 1986). Three
high-quality FISH-banded metaphase chromosome spreads
were traced for each species. The description of chromosome
morphology was based on the nomenclature proposed by Levan
et al. (1964). Idiograms were generated using the R package
“idiogramFISH” (Roa and Telles, 2020).

Phylogenetic Analysis
The ITS1-5.8S-ITS2 region of 45S rDNA in N. sativa,
N. damascena and N. bucharica were identified by
RepeatExplorer analysis and were extracted using BLASTn
at NCBI database. N. damascena complete chloroplast sequence
(MN648403.1) was downloaded from NCBI and used as a
reference genome to assemble the chloroplast sequence of
N. sativa using CLC software. The reference-aided assembled
genome was annotated using the GeSeq annotation tool (Tillich
et al., 2017). The conserved sequences flanking the ITS1-5.8S-
ITS2 and rbcL gene were used to design PCR primers to amplify
and sequence the corresponding regions in the other five Nigella
genomes (Supplementary Tables 2–4). The ITS1-5.8S-ITS2
and rbcL sequences were used as input for multiple sequence
alignment by MUSCLE algorithm using MEGA11 software
(Tamura et al., 2021). The concatenated ITS1-5.8S-ITS2 and rbcL
sequences were used to build a maximum likelihood tree with
500 bootstrapping replications in MEGA11.

RESULTS

Nigella Is Characterized by Relatively
Large Genomes
According to flow cytometric estimation of the DNA content,
Nigella orientalis has the largest genome with 12.44 Gbp/1C
among the seven species, followed by N. damascena and N. sativa
with 11.72 Gbp/1C and 11.83 Gbp/1C, respectively (Table 1
and Figure 1). N. hispanica (8732 Mbp/1C), N. arvensis (7851

Mbp/1C), N. integrifolia (7443 Mbp/1C) and N. bucharica (7398
Mbp/1C) have considerably smaller genomes than those of the
other three species mentioned above.

Two Different Karyotypes Are Prevailing
in Nigella
Chromosomes of Nigella species were mainly metacentric with
one or two telocentric chromosome pairs in each species.
Based on their basic chromosome number, the seven species
can be classified into two groups. The first group, comprising
N. arvensis, N. damascena, N. hispanica, N. orientalis and
N. sativa, has a basic chromosome number of x = 6 (2n = 2x = 12)
with a karyotype formula of 10m + 2t. N. bucharica and
N. integrifolia belong to the second group with a basic
chromosome number of x = 7 (2n = 2x = 14) and a karyotype
formula of 8m + 2st + 4t. All these species fell into the
2A category of Stebbin’s asymmetry indices (Stebbins, 1971;
Figure 1). The size of metacentric chromosomes ranged from
5.99 µm (N. bucharica) to 10.14 µm (N. damascena) and the
telocentric chromosome size ranged from 4.04 µm (N. bucharica)
to 5.51 µm (N. damascena). N. bucharica and N. integrifolia also
have a pair of subtelocentric chromosomes with a size range from
4.54 to 4.71 µm. The total metaphase chromosome length was
between 38.21 µm in N. bucharica and 53.17 µm in N. damascena
(Supplementary Table 5).

The Number of rDNA Loci Varies
Severely Between the Species
To determine the karyotype evolution among the seven Nigella
species, FISH mapping of 45S and 5S rDNA loci on mitotic
chromosomes was performed (Figure 2). FISH of both ribosomal
probes revealed a considerable interspecific variation regarding
the number and position of rDNA loci (Figures 1A, 2). While
three 45S rDNA-positive chromosome pairs were observed
in N. sativa, N. orientalis, N. integrifolia and N. bucharica
(Figures 2A–D), four pairs of 45S rDNA loci were present
in N. damascena and N. arvensis (Figures 2E,F). N. hispanica
revealed ten pairs of 45S rDNA loci, the highest number
among the investigated species. Each chromosome of this species
harbors at least one 45S rDNA locus. Interestingly, one of
the 45S rDNA sites in N. hispanica did not show a signal
on its corresponding homologous chromosome representing
hemizygosity (Figures 1A, 2G). While in N. sativa, N. arvensis,
N. hispanica and N. damascena, 45S rDNA loci were found
on metacentric and telocentric chromosomes, 45S rDNA
loci were exclusively found on metacentric chromosomes in
N. orientalis or on submetacentric and telocentric chromosomes
in N. bucharica and N. integrifolia (Figure 2). The 5S rDNA
was found on one (N. integrifolia, N. bucharica, N. arvensis
and N. hispanica) (Figures 2C,D,F,G), two (N. sativa and
N. damascena) (Figures 2A,E) or three (N. orientalis) (Figure 2B)
chromosome pairs. 45S rDNA loci are located mainly either
in distal or proximal regions of the chromosome arms, while
5S rDNA arrays were also found interstitially. The size of
hybridization signals varied between chromosome pairs both
within and between species (Figure 2).
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FIGURE 2 | rDNA loci distribution of the studied Nigella species. FISH mapping of 45S rDNA (green) and 5S rDNA (red) on mitotic metaphase chromosomes of N.
sativa (A), N. orientalis (B), N. integrifolia (C), N. bucharica (D), N. damascena (E), N. arvensis (F) and N. hispanica (G). Chromosomes were counterstained with
DAPI. Arrows indicate weak 45S rDNA signals and the asterisks indicate the homologous chromosomes with hemizygous locus. Scale bar 10 µm.

Molecular Phylogenetic Analysis of ITS
and rbcL Sequences Correlate With the
Basic Chromosome Numbers
To determine the phylogenetic relationship among the analyzed
Nigella species, the sequences of nuclear ribosomal internal
transcribed spacer (ITS) and rbcL gene were used. The sequence
length of ITS (ITS1-5.8S-ITS2) varied from 732 to 759 bp
(Supplementary Table 3), whereas rbcL sequences ranged
from 871 to 1428 bp (Supplementary Table 4) in the seven
Nigella species. Aconitum carmichaelii, a distantly related species
belonging to the same family, was used as an outgroup, and
the resulting consensus had high bootstrap support values
(Figure 1). N. bucharica and N. integrifolia formed a robust
cluster with 100% bootstrap support, and both of them have a
basic chromosome number of x = 7. The other cluster included
N. sativa, N. arvensis and N. hispanica (with 84% bootstrap
support), to which N. damascena and N. orientalis were jointed
with lower support. All members of this cluster possess a
chromosome number of 2n = 12.

The clustering of the seven Nigella species based on molecular
phylogenetic analysis correlates with their basic chromosome
number (x = 6 or 7). The phylogenetically close N. integrifolia
and N. bucharica have the same chromosome number, similar
genome size and rDNA-based karyotypes. Nevertheless, among
the other five species, despite having the same chromosome
number, their genome size, the number and chromosomal
distribution of rDNA loci are diverse.

Retroelements Are the Dominating
Repeat Type in Nigella While Satellite
Sequences Are Rare
Low-pass sequencing of N. sativa, N. damascena and N. bucharica
genomes resulted in 4,232,251, 7,553,644, and 15,352,348
Illumina 150 bp paired-end reads corresponding to 0.24×,
0.43×, and 1.50× genome coverage, respectively. The GC
content for N. sativa and N. damascena genomes showed a
value of 38%, while this value was 42% for N. bucharica. The
repeat compositions were inferred from the paired-end reads
corresponding to approximately ∼0.2× of the genome for each
analyzed species. The proportions of individual repeat types
are presented in Table 2. About 57.52, 59.01, and 64.73%
of N. sativa, N. damascena and N. bucharica genomes are
composed of high- or moderate-copy repeats, respectively.
The majority of the repeats (47.91% in N. sativa, 39.47% in
N. damascena, and 51.25% in N. bucharica) are retroelements,
followed by unclassified repeats (6.95, 17.30, and 10.10%)
and tandem repeats (0.75, 0.39, and 0.74% of rDNAs and
0.75, 1.21, and 1.45% of satellites). The proportions of 45S
rDNA repeats in N. sativa, N. damascena and N. bucharica
genomes were 0.72, 0.38, and 0.65%, respectively, while
the 5S rDNA proportions were 0.03%, 0.01% and 0.09%
as determined by RepeatExplorer analysis (Table 2). The
consensus monomers of the rDNA sequences in N. sativa,
N. damascena and N. bucharica identified by TAREAN are
listed in Supplementary Table 6. Among the retroelements,
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TABLE 2 | Types and proportions of highly-repetitive sequences in N. sativa, N. damascena and N. bucharica characterized by RepeatExplorer2.

Repeat Genome proportion (%)

N. sativa N. damascena N. bucharica

LTR retroelement Ty1_copia Angela 2.47 0.61 1.11

LTR retroelement Ty1_copia Bianca 0.14 0.08 0.02

LTR retroelement Ty1_copia Ikeros 0.21 0.12 0.13

LTR retroelement Ty1_copia Ivana 0.11 0.06 0.02

LTR retroelement Ty1_copia SIRE 0.45 0.39 −

LTR retroelement Ty1_copia TAR 0.24 0.23 0.77

LTR retroelement Ty1_copia Tork 0.13 0.14 0.53

LTR retroelement Ty1_copia Ale 0.01 0.01 −

LTR retroelement Ty3_gypsy Athila 6.46 8.26 7.23

LTR retroelement Ty3_gypsy Retand 2.33 2.65 10.04

LTR retroelement Ty3_gypsy (chromovirus) CRM 0.31 0.55 0.26

LTR retroelement Ty3_gypsy (chromovirus) Tekay 34.89 26.19 30.99

LTR retroelement Ty3_gypsy (chromovirus) Galadriel 0.02 0.09 0.03

LTR retroelement Ty3_gypsy (chromovirus) Reina − 0.03 −

LTR retroelement LINE 0.14 0.06 0.12

Total LTR retroelement 47.91 39.47 51.25

Pararetrovirus 0.03 0.02 −

DNA transposon EnSpm_CACTA 0.72 0.24 0.16

DNA transposon MuDR_Mutator 0.32 0.34 0.71

DNA transposon hAT 0.03 − −

DNA transposon PIF_Harbinger 0.06 0.04 0.32

Total DNA transposon 1.13 0.62 1.19

rDNA 45S_rDNA 0.72 0.38 0.65

rDNA 5S_rDNA 0.03 0.01 0.09

Satellite 0.75 1.21 1.45

Tandem repeads 1.50 1.60 2.19

Unclassified 6.95 17.30 10.10

Total high- or moderate copy repeats 57,52 59,01 64,73

Non-clustered reads (low-copy sequences) 42.48 40.99 35.27

The repeats grouped according to their repeat class and lineage. “-”: not detected.

LTR retroelements are the most abundant in the N. sativa
(47.91%), N. damascena (39.47%) and N. bucharica (51.25%)
genomes. LTRs in N. sativa include Ty3–gypsy and Ty1–
copia super families with a proportion of 44.01 and 3.76%
in the genome, respectively, while they compose 37.77 and
1.64% in N. damascena and 48.55 and 2.58% in N. bucharica.
A major part (34.89% in N. sativa, 26.19% in N. damascena
and 30.99% in N. bucharica) of Ty3–gypsy belongs to the
retrotransposon chromoviral Tekay clade (Table 2). In contrast,
DNA transposons contribute to only 1.13, 0.62, and 1.19%
of the N. sativa, N. damascena and N. bucharica genomes,
respectively, and only three common DNA transposons,
EnSpm_CACTA, MuDR_Mutator and PIF_Harbinger, were
identified. EnSpm_CACTA composes 0.72% of the N. sativa
genome, but its proportion was much lower in N. damascena
(0.24%) and N. bucharica (0.16%). MuDR_Mutator comprises
about 0.32% of N. sativa, 0.34% of N. damascena and 0.71%
of N. bucharica genome. Also, PIF_Harbinger composes 0.32%
of the N. bucharica genome, but its proportion was lower
than 0.1% in N. sativa (0.06%) and N. damascena (0.04%).

The DNA transposon hAT was only detected in N. sativa
(Table 2).

To compare the repeat compositions between the genomes
of N. sativa, N. damascena and N. bucharica, a comparative
clustering analysis was performed. About a quarter of the top
clusters (Figure 3) are shared between the species. Not all of
these clusters had similar abundance in the genomes. Out of
the in total 272 major repeat clusters, only 16 clusters (5.88%)
were relatively evenly shared between the three genomes, and
they were annotated as Ty1_copia-TAR and Tork, Ty3_gypsy-
Athila, DNA transposon-EnSpm CACTA and rDNAs (Figure 3).
Up to 97 clusters (35.66%) were almost N. bucharica specific, and
shared clusters between N. bucharica and either N. damascena
or N. sativa were barely detectable. N. damascena and N. sativa
contributed to 123 and 120 clusters, respectively, of which 77
clusters were shared between the two genomes, whereas 61 and
37 of them were highly enriched or specific to N. damascena and
N. sativa, respectively. The comparative analysis demonstrated
that N. bucharica is relatively more distinct from N. damascena
and N. sativa. This result is in line with their phylogenetic

Frontiers in Plant Science | www.frontiersin.org 7 June 2022 | Volume 13 | Article 917310

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-917310 June 2, 2022 Time: 18:49 # 8

Orooji et al. Comparative Genome Analysis in the Genus Nigella

FIGURE 3 | Comparative analysis of genome repetitive composition among three Nigella species. (A) Bar plot of N. damascena, N. sativa and N. bucharica showing
the sizes (numbers of reads) of individual clusters. (B) Rectangle size is proportional to the number of reads in a cluster for each species. Clusters were sorted by
using hierarchical clustering and the rectangles are colored based on their cluster annotation. (C) The size of the rectangles in (B) was normalized based on the
genome size of analyzed species. Species codes: ND, N. damascena; NS, N. sativa; Nb, N. bucharica.

relationships inferred based on ITS and rbcL sequences. The
monomer length and cluster proportion of satellites and high
copy retrotransposons identified by TAREAN is listed in
Supplementary Table 7. Most of retrotransposons were common
between N. sativa and N. damascena, (Supplementary Table 7).

(Peri)centromeric Satellites Reflect the
Phylogenetic Relationship in Nigella
The application of the TAREAN pipeline (Novák et al.,
2017) allowed the identification of tandem repeat clusters in
Nigella species. Two satellite repeats in N. sativa, i.e., Ns-
Sat1 (CL21) and Ns-Sat2 (CL144) were detected, representing
0.52 and 0.01% of the genome, respectively (Table 3). Only
one satellite repeat, named Nd-Sat1 (CL23), was identified in
N. damascena which corresponds to 0.52% of the genome.
On the other hand, four satellite repeats, Nb-Sat1 (CL21),
Nb-Sat2 (CL129), Nb-Sat3 (CL64) and Nb-Sat4 (CL144), were
identified in N. bucharica, representing 0.86, 0.08, 0.42, and
0.03% of the genome, respectively. All these repeats represented
satellite-typical globular graph layouts, and their consensus
monomer sequences are available in Supplementary Table 2. The
monomers of Ns-Sat-1, Ns-Sat-2 and Nd-Sat-1 are all 178 bp
in length and AT-rich (e.g., 68% AT for Ns-Sat1) (Table 3
and Supplementary Figure 3). Their sequence similarity ranged
from 78.8% (between Ns-Sat1 and Nd-Sat1) to 71.8% (between
Ns-Sat1 and Ns-Sat2). In addition, the monomer sequence of

the Ty3_gypsy LTR-annotated retrotransposon, Ns-CL6, was
reconstructed. To determine the chromosomal distribution of the
identified repeats, the corresponding DNA fragments were PCR
amplified using the respective primers and labeled as FISH probes
(Table 3).

After FISH, all metaphase chromosomes of N. sativa revealed
(peri)centromeric Ns-Sat1 signals while Ns-Sat2 localized in
the (peri)centromeric regions of only chromosomes 1 and
4 (Figures 4A,B). The Ns-CL6 probe which is a Ty3_gypsy
LTR retrotransposon, resulted in evenly distributed signals,
although with a lower density toward the distal chromosome
regions (Figure 4A). Nd-Sat1-specific signals were found
in the (peri)centromeric regions of all N. damascena
chromosomes (Figure 4C). Ns-Sat1 also cross-hybridized
to the (peri)centromeric regions of N. arvensis and N. hispanica
(Figures 4D,E). The Nd-Sat1 of N. damascena also cross-
hybridized to the (peri)centromeric regions of N. orientalis
(Figure 4F). None of the Nd-Sat1, Ns-Sat1 and Ns-Sat2 probes
cross-hybridized with N. integrifolia or N. bucharica. The
observed clustering of (peri)centromeric repeats at one pole of
the nuclei indicates a Rabl-like chromosome configuration in
interphase nuclei of Nigella (Figures 4A,E).

The observed hybridization signals of all four Nb satellite
probes showed similar intensities, locations and numbers in
N. bucharica and N. integrifolia (Figure 1). Nb-Sat1 seems to co-
localize with the 45S-rDNA loci, since it is found in terminal
positions on the short arms of the two telocentric and the
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TABLE 3 | Repeats used as probes in FISH experiments on N. sativa, N. damascena and N. bucharica chromosomes.

Repeat Cluster Repeat type Monomer bp Genome proportion% PCR Primers (5′ → 3′)

Ns-Sat1 CL21 Satellite 178 0.52 F: AAGATCGCGTAAAACAGACGA
R: TCAAAAACTTGAACGAATTCAAAA

Ns-Sat2 CL144 Satellite 178 0.013 F: ATCCGCTCGTTCGTCCATTT
R: TCATTCGCGTAAAACTCGTGA

Ns-CL6 CL6 Transposon 6,465 2.3 F: AGGCAAACCAGGTACCACTG
R: TTGGCAAATGGATGTCAAGA

Nd-Sat1 CL23 Satellite 178 0.52 F: CATGTAATGACAAACGGATCG
R: TCAAAGGTTTGCTAATTTTCCA

Nb-Sat1 CL64 Satellite 21 0.42 F: TGGGGTTGGCAAGGCATG
R: GGCCATGCCTTGCCAACC

Nb-Sat2 CL144 Satellite 159 0.034 F: GACAATTCGGGTCTTCGC
R: GTTTCTTCACTATGGTCCCCC

Nb-Sat3 CL21 Satellite 135 0.86 F: TGAATTTGCAATAAACACCAAG
R: CTTGCCATTTCATGACTTTCG

Nb-Sat4 CL129 Satellite 39 0.077 F: TTGCAAGTTCTTGAGTTTCT
R: TGCAAGAAACTCAAGAACTT

Repeat type, monomer length, their proportion in genome, and primer pairs used for their amplification are indicated.
Other information including monomer sequences and FISH conditions are presented in Supplementary Table 3.

submetacentric chromosomes. Nb-Sat2 revealed signals on the
distal ends of the long arm of the telocentric chromosomes
(Figure 4G), while Nb-Sat3 and Nb-Sat4 showed signals in (peri)
centromeric positions of all chromosomes (Figures 1A, 4H).
It seems that at least in some of the chromosomes Nb-Sat3 is
extended toward the inner part of the centomeres compared with
Nb-Sat4 (arrows in Figure 4H). FISH with the Arabidopsis-type
telomere repeat (TTTAGGG)n detected corresponding signals
exclusively at both ends of all Nigella chromosomes (Figure 4I).

The genome-wide repetitive analysis in the three Nigella
species indicated that retroelements, especially Ty_gypsy LTRs,
are the main contributors to the relatively large genomes of
Nigella. On the contrary, the abundance and diversity of satellite
DNAs are relatively low. Most of these satellites locate at
(peri)centromeric regions. The (peri)centromeric satellite repeats
of N. sativa (Ns-Sat1), N. damascena (Nd-Sat1) and N. bucharica
(Nb-Sat3 and Nb-Sat4) are highly distinct and cross-hybridized
only to the closely related genomes as indicated in Figure 1.

DISCUSSION

We studied the phylogenetic relationship and karyotype structure
of seven Nigella species by using sequences of ITS and rbcL
gene, analyzing the repeatome and FISH mapping. Except for
N. sativa and N. damascena, whose genome sizes were previously
reported, the genome size of the other species was estimated for
the first time. N. orientalis, N. damascena, and N. sativa have
roughly 1.5 times larger genomes than N. arvensis, N. hispanica,
N. bucharica and N. integrifolia. The DNA C-values estimated
for N. sativa and N. damascena were quite similar to the
previous estimations based on Feulgen densitometry [10.30 and
10.58 Gbp/1C for N. damascena (Evans et al., 1972; Olszewska
and Osiecka, 1983) and 10.39 Gbp/1C for N. sativa (Bennett
and Smith, 1976). The slight differences might be explained
by the different methods used (Feulgen densitometry versus

flow cytometry) and/or the different reference standards used
(P. sativum versus Allium cepa).

In spite of the smaller genome sizes, N. bucharica and
N. integrifolia have with a genome formula of 2n = 2x = 14 one
additional chromosome pair more than the other species (basic
chromosome number x = 6). A previous study using Giemsa
C-banding on Nigella chromosomes (Gilot-Delhalle et al., 1976)
suggested that the telocentric chromosomes originated from
a centromeric fission event of a metacentric chromosome.
Subsequent structural rearrangements might have formed the
submetacentric chromosome in N. bucharica and N. integrifolia
(Gilot-Delhalle et al., 1976).

The morphology of the studied species is rather similar except
for N. bucharica and N. integrifolia, which have distinct flower
and leaf morphology (Supplementary Figure 3). Both species, in
turn, show substantial morphological, karyological and sequence
similarities, which raises the question if they should be classified
as varieties of a single species instead of two independent species.

N. sativa, N. damascena, N. arvensis, N. hispanica and
N. orientalis showed similar karyotypes in terms of chromosome
numbers and morphology, but the patterns of 5S and
45S rDNA loci differ between species, suggesting that the
evolution of these species was accompanied by chromosomal
segment rearrangements such as inversions, translocations and
Robertsonian fission or mobility of rDNA loci without noticeably
affecting the arm ratios. Similarly, in a cytogenetic survey
of the Ranunculaceae, the number, location and intensity of
rDNA signals varied between various species of Pulsatilla and
Anemone genera. Most of the 45S rDNA loci in these genus
are located at distal regions of the short arms of acrocentric
chromosomes, while 5S rDNA loci don’t show preferential
chromosomal positions. Such a rDNA mobility might be the
result of homologous and non-homologous recombination
mechanisms and retroelement-mediated rDNA transpositions
(Mlinarec et al., 2006, 2012; Sramkó et al., 2019). Variation in the
number and position of rDNA loci has also been reported among
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FIGURE 4 | Chromosomal distribution of the identified high-copy repeats of Nigella. FISH results using the identified satellite repeats and Arabidopsis-type telomeric
repeat probe (TTTAGGG)n probes on mitotic metaphase chromosomes of N. sativa (A,B,I), N. damascena (C), N. arvensis (D), N. hispanica (E), N. orientalis (F) and
N. bucharica (G,H). The Ns-CL6 (red) repetitive sequence is dispersed throughout the genome (A), while the satellite sequences are mostly (peri)centromeric. Scale
bar 10 µm.

other species such as e.g., legumes (Abirached-Darmency et al.,
2005). rDNA might be moved by transposition, as previously
shown in Allium species and their hybrids (Schubert, 1984).
In fact, rDNA sequences are conserved, but their chromosomal
distribution is a source of species differentiation and evolution
(Raskina et al., 2008). In Nigella, the number of 45 rDNA
loci varied from three to ten. However, no positive correlation
between the loci number and genome size was observed.
While the three larger genomes (N. sativa, N. damascena and
N. orientalis) all showed only three loci, the highest number
was found in N. hispanica which has a rather small genome.
Also in diploid lineages of Brassicaceae (Hasterok et al., 2006),
Cyperaceae (Da Silva et al., 2010), Iris (Martinez et al., 2010),
and Rosaceae (Mishima et al., 2002) no positive correlation

exists between the number of rDNA arrays and the number of
chromosomes or genome size.

The presence of additional 45S rDNA loci in N. damascena
(4 loci), N. arvensis (4 loci) and N. hispanica (10 loci) compared
with N. sativa, N. orientalis, N. integrifolia and N. bucharica (all
3 loci) may be due to independent formation of a separate 45S
rDNA array after the divergence of these species. N. hispanica
also showed hemizygosity for one 45S rDNA site. rDNA site
hemizygosity has been reported in other genera such as Anacyclus
(Rosato et al., 2017), Vicia (Li et al., 2001), Chrysanthemum
(He et al., 2021) and Lilium (Wang et al., 2012). In most cases
such a heterozygosity is related to hybridization events. The
reason for the detected hemizygous locus in Nigella remains to be
elucidated. Similarly, it is not clear if this heterozygosity is only
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occurring in the investigated genotype or if it is a general feature
of N. hispanica.

Overall, 45S rDNA composed about 0.38, 0.72, and 0.65%
of the N. damascena, N. sativa and N. bucharica genomes,
respectively (Table 2). The relative amount and size of rDNA
units in the nuclear genome can be highly variable, and the rDNA
copy number can vary between 150 to 26,048 copies in plants
(Prokopowich et al., 2003; Wicke et al., 2011).

In Nigella, the majority (47.91% in N. sativa, 39.47% in
N. damascena and 51.25% in N. bucharica) of the repeats are
retrotransposons (class I transposons), while DNA transposons
(class II transposons) contributed to only 1.13, 0.62, and 1.19% of
the genomes. Although the three Nigella species possess rather
large genomes of about 7.4 to 12.4 Gb/C, only one to four
satellite repeats were found in these species, and no correlation
was found between the number of satellites and the size of the
genome in the studied Nigella species. Interestingly, N. bucharica
and N. integrifolia with smaller genome sizes contained a
higher number of satellite sequences than the larger genome of
N. damascena. The most abundant satellites in the three species
were found in (peri)centromeric position on all chromosomes.

Ns-CL6 is a retrotransposon distributed over all chromosomes
of N. sativa although with a reduced density at distal regions.
The reduced frequency of Ns-CL6 at chromosome ends could
be explained by the potential enrichment of coding sequences in
this region. In many plant species, especially well investigated in
cereals, the terminal and subterminal chromosomal regions are
often enriched in coding sequences1.

The rDNA probes alone or in combination with chromosome-
specific satellite sequences are useful markers to identify
individual chromosomes. While in N. damascena, N. hispanica
and N. orientalis the 5S rDNA and 45S rDNA were sufficient
to characterize the complete chromosome set, in N. sativa
additionally NS-Sat2 was required. In N. arvensis 4 out of 6 and
in N. integrifolia and N. bucharica 2 out of 7 chromosome pairs
could be unequivocally identified by using the rDNA probes.

Sequence alignment indicated that the Ns-Sat1, Ns-Sat2 and
Nd-Sat1 (peri)centromeric repeats are similar, suggesting they
might share a common origin. However, the retained identity
between Ns-Sat1 and Nd-Sat1 (78.8%, Supplementary Figure 2)
was not enough for each of them to cross-hybridize on the other
species, indicating their sequence divergence after specification.
Ns-Sat1, Ns-Sat2 and Nd-Sat1 are all 178 bp long AT-rich satellite
repeats. Due to their localization patterns and their length
similarity with described centromeric satellites in other species
such as Arabidopsis (Copenhaver et al., 1999), human (Choo et al.,
1991) and the fish Pungitius pungitius (Varadharajan et al., 2019)
it is tempting to speculate that these sequences indeed represent
centromeric repeats of Nigella, although a functional proof is still
missing. The 178 bp satellite unit is consistent with the 150–
180 bp length DNA required to wrap around a single nucleosome
(Henikoff et al., 2001). However, the (peri)centromeric satellites
in N. bucharica and N. integrifolia (Nb-Sat3 and Nb-Sat4) have a
deviating monomer length of only 135 and 39 bp.

1https://plants.ensembl.org/index.html

Our molecular phylogeny using rbcL and ITS1-5.8S-ITS2
sequences grouped the seven Nigella species into three different
clades, two groups with x = 6 and the third one with x = 7. These
results are in agreement with the morphological classifications
reported earlier (Zohary, 1983: Yao et al., 2019). Significant
variation observed in the sites and numbers of 45S rDNA loci
might be involved in shaping Nigella karyotypes. The more
asymmetric karyotype of the third group with additional telo-
or subtelocentric chromosomes and the presence of terminal
45S rDNA sites in almost all telo- and subtelocentrics suggest
that chromosomal rearrangements might play a role in changing
the basic chromosome number (dysploidy) in the genus Nigella.
DNA breakage and repair, rDNA mobility and Robertsonian
fusions/fissions are suggested as the possible mechanisms during
this process (Sramkó et al., 2019).

CONCLUSION

Overall, our analyses based on the molecular phylogeny,
DNA C-value analysis, genomic repeat composition and FISH-
karyotyping shed light on the genome organization and evolution
of seven Nigella species and supports a classification into three
different groups of which two are closer to each other than the
third one. The two phylogenetically closer groups (N. sativa,
N. arvensis and N. hispanica and accordingly N. damascena and
N. orientalis) share the same basic chromosome number (x = 6),
and a similar karyotype formula. N. integrifolia and N. bucharica,
in contrast, differ with x = 7 from the other five species. The
repeatome analysis demonstrated that the genomes of Nigella
species increased in size due to the preferential accumulation
of Ty3_gypsy retroelements, especially of the Ty3_gypsy-Tekay
lineage. In contrast, satellite repeats comprise only a small
proportion of the Nigella genomes and are predominantly located
at the (peri)centromeric regions. These sequences are only cross-
hybridizing within the closely related species and support the
proposed grouping. Surprisingly, despite the low total genome
proportion of 5S and 45S rDNA, their diverse loci number and
patterns on chromosomes of the analyzed species indicated the
potential importance of rDNAs in driving the Nigella genome
divergence and specification. Additionally, 5S and 45S rDNAs
can be further applied as cytogenetic markers for chromosome
discrimination and karyotype analysis in the genus Nigella.
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