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In view of the differences in appearance and the complex backgrounds of crop diseases, 
automatic identification of field diseases is an extremely challenging topic in smart 
agriculture. To address this challenge, a popular approach is to design a Deep Convolutional 
Neural Network (DCNN) model that extracts visual disease features in the images and 
then identifies the diseases based on the extracted features. This approach performs well 
under simple background conditions, but has low accuracy and poor robustness under 
complex backgrounds. In this paper, an end-to-end disease identification model composed 
of a disease-spot region detector and a disease classifier (YOLOv5s + BiCMT) was 
proposed. Specifically, the YOLOv5s network was used to detect the disease-spot regions 
so as to provide a regional attention mechanism to facilitate the disease identification task 
of the classifier. For the classifier, a Bidirectional Cross-Modal Transformer (BiCMT) model 
combining the image and text modal information was constructed, which utilizes the 
correlation and complementarity between the features of the two modalities to achieve 
the fusion and recognition of disease features. Meanwhile, the problem of inconsistent 
lengths among different modal data sequences was solved. Eventually, the YOLOv5s + BiCMT 
model achieved the optimal results on a small dataset. Its Accuracy, Precision, Sensitivity, 
and Specificity reached 99.23, 97.37, 97.54, and 99.54%, respectively. This paper proves 
that the bidirectional cross-modal feature fusion by combining disease images and texts 
is an effective method to identify vegetable diseases in field environments.

Keywords: cross-modal fusion, transformer, few-shot, complex background, disease identification

INTRODUCTION

Vegetables are able to provide a variety of vitamins and minerals that are indispensable for 
the human body, and are one of the essential foods in our daily diet. In recent years, the 
varieties and frequency of vegetable diseases have continued to increase worldwide with the 
increase of the vegetable planting area and species. Particularly, due to the changes of global 
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climate and farming system, vegetable diseases have exhibited 
the characteristics of wide distribution, high disaster frequency 
and strong suddenness. The spread of diseases has seriously 
affected the quality and yield of vegetables, not only causing 
economic losses of billions of dollars each year, but also bringing 
potential threats to food safety. Therefore, strengthening the 
disease control measures has become the key to ensuring high 
yield and high quality of vegetable products.

The premise of disease control is to establish the capability 
of identifying diseases in a timely and accurate manner. After 
vegetable leaves are infected with viruses, fungi or bacteria, 
the external morphological characteristics and internal 
physiological structure of the infected parts will be  subjected 
to varied changes such as external deformation, fading, curling, 
rot, discoloration, internal moisture, and pigment content 
changes. Due to the ambiguity, complexity and similarity of 
features among different diseases, most of the vegetable growers 
have difficulty in accurately identifying the disease variety. 
Consequently, inaccurate disease diagnosis can easily lead to 
blind application of pesticides, thus missing the best timing 
for prevention and treatment. Therefore, how to quickly, easily 
and accurately identify diseases has become an urgent issue 
to be  solved in vegetable production.

In recent years, the advance of computing capacity and the 
opening of large-scale image datasets have greatly promoted 
the development of deep learning technology in the field of 
computer vision recognition. Visual models of various 
architectures based on the core of convolutional computing 
have been emerging from time to time, and have been applied 
in a range of fields with remarkable results. On such a basis, 
some researchers introduced the deep learning-based vision 
technology into the research of crop disease identification from 
three directions, i.e., image classification, target detection, and 
semantic segmentation, and achieved success to a certain extent.

Disease identification is essentially an image classification 
task, which is to determine the variety of the disease by building 
an end-to-end deep learning model to learn the global features 
of the disease in the images. Dhaka et  al. (2021) presented a 
comparison of pre-processing techniques, CNN models, 
frameworks, and optimization techniques using leaf images as 
datasets for plant disease detection and classification. Kawasaki 
et  al. (2015) contributed to the earliest attempt of disease 
identification by using the CNN model. They trained the CNN 
model based on 800 cucumber disease images of healthy leaves 
and two varieties of diseased leaves and achieved an accuracy 
of 94.9%. Mohanty et  al. (2016) compared the performance 
of AlexNet and GoogleNet on the PlantVillage dataset and 
found that the average recognition accuracy of GoogleNet was 
up to 99.34%. In order to further improve the identification 
performance in complex field environments, Ramcharan et  al. 
(2017) captured 2,756 cassava leaf images in the field environment 
and applied Inception v3 to identify three varieties of diseases 
and two types of insect pests; the average accuracy reached 
93%. Zhou et  al. (2021) adopted progressive learning to guide 
the model to focus on key feature regions in the disease images; 
eventually, they achieved a disease identification accuracy of 
98.26% in complex backgrounds. Kundu et al. (2021) developed 

a pearl millet disease detection and classification framework 
based on the Internet of things and deep transfer learning 
and reported a classification accuracy of 98.78%.

Unlike the image classification model, the target detection 
model can not only determine the variety of the disease but 
also further locate the regions where the disease occurs by 
learning the local features in disease images. Fuentes et  al. 
(2017) applied the detection framework of Faster-
RCNN+VGGNet/ResNet to localize the disease-spot regions 
of tomato. On a dataset containing 10 varieties of diseases, 
the mean average precision (mAP) reached 85.98%. Since then, 
based on the Faster-RCNN framework, researchers have carried 
out a series of disease detection studies on different crops by 
modifying the feature extraction module of the backbone 
network, and achieved satisfactory results (Hong et  al., 2018; 
Wang et al., 2019; Hu et al., 2021; Zhang et al., 2021). Different 
from the two-stage detection models mentioned above, one-stage 
detection models can directly predict the category of objects 
at each position on the feature map without going through 
the region proposing stage of the two-stage model. Therefore, 
one-stage-based detection models have also been widely used 
in disease identification. Maski and Thondiyath (2021) proposed 
the tiny-YOLOv4 algorithm for detecting plant diseases using 
mobile agricultural robots, which achieved an mAP up to 
99.9% on the papaya ringspot disease. Liu and Wang (2020) 
proposed an early identification method targeting at the tomato 
brown spot disease based on the MobileNetv2 YOLOv3 
lightweight model. Its F1 score and AP value were both higher 
than those of Faster-RCNN and SSD models.

Semantic segmentation is to utilize pixel-level features to 
achieve high-precision separation between disease-spot regions 
and healthy-leaf regions. The disease-spot regions obtained 
from semantic segmentation can facilitate the classifier to 
identify the disease category. In addition, the severity of the 
disease can be estimated by calculating the ratio of the disease-
spot area to the total leaf area. The commonly-used disease 
image semantic segmentation methods include the fully 
convolutional segmentation model (Marino et al., 2019; Wspanialy 
and Moussa, 2020), the encoder-decoder segmentation model 
(Agarwal et  al., 2021; Wu et  al., 2021), and etc.

Aforementioned studies have achieved relative success under 
limited conditions, but disease image recognition in the field 
environment still faces huge challenges. For example, in the 
field environment, factors like the complexity of backgrounds, 
the similarity between features of different diseases, and the 
great variability of symptoms can significantly increase the 
difficulty of disease identification. In general, there are two 
approaches to solve these problems. One is to increase the 
size of training dataset so that the model can fully capture 
the features and variations related to each variety of disease 
(Barbedo, 2018). Due to the complexity and variability of the 
agricultural production environments, large-scale acquisition 
and labeling of high-quality datasets is infeasible not only 
economically but also technically. Another approach is to extract 
high-accuracy visual features from the images by building a 
model that is powerful enough for classification prediction 
(Sladojevic et  al., 2016; Thenmozhi and Reddy, 2019). Aim to 
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make the model pay more attention to the key regions of the 
disease in the image and learn the visual features of the disease 
from the key areas, the researchers designed a two-stage target 
detection and recognition network. The main regions in the 
image containing lesions are first located by the detector, and 
then these regions are classified by the classifier (Arsenovic 
et al., 2019; Syed-Ab-Rahman et al., 2022). However, in practice, 
it is found that there are still limitations in disease identification 
relying solely on the visual features of leaves.

In this context, the crop disease recognition models based 
on multimodal learning of images and texts have drawn 
increasing attention recently. By utilizing the correlation and 
complementarity between different modalities, multimodal 
learning can more accurately identify the disease category. The 
current mainstream multimodal disease identification methods 
can be  roughly divided into two types. The first is a simple 
probability fusion method, which inputs the data of two 
modalities into their respective classification models to generate 
the predicted probabilities, and then combines the predicted 
probabilities of the two modalities to output the final predicted 
category. In this method, the data of the two modalities is 
independent of each other during the feature extraction process, 
and what are fused are only their classification probabilities. 
The other one is the feature fusion method, which inputs the 
data of two modalities into the same model to realize the 
fusion of the two modalities during the feature learning process. 
For example, Zhao et al. (2020) added the text modal information 
(text: geospatial, seasonal, and weather data) into the disease 
identification model. By encoding the contextual information 
of the text modality and fusing it with advanced visual features, 
this method delivered a significantly better performance in 
crop disease identification than the popular CNN architectures 
AlexNet and VGG16. Tsai et  al. (2019) proposed to use 
Multimodal Transformer for multimodal feature fusion. The 
core of this model was a cross-attention layer designed for 
bidirectional feature fusion, which was able to focus on the 
interactions between multimodal sequences spanning different 
time steps and to potentially map from one modality to another. 
The author’s comprehensive experiment on multimodal sequences 
suggested that this method had great advantages over the 
existing methods. Inspired by the multimodal feature fusion 
method, in the present study, the text modal information was 
supplemented into the disease identification model so as to 
construct a Cross-Modal Transformer model that enables the 
bidirectional fusion of images and texts. The main contributions 
of this paper are summarized as follows:

 1. Aiming at the challenge of vegetable disease diagnosis in 
the field environment, a data enhancement method was 
proposed by supplementing disease images with text 
descriptions in order to improve the disease identification 
performance of the model.

 2. An end-to-end model combining the disease-spot region 
detector and the disease classifier was proposed. This model 
allows the classifier to identify the disease category based 
on the detected disease-spot regions, and its performance 
was superior to traditional methods.

 3. In the disease classification part, a Bidirectional Cross-Modal 
Transformer Model based on the fusion of image and text 
modalities was constructed, which further improved the 
accuracy and robustness of disease identification.

MATERIALS AND METHODS

Data Acquisition
The data used in this study was collected from the Xiaotangshan 
National Precision Agriculture Demonstration Base. The vegetable 
images were subjected to a range of interference factors such 
as similar leaves, ground film, soil, and irrigation pipes, making 
the backgrounds extremely complex. In view of the influence 
of the changes in light intensity and illumination angle throughout 
the day on the accuracy of disease identification, the images 
were captured in three time periods, i.e., morning (7:00–8:00), 
noon (11:00–12:00), and evening (17:00–18:00). The dataset 
consisted of six varieties of diseases (i.e., tomato powdery 
mildew, tomato early blight, tomato virus disease, cucumber 
powdery mildew, cucumber virus disease, and cucumber downy 
mildew), a total of 1,323 images with 1,323 text records. The 
whole dataset was divided into the training set, the validation 
set and the test set according to the ratio of 7:2:1 (see Table  1 
for the specific number of samples in each set). The text records 
were natural language descriptions of the disease symptoms 
shown in the images provided by the growers. Each image 
and its corresponding text formed an “image-text pair,” as 
shown in Table  2.

Data Preprocessing
The image data used for the first-stage detection task was 
labeled using LabelImg to mark the target regions. For each 
image, an XML file containing the target category and the 
coordinate information was generated. Then the labeled images 
were enhanced for brightness, contrast, and color (see Table  3 
for the specific number of images for each variety of disease 
after enhancement).

For the purpose of Chinese text encoding, the Chinese 
disease descriptions were converted into fixed-length text 

TABLE 1 | The number of samples in each set.

Disease class
Number of 

training images

Number of 
validation 

images

Number of 
testing images

Tomato powdery 
mildew

112 31 15

Tomato early blight 200 57 28
Tomato virus 
disease

169 48 24

Cucumber 
powdery mildew

120 34 17

Cucumber virus 
disease

169 48 24

Cucumber downy 
mildew

160 45 22
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vectorized encoding sequences by loading the BERT Chinese 
pre-training model. In this study, the BERT Chinese pre-training 
model refers to the BERT-wwm, Chinese, base model officially 
provided by Google, which is trained by the Chinese Wikipedia 
corpus. The Transformer coding layers of the model were 
stacked for 12 layers, and the dimension of hidden layers 
was 768.

MODEL CONSTRUCTION

The model proposed in this paper was composed of two stages, 
i.e., the disease-spot region detector and the disease classifier, 
which were constructed through two separate training stages. 
The disease-spot region detector allows the model to focus 

on the disease-spot regions in the images so as to extract 
fine-grained disease features while ignoring the interference 
of factors such as complex backgrounds and irrelevant noises 
on disease classification. For the first stage of disease-spot 
region detection, YOLOv5s was chosen as the detection network. 
For the second stage of disease classification, a Bidirectional 
Cross-Modal Transformer (BiCMT) network was designed to 
learn the correlation and complementarity between the image 
and text modal features through bidirectional cross-modal 
feature fusion. Owning to more comprehensive and apparent 
classification features, the performance of the classifier was 
greatly improved. The overall network structure of the model 
is shown in Figure  1.

Fine-Grained Disease-Spot Region 
Detection
In the first stage, a fine-grained disease-spot region detector 
was trained for the purpose of extracting discriminative disease-
spot regions from the original images. After comparing the 
current mainstream target detection models, YOLOv5s, which 
delivered the best performance on the self-collected disease 
dataset, was chosen as the detector network. Its accuracy in 
detecting disease-spot regions reached 94%, able to meet the 
actual detection requirements.

Given the original image P0  as the input of the detector, 
the images containing the disease-spot regions were obtained 

TABLE 2 | Examples of the image-text pair.

Disease category Text description Disease image Disease category Text description Disease image

Tomato powdery 
mildew

Some white powdery 
spots scatter on the 
front of tomato leaves.

Tomato early blight Some yellow-brown 
sunken ring spots are 
observed on the front of 
tomato leaves.

Tomato virus disease Numerous water-
soaked chlorotic spots 
are observed on 
tomato leaves.

Cucumber powdery 
mildew

Some white powdery 
spots scatter on cucumber 
leaves.

Cucumber virus 
disease

Numerous chlorotic 
folded areas are 
observed on cucumber 
leaves.

Cucumber downy 
mildew

Yellow-brown irregular 
shaped spots scatter on 
the front of cucumber 
leaves.

TABLE 3 | The specific number of images in the dataset.

Disease class
Number of original 

images
Number of enhanced 

images

Tomato powdery mildew 158 474
Tomato early blight 285 444
Tomato virus disease 241 482
Cucumber powdery mildew 171 513
Cucumber virus disease 241 482
Cucumber downy mildew 227 420
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as the output of the detection network P P Pn1 2, , ,[ ] , as shown 
in Equation (1).

 P P P f Pn1 2 0, , ,[ ] = ( )det  (1)

where ( )det f  refers to the disease-spot region detector, 
and n refers to the number of detected images containing 
disease-spot regions.

On such a basis, the output of the detector was further 
improved so that it could be used as the input of the classifier. 
The detected images containing disease-spot regions were sorted 
in descending order according to the confidence of the detector. 
The three images with the highest confidence plus 1 original 
image were selected and scaled to 112 × 112 pixels. Then, the 
four images were stitched into a composite image of 224 × 224 
pixels. The working principle of the fine-grained disease-spot 
region detector is shown in Figure  2. For the case where the 
detected images were less than 3, the shortage would 
be  supplemented by randomly enhancing the original image 
(e.g., rotation, cropping, deformation, and color dithering). For 
the case where no disease-spot region was detected, the original 
image would be  directly scaled to 224 × 224 pixels for 
disease classification.

Disease Classification
In the second stage, the fusion of image and text modal 
information was used for disease classification. For the image 
modality, the composite image formed by the fine-grained 
images containing disease-spot regions and the original image 
was taken as the input of the classifier. The composite image 
could provide more comprehensive global features and fine-
grained local features of the disease for the classifier. For the 
text modality, BERT-wwm was used to vectorize the text 
descriptions. The image modality contains the fine-grained 
visual feature information of the disease, while the text modality 

contains the textual descriptions of the key salient features of 
the disease. It allows the classifier to learn the cross-modal 
feature mapping matrix of both image and text modal features 
through the cross-modal attention layer to establish the 
correlation and complementarity between the two modalities. 
This approach can obtain better latent feature space embedding, 
thereby improving the accuracy and robustness of the classifier.

In this paper, a BiCMT classifier was proposed for modeling 
unaligned bimodal data sequences, which learns the bidirectional 
cross-modal mapping sequences from the images and texts by 
means of feed-forward fusion. Specifically, each cross-modal 
transformer layer iteratively reinforces the target modality using 
the low-level features from the source modality by learning 
the attention across features of two modalities. Therefore, the 
BiCMT model is built on the two cross-modal mapping branches 
by stacking multiple cross-modal transformer layers, and finally, 
the feature vectors of the two cross-modal branches are mapped 
to a classification layer to predict the disease category. Each 
cross-modal transformer layer is composed of a cross-modal 
attention sub-layer and a feed-forward neural network sub-layer, 
and each sub-layer is normalized with residual connections. 
The core of this model is the construction of cross-modal 
attention sub-layers. In the following sections “Cross-Modal 
Attention”, “Cross-Modal Transformer,” and “Classification 
Prediction,” each important component of the model will 
be  introduced in detail by taking the mapping from the image 
modality to the text modality P T→( )  as an example, and 
vice versa. The overall structure of Cross-Modal Transformer 
is shown in Figure  3.

Cross-Modal Attention
Let α T( )  and β P( )  represent two modalities, which are 
expressed by two unaligned sequences as X L d

α
α ×  and 

X L d
β

β × , respectively ( L  and d  refer to the sequence 
length and feature dimension, respectively). Inspired by machine 
translation, it is assumed that the fusion of cross-modal 
information can provide a potential adaptability across different 

FIGURE 1 | The overall network structure. The input of the model is the “image-text pair.” The detector is YOLOv5s, which is used to detect the disease-spot 
regions in the images. For text descriptions, Token Embeddings are obtained by loading the BERT Chinese pre-training model. BiCMT is a Bidirectional Cross-Modal 
Transformer; the two MLP heads of the last BiCMT layer are extracted for classification purpose.
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modalities. For example, α β→  and β α→  represent the 
bidirectional feature mapping relations between the image 
and text modalities. The method proposed in this paper aims 
to realize the feature fusion between two different modalities, 
i.e., disease images and description texts. By assigning different 

attention weights to the feature vectors, the feature mapping 
relation between the source modality β  and the target 
modality α  can be  established so that the information of 
these two modalities can be  mapped to a strong, unified 
latent feature space.

FIGURE 2 | The working principle of fine-grained disease-spot region detection.

B

A

FIGURE 3 | The overall structure of Cross-Modal Transformer.
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Define three attribute values as follows: Querys as 
Q X WQα α α

= , Keys as K X WKβ β β
= , Values as V X WVβ β β

= , 
where W W WQ K V

d d
α β β
, ,{ }∈ ×  represents the weight values. 

The latent adaptability mapping from β  to α  can be expressed 
by the cross-modal attention Y L d

α
α∈ × , as shown in 

Equation (2):

 

( ),

max

max α β

β

α β α α β

α β
β

α β
β

→
Τ

Τ Τ

=

 
=  

  
 
 =
  

Q K
V

Y CM X X

Q K
soft V

d

X W W X
soft X W

d
 

(2)

The sequence length of Yα  is expressed as Lα , and the 
feature dimension is expressed as .d  ( )β α→ CM  represents 
the cross-modal attention function from the original modality 
to the target modality. d  is the scaling factor. ( )softmax   
is used to compute the score matrix between two modal feature 
maps, ( )softmax α β×∈ 

L L . At last, the vector representation 
after the fusion of cross-modal information can be  obtained 
as the weighted summation of the score matrix and Vβ , as 
shown in Figure  3A.

Cross-Modal Transformer
Let X P T

L dP T P T
,

, ,
{ }

×{ } { }  represent the sequence length and feature 
dimension of the image and text modalities. In order to maintain 
the contextual relations for the vectorized encoded sequences, 
1D  position embeddings were introduced for the two modal 
vectors, respectively.

The Cross-Modal Transformer was designed based on Cross-
Modal Attention, so that the information of the source modality 
could be  mapped to the target modality. The classifier was 
stacked for six Cross-Modal Transformer layers, and each layer 
is composed of a Cross-Modal Attention sub-layer and a feed-
forward neural network sub-layer. Each sub-layer is normalized 
with residual connections, as shown in Figure  3B. The Cross-
Modal Attention sublayers were configured as mul =12  heads 
to allow the model to simultaneously take care of features 
from multiple aspects, and the dimension was fixed as d = 768  
( d should be  a number divisible by mul ), as shown in 
Equation (3).

 

[ ] [ ]



[ ] [ ] [ ]( ) [ ]( )( ) [ ]( )
[ ] [ ]



[ ]


[ ]

0 0

, 1 0 1,
→

− −
→ → → →

→ →→ →

=

= +

    = +        

P T T
i i mul i i
P T P T P T P P T

i ii i
P T P TP T P T

Z

NZ

Z Z

Z

CM LN Z L Z LN Z

Z f LN LN
 

(3)

( )→ P Tf  represents the feed-forward neural network 
sublayer;  i  represents the i-th Cross-Modal Transformer layer, 
i D∈ ; mul  is the number of heads in the Cross-Modal 
Attention; ( )LN  refers to layer normalization.

Classification Prediction
In the final classification prediction layer, ZP T→  and ZT→P  
extract the cross-modal features from two different directions, 
respectively. The MLP head of each cross-modal sequence is 
taken as the classification feature sequence, i.e., ZP T

D head

→
[ ]  and 

ZT P
D head

→
[ ] . At last, the output probabilities of the two cross-

modal classifiers are summed up to further increase the difference 
between the high-probability classification value and the 
low-probability classification value, thereby increasing the 
classification confidence of the Bidirectional Cross-Modal 
Classifier. The Bidirectional Cross-Modal Classifier can 
be  expressed as Equation (4):

 
Pred soft f Z f Zcls cls P T

D
cls T P

D
head head

= 





 + ( )






→

[ ]
→max

  
(4)

Where, Predcls  is the predicted category output by the 
classifier; ( )softmax   refers to the softmax activation function; 

( )clsf  represents the fully connected layer; Z T
D head

P→
[ ] and ZT

D head

→
[ ]

P  
represent the cross-modal features learned by the Cross-Modal 
Transformer in the D layer.

RESULTS AND DISCUSSIONS

The experiment was carried out in the Ubuntu20.04 environment 
(processor: Intel Core i9-10920X @ 3.5GHz; memory: 64G; 
graphics card: NVIDIA GeForce RTX 3090 24G). The deep 
learning frameworks Pytorch1.7, Python3.8 and Cuda11.0 were 
used for model building. In the experiment, the batch size 
was set to 32, and the epoch of all network models was 
set to 150.

Evaluation Indicators
Four indicators, i.e., Accuracy, Precision, Sensitivity and 
Specificity, were used to measure the model performance, as 
shown in Equations (5–8).

  
Accuracy TP TN

TP TN FP FN
=

+
+ + +

×100%
 

(5)

  
Precision TP

TP FP
=

+
×100%

 
(6)

 
Sensitivity TP

TP FN
=

+
×100%

  
(7)

 
Specificity TN

FP TN
=

+
×100%

  
(8)
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TP  refers to the number of positive samples that are correctly 
classified; TN  refers to the number of negative samples that 
are correctly classified; FP  refers to the number of positive 
samples that are mistakenly classified; FN  refers to the number 
of negative samples that are mistakenly classified.

Comparison of Disease-Spot Region 
Detectors
In this section, five models of the YOLOv5 series (i.e., YOLOv5l, 
YOLOv5m, YOLOv5n, YOLOv5s, and YOLOv5x) were chosen 
for comparison. The depth and width of their backbone networks 
were set to different values in order to adapt to the detection 
tasks of different application scenarios. To improve the 
performance of the detection models, a pre-trained model 
trained on the ImageNet dataset was loaded during the training 
process. The batch size of the experiment was set to 16, and 
the confidence level was set to 0.25. All the disease images 
were uniformly resized to 640 × 640 pixels. The epoch was set 
to 300. The experimental results are shown in Table  4.

The experimental results show that YOLOv5s had the highest 
Accuracy, Recall, F1, and mAP among all the models, which 
were 92.3, 91.4, 91.9, and 94.3%, respectively. Since there were 
only six disease categories in the dataset and the color, texture 
and shape of each disease were obvious, YOLOv5s is a suitable 
choice for this task as it has a smaller model size. Other 
YOLOv5 models with larger depth and width are prone to 
the overfitting problem. Therefore, YOLOv5s can well meet 
the actual detection needs of the first stage.

Comparison of Disease Identification
In order to demonstrate the superiority of the proposed method, 
the candidate models were compared from three aspects, namely 
image modal recognition alone, text modal recognition alone, 
and cross-modal fusion recognition. The optimizer for all 
comparative experiments adopted SGD, with a learning 
rate of 1 4

e
−
.

Identification by Image Modality Alone
In this section, VGG16, AlexNet, ResNet50, ResNet101, 
DenseNet121, and ViT (Vision Transformer) were chosen as 
the image control networks. Two disease classification methods 
were compared. The first method was to directly identify the 
disease category from original images. The second method 
was to use the YOLOv5s model to extract the disease-spot 

regions from the original images first and then input the 
composite image containing both the local (images containing 
disease-spot regions) and global (original image) information 
into the control network to identify the disease category. The 
training accuracy and loss curves are shown in Figures  4, 5. 
The experimental results are shown in Table  5.

It can be  seen from Table  5 that the method of using 
YOLOv5s to extract the disease-spot regions first before disease 
classification achieved improvement in all the four indicators 
(i.e., Accuracy, Precision, Sensitivity, and Specificity) to varying 
degrees, compared with the direct classification method. It proves 
that the two-stage method (detector + classifier) is effective for 
the task of disease identification. This can be  explained as 
follows. The detector is responsible for extracting the disease-
spot regions to allow the model to focus on fine-grained local 
disease features in the images. Then, the classifier further extracts 
both the local and global disease features so as to complete 
disease classification. Thus, the detector and classifier are able 
to concentrate on their respective areas of expertise, with the 
former assisting the latter to improve the overall classification 
performance. In the experiment, YOLOv5s + DenseNet121 and 
YOLOv5s + ViT achieved the highest classification accuracy, i.e., 
91.82 and 91.44%, respectively. Transformer shows excellent 
characteristics in cross modal fusion. Therefore, to enable the 
model to learn the correlation and complementarity between 
the information of two modalities so as to further improve 
the classification performance, a BiCMT model that can fuse 
the image and text information was designed by choosing ViT 
as an improved model.

Identification by Text Modality Alone
In this paper, text vectorization was realized by two text 
encoding methods, i.e., the bag-of-words model and the BERT 
Chinese pre-training model. Then, the experiment was carried 
out through the Transformer-based text classification model, 
and the results are shown in Table  6.

It can be  seen from Table  6 that the disease classification 
based on texts reinforced by the BERT Chinese pre-training 
model was superior to the classification reinforced by the 
bag-of-words model in terms of Accuracy, Precision, Sensitivity 
and Specificity. The misclassified text descriptions in the test 
set were usually short in sentence length with vague feature 
descriptions, and this situation was observed in the classification 
models with both encoding methods. The bag-of-words model 
assigns a fixed code to each word in the sentence, regardless 

TABLE 4 | Comparison of different YOLOv5 models.

Models Precision/% Recall/% F1/% mAP/% Model size(MB) GFLOPs FPS

Faster RCNN 66.7 52.8 59.0 59.4 113.6 473.3 23
SSD 56.8 84.4 67.9 68.3 97.7 137.8 51
YOLOv5l 91.6 90.0 90.8 93.4 92.9 108.0 38
YOLOv5m 91.7 90.3 91.0 94.2 42.2 48.1 47
YOLOv5n 91.4 90.2 90.8 93.1 3.9 4.2 54
YOLOv5s 92.3 91.4 91.9 94.3 14.4 15.9 53
YOLOv5x 89.7 91.4 90.5 93.6 173.2 204.3 29
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of its lexical and grammatical conditions, and each word is 
independent of each other. The BERT Chinese pre-training 
model has been optimized for Whole Word Masking training 

aiming at the Chinese language, so that it can consider the 
semantic relation between words. After training on a large 
number of Chinese corpora, each word is mapped to a 

FIGURE 4 | Comparison of accuracy and loss for original image classification.

FIGURE 5 | Comparison of accuracy and loss for detection plus classification.

TABLE 5 | Comparison of image classification results.

Models Accuracy/% Precision/% Sensitivity/% Specificity/%

VGG16 92.56 77.18 75.17 95.56
AlexNet 95.38 85.63 82.17 97.15
ResNet50 95.38 84.01 83.09 97.24
ResNet101 95.64 85.73 80.04 97.38
DenseNet121 96.67 90.40 87.94 97.96
ViT 95.90 86.90 85.95 97.53
YOLOv5s + VGG16 92.82 84.94 75.67 95.64
YOLOv5s + AlexNet 96.67 89.27 88.81 98.03
YOLOv5s + ResNet50 96.15 87.85 86.62 97.69
YOLOv5s + ResNet101 96.15 87.73 86.59 97.66
YOLOv5s + DenseNet121 97.44 91.82 91.24 98.46
YOLOv5s + ViT 96.92 91.44 88.86 98.13
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FIGURE 6 | Comparison of accuracy and loss for cross-modal training.

TABLE 7 | Comparison of cross-modal training results.

Models Accuracy/% Precision/% Sensitivity/% Specificity/%

P2TCMT 97.66 92.07 91.82 98.57
T2PCMT 98.21 94.32 94.34 98.93
BiCMT 99.23 97.37 97.54 99.54

high-dimensional vector, and the relation between two words 
can be  judged by calculating their cosine distance.

Cross-Modal Fusion Identification
When the image modality or text modality was used for disease 
identification alone, the identification results would 
be  unsatisfactory once the disease features were not apparent. 
If the information of the two modalities was used in combination, 
the fusion of the disease features provided by both modalities 
could enhance the expression ability of the model, so as to 
achieve a better identification effect. In this section, three 
comparative experiments were designed, namely, the Cross-
Modal Transformer with the image modality mapping to the 
text modality (P2TCMT), the Cross-Modal Transformer with 
the text modality mapping to the image modality (T2PCMT), 
and the Cross-Modal Transformer with bidirectional mapping 
of the two modalities (BiCMT). In all experiments, the trained 
YOLOv5s model was used as the image input of the classifier. 
The training accuracy and loss curves are shown in Figure  6, 
and the experimental results are shown in Table  7.

As can be  seen from Table  7, BiCMT, the cross-modal 
model with bidirectional mapping between images and texts, 
achieved the best performance. Its Accuracy, Precision, Sensitivity 
and Specificity were 99.23, 97.37, 97.54, and 99.54%, respectively. 
Compared with P2TCMT and T2PCMT (unidirectional cross-
modal feature fusion models), BiCMT combined the advantages 
of the two and could simultaneously learn bidirectional cross-
modal fusion information to enhance the correlation and 
complementarity mapping between the two modalities. Therefore, 
BiCMT showed a better and more stable training loss, allowing 

the model to converge faster and more stably to improve the 
accuracy and robustness of the identification model. The model 
training accuracy and loss are shown in Figure  6.

In the comparative experiments with images, texts and 
cross-modal data as the input respectively, the YOLOv5s + BiCMT 
model based on cross-modal data achieved the best results. 
The confusion matrix of its identification results is shown in 
Figure 7C. From the confusion matrices of the three comparative 
experiments as shown in Figure 7, it can be seen that Figure 7C 
fully exerted the advantages of cross-modal feature fusion and 
outperformed Figures  7A,B.

DISCUSSION

In disease identification, data of a single modality is often 
subjected to information limitation so that it cannot fully 
describe the disease features. Compared with single modal 
data learning, cross-modal data can describe the disease 
features from multiple angles. Therefore, it is possible to 
form information complementation through fused 
representation learning, so as to more comprehensively express 
the disease features to improve the accuracy of disease 

TABLE 6 | Comparison of the results in the text control group.

Models Accuracy/% Precision/% Sensitivity/% Specificity/%

BOW+Transformer 95.38 88.20 85.28 97.19
BERT+Transformer 96.46 91.44 91.26 98.07
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identification. In this paper, the BiCMT model was applied 
to realize the cross-modal fused representation learning 
between the image and text modal data. The results suggest 
that the cross-modal fusion model outperformed all single-
modal identification models. In terms of cross-modal feature 
fusion, Zhao et  al. (2020) and Wang et  al. (2021) applied 
different models to map the disease features in the images 
and texts into independent feature spaces respectively, and 
then fused the probabilities of the identification results of 
each modality. In this paper, the disease features in the 
images and texts were directly mapped to a unified feature 
space so as to realize the feature fusion between cross-modal 
data. A significant advantage of this method is that the 
fused representation learning of cross-modal data can 
be completed in one model, which greatly reduces the training 
complexity compared to the way of separate learning by 
different models.

CONCLUSION

In this paper, a two-stage identification model 
(YOLOv5s + BiCMT) composed of a disease-spot region detector 
and a disease classifier was proposed. First, the detector model 
was used to extract the disease-spot regions. Then, the detected 
images containing the disease-spot regions and the original 
image were stitched into a composite image containing both 
the global and local disease features. Finally, a BiCMT disease 
classifier was constructed to classify the disease based on the 
composite image. BiCMT takes both the image and text modal 
data as the input in order to utilize the correlation and 
complementarity between the image features and text features. 
In the task of vegetable disease identification in complex 
environments, BiCMT achieved better results than either the 
image or text single-modal models. Its Accuracy, Precision, 
Sensitivity and Specificity in the test set reached 99.23, 97.37, 
97.54, and 99.54%, respectively. The disease identification 

method based on the fusion of image and text features has 
shown obvious advantages. However, in an open environment, 
cross-modal data is often unbalanced. Specifically, the 
insufficiency or missing of single-modal information may lead 
to the “inconsistent strength of modal representation” in cross-
modal data, which can affect the final identification results. 
How to alleviate the adverse effects caused by the lack of 
modality is an important issue that needs to be further explored 
in the future.
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