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Plant beneficial bacteria, defined as plant growth-promoting rhizobacteria (PGPR), play 
a crucial role in plants’ growth, stress tolerance and disease prevention. In association 
with the rhizosphere of plants, PGPR facilitate plant growth and development either directly 
or indirectly through multiple mechanisms, including increasing available mineral nutrients, 
moderating phytohormone levels and acting as biocontrol agents of phytopathogens. It 
is generally accepted that the effectiveness of PGPR inoculants is associated with their 
ability to colonize, survive and persist, as well as the complex network of interactions in 
the rhizosphere. Despite the promising plant growth promotion results commonly reported 
and mostly attributed to phytohormones or other organic compounds produced by PGPR 
inoculants, little information is available on the potential mechanisms underlying such 
positive effects via modifying rhizosphere microbial community and soil functionality. In 
this review, we overviewed the effects of PGPR inoculants on rhizosphere microbial ecology 
and soil function, hypothesizing that PGPR may indirectly promote plant growth and health 
via modifying the composition and functioning of rhizosphere microbial community, and 
highlighting the further directions for investigating the role of PGPR in rhizosphere from 
an ecological perspective.

Keywords: PGPR, rhizosphere microbiome, functional diversity, root exudates, chemical diversity, plant–microbe 
interactions

INTRODUCTION

Plants depend upon the beneficial interactions between roots and microorganisms for nutrient 
acquisition, growth promotion and disease control under often rapidly changing environments. 
Plant roots in natural environments are in constant and complex interactions with diverse 
microbes that inhabit in their vicinity (the soil layers of 0.5–4 mm immediately surrounding 
the roots), known as the rhizosphere (Lundberg et  al., 2012; Kuzyakov and Razavi, 2019). The 
rhizosphere is one of the most complex ecosystems on earth, considered as a hotspot of 
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plant-microbe interactions. The plant and rhizosphere 
microbiome have co-evolved for mutual benefits (Eichmann 
et  al., 2021). Plants feed the rhizosphere microbiome with 
carbon and nitrogen metabolites through root exudation. In 
turn, beneficial microbes contribute to the nutrient uptake, 
phytohormone regulation, and biotic and abiotic stress resistance 
of plant.

Rhizosphere-inhabiting bacteria that have the ability to 
facilitate plant growth and health are collectively defined as 
plant growth promoting rhizobacteria (PGPR). PGPR include 
the rhizospheric bacteria that are free-living (e.g., Pseudomonas 
spp., Bacillus spp., Streptomyces spp., Burkholderia spp., 
Azospirillum spp., etc.), and the bacteria that form specific 
symbiotic relationships with plants (e.g., Rhizobium spp. and 
Frankia spp.; Glick, 2012). PGPR can directly improve plant 
growth and development via increasing available mineral 
nutrients (e.g., N, P, and Fe) or modulating phytohormone 
levels, such as auxin, ethylene, cytokinin, abscisic acid, gibberellic 
acid, etc. (Figure 1). In addition, PGPR can indirectly facilitate 
plant growth and fitness through their suppressive activity 
against phytopathogens (Glick, 2012; Kong and Glick, 2017). 
Typically, the beneficial effects of PGPR on plant growth and 
health are more pronounced when plants were grown in poor 

and/or stressed soils (Kong and Glick, 2017). Thus, PGPRs 
have been extensively studied for their beneficial traits and 
the potential use in bioaugmentation, biostimulation or biocontrol 
as microbial inoculums. In particular, PGPR inoculation has 
been considered as an important strategy for sustainable 
agriculture, as the successful use of this practice enables to 
reduce or even eliminate the use of pesticides and/or fertilizers 
without yield loss (Ambrosini et  al., 2016).

It is generally accepted that the effectiveness of PGPR 
inoculants is associated with their ability to colonize, survive 
and persist, as well as the interactions with native microbial 
community in the rhizosphere. Thus, increasing attention has 
been paid to how PGPR inoculation affects the indigenous 
microbial community and activity within either rhizospheric 
soil or bulk soil (Table  1). Since PGPR inoculation can 
significantly affect root development and exudation (Vacheron 
et  al., 2013; Ray et  al., 2018; Alzate et  al., 2020; He et  al., 
2022), it can be  expected that PGPR inoculants would modify 
the community composition of rhizosphere microbiome. 
Moreover, it is known that the total number of microorganisms 
can be  up to 108–1012 per gram of soil (Bloem et  al., 1995). 
A relatively high concentration of PGPR (106–1012 CFU/kg soil 
or 106–108 CFU per seedling or seed) inoculants is always 

FIGURE 1 | The mechanisms of PGPR improving plant growth and fitness.
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TABLE 1 | The effects of PGPR inoculants on soil microbial community composition and activity.

PGPR inoculants
Isolation 
sources

PGP traits Plants
Inoculant 
dose

Stress
Plant 
growth 
duration

Soil 
type

Results Refs

Neorhizobium 
huautlense T1-17

Heavy metal-
contaminated 
soil

IAA, siderophore, 
ACC deaminase

Chinese 
cabbages 
and 
radishes

5*1012 CFU/kg 
soil

Cd, Pb 2 months R Significantly increased 
the ratio of IAA-
producing bacteria

Wang et al. 
(2016) (G)

Pseudomonas sp. 
SUT 19; Brevibacillus 
sp. SUT 47

Roots of 
forage corn

IAA, N2-fixing, 
ACC deaminase, 
P solubilization 
only for SUT19

Forage corn 108 CFU per 
seedling/seed

/ 1–2 months R No influence on 
microbial community 
structure

Piromyou 
et al. (2011) 
(L and F)

Pseudomonas sp. 
S2-3 and UW4; 
Burkholderia sp. S6-1

Farmland 
polluted by 
acidic mine 
drainage

IAA, P 
solubilization, 
Ammonia 
production, ACC 
deaminase for 
S6-1 and UW4, 
siderophore only 
for S6-1

Brassica 
juncea

3.75*109 CFU/
kg soil

Cu, Pb, and 
Zn

1–100 days B Significantly changed 
the bacterial 
community 
composition 1 day after 
inoculation, with minor 
changes continuing to 
be observed 10 days 
after inoculation; 
increased the 
complexity and stability 
of co-occurrence 
network

Kong et al. 
(2019) (L)

Burkholderia 
phytofirmans PsJN

Onion roots ACC deaminase, 
IAA

Maize Seeds 
incubated in 
109 CFU/ml for 
90 min

Cd, Pb and 
Zn

69 days R Affected rhizosphere 
microbiome diversity 
only to a minor extent

Touceda-
González 
et al. (2015) 
(G)

Mix culture of Bacillus 
aryabhattai and 
Bacillus megaterium

Culture 
collection

P solubilization B. juncea 1.67*109 CFU/ 
kg soil

Cd 1–8 weeks R Significantly changed 
the species diversity 
and richness indices of 
microbial community

Jeong et al. 
(2013) (L)

Azospirillum brasilense 
Sp6

Katholieke

Universiteit 
Leuven, 
Belgium

IAA Quailbush 1.2*106 CFU/
seed

Metals 15, 30 and 
60 days

R Induced a significant 
change in the DGGE 
profiles of rhizosphere 
microbial community

De-Bashan 
et al. (2010) 
(G)

Sinorhizobium meliloti 
4H41 and/or 
Rhizobium gallicum 
8a3

Common 
bean nodules

N2-fixing Common 
bean

108 CFU/plant / 0, 1 and 
2 months 
after _
inoculation

B Significantly affected 
the composition of the 
bacterial and 
Rhizobiaceae 
communities

Trabelsi et al. 
(2011) (F)

Clavibacter sp. MTR-
21A, Rhodanobacter 
sp. MTR-45B, and 
Arthrobacter sp. K4-
10C and MTR-44

Rhizosphere 
of quailbush 
plants

IAA and 
siderophores for 
all strains; 
P-solubilization 
for MTR-21A 
and MTR-44; 
ACC deaminase 
only for MTR-44

Quailbush 
and buffalo 
grass

2*107 CFU/
seed for 
alginate-
encapsulation

Metals 75 days R Significantly influenced 
the development of the 
rhizosphere community 
structure

Grandlic 
et al. (2009) 
(G)

Azospirillum lipoferum

CRT1

Commercial 
inoculants

/ Maize 3*107 CFU/
seed

/ 7, 35 and 
65 days

R Modified the 
composition of the 
resident bacterial 
community of the 
rhizosphere

Baudoin 
et al. (2009) 
(F)

Paracoccus versutus 
NM01 and Aeromonas 
caviae NM04

As-polluted 
soils

IAA, siderophore, 
and P 
solubilization

Fern / As 4 weeks R Displayed higher 
bacterial diversity 
indices (ACE and 
Chao1)

Marwa et al. 
(2020) (G)

Pseudomonas 
fluorescens MC46

Rhizosphere 
of Vigna 
unguiculata 
subsp. 
sesquipedalis

Ammonia 
production, 
P-solubilization, 
siderophore, IAA, 
EPS

Mung bean 2 × 108 CFU per 
pot

Triclocarban 5 weeks B Enhanced soil enzyme 
activities

Sipahutar 
et al. (2018) 
(G)

(Continued)

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Kong and Liu PGPR Inoculants Modified Rhizosphere Microbiome

Frontiers in Plant Science | www.frontiersin.org 4 May 2022 | Volume 13 | Article 920813

TABLE 1 | Continued

PGPR inoculants
Isolation 
sources

PGP traits Plants
Inoculant 
dose

Stress
Plant 
growth 
duration

Soil 
type

Results Refs

A. brasilense 40 M and 
42 M

Roots of 
field-grown 
maize

/ Rice 6*109 CFU/kg 
seed

/ 35 and 
117 days

R Significantly increased 
the percentage of 
microaerophilic 
diazotrophs; 
significantly changed 
the taxonomic 
structure and the 
functional diversity of 
rhizosphere microbial 
community

de Salamone 
et al. (2010) 
(F)

Enterobacter 15S; 
Pseudomonas 16S

Horticultural 
soils

IAA, P 
solubilization,

siderophores 
production

Tomato 106 CFU per 
seedling

/ 40 days R Induced a deterministic 
effect on the functional 
diversity of rhizosphere 
microbiome

Alzate et al. 
(2020) (G)

Enterobacter 15S; 
Pseudomonas 16S

Horticultural 
soils

IAA, P 
solubilization,

siderophores 
production

Tomato 106 CFU per 
seedling

NaCl 40 days R Increased the content 
of ROS-scavenging 
and antioxidant 
compounds, and 
improved the 
facilitation of Fe 
acquisition by 
inoculation of 
Pseudomonas 16S

Alzate et al. 
(2021) (G)

A. brasilense Maize 
rhizosphere

IAA, 
siderophores, 
ACC deaminase

Maize 1011 CFU/kg 
seed

/ 62 and 
132 days

R Increased the number 
of microaerophilic 
nitrogen fixing 
microorganisms; 
modified the 
physiology of the 
rhizosphere microbial 
communities

Di Salvo 
et al. (2018a) 
(F)

A. brasilense 40 M and 
42 M

Roots of 
field-grown 
maize

/ Wheat 5.55*109 CFU/
kg seed

/ 88 and 
133 days

R Modified both 
physiology and genetic 
structure of 
rhizosphere

microbial communities.

Di Salvo 
et al. (2018b) 
(F)

A. brasilense Az1 and 
Az2, Pseudomonas 
fluorescens Pf

Commercial 
inoculants

/ Wheat 5.5–
10.5*109CFU /
kg seed

/ 106, 136, 
155 days

R No influence on 
culturable 
actinomycetes and 
bacteria, but changed 
the number of 
culturable fungi and 
the carbon-source 
utilization activities of 
microbial communities

Naiman et al. 
(2009) (F)

Acinetobacter pittii 
and Escherichia coli

Culture 
collection

P solubilization Solanum 
nigrum L.

4–5 × 1010 CFU/
plant

Cd 30 and 
60 days

R Enriched dominant 
microbial taxa with 
plant growth promotion 
function and keystone 
taxa related to Cd 
mobilization; up-
regulated the 
expression of genes 
related to bacterial 
mobility, amino acid 
metabolism, and 
carbon metabolism 
among rhizobacterial 
community

He et al. 
(2022) (G)

(Continued)
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introduced to achieve its effectiveness (Table  1), which can 
induce changes to rhizosphere characteristics within a certain 
period (Ambrosini et  al., 2016). Furthermore, plant roots can 
produce a wide range of metabolites which play an important 
role in shaping the rhizosphere microbiome (Jacoby et  al., 
2020a). On the other hand, root metabolism and exudation 
can also change according to the rhizosphere microbiome 
structure and assembly (Korenblum et  al., 2020); even small 
changes in the microbial community structure might result in 
large alterations of host phenotypes (Brinker et  al., 2019). 
However, there is still limited information concerning how 
inoculated PGPR affect rhizosphere microbiome or how 
subsequent changes in rhizosphere microbiome contribute to 
improving plant growth and fitness.

Here, the effects of PGPR inoculation on the microbial 
properties and functioning of rhizosphere is reviewed and 
discussed. The effect of PGPR inoculants on the microbial 
structural and functional diversity and chemical diversity in 
the rhizosphere are described in detail. Ultimately, understanding 
the modification effects of PGPR inoculation on rhizosphere 
microbiome, and their subsequent role in the rhizosphere 
functioning is key to a deep sight into the plant growth 
promotion (PGP) mechanisms of PGPR. It is essential for the 
establishment of strategic plant-microbe partnership improving 
plant health and fitness under rapidly changing environments.

EFFECTS OF PGPR INOCULATION ON 
THE STRUCTURAL DIVERSITY OF 
RHIZOSPHERE MICROBIAL COMMUNITY

Current studies revealed the great variability concerning the 
effects of PGPR inoculation on the structural diversity of 
rhizosphere microbial community due to the distinct PGPR 
inoculants, plant species and soil conditions (Table  1). It is 
known that the success of PGPR inoculation highly depends 

on the specific interactions between host plants and bacteria, 
which are mediated through root exudates and bacterial 
competitive traits (Ambrosini et  al., 2016). Good colonizers 
of roots and rhizosphere are expected to have high growth 
rates and be more efficiently in resource use. They may potentially 
affect the resident microbial community in the rhizosphere. 
For example, a filed study on the ecological impact of PGPR 
inoculation on resident bacteria found that inoculation of maize 
seeds with PGPR strain Azospirillum lipoferum CRT1 caused 
a significant shift in the ARISA fingerprints of the indigenous 
rhizobacterial community at 7 and 35 days (Baudoin et  al., 
2009). Similarly, inoculation with arsenic (As)-tolerant PGPR 
strains increased the rhizobacterial alpha-diversity indices after 
4 weeks and enhanced As phytoextraction effect of Adiantum 
cappillus-veneris plants (Marwa et al., 2020). Significant impacts 
of phosphate-solubilizing bacterial inoculants on the rhizosphere 
microbiome of Brassica juncea were also observed after 
inoculation for 8 weeks, suggesting that it takes some time for 
the inoculated PGRR to survive, and function during 
phytoextraction of Cd-contaminated soil (Jeong et  al., 2013). 
However, if the inoculants have a low efficiency in resource 
use, or are unable to survive in highly diverse communities, 
minor or no changes would happen to the diversity or structure 
of rhizosphere-related microbial community following PGPR 
inoculation (Piromyou et  al., 2011; Touceda-González et  al., 
2015). Moreover, some researchers also have concluded that 
the microbial communities in the rhizosphere are highly buffered 
against the inoculation of non-native bacteria (Björklöf 
et  al., 2003).

Although inoculation with PGPR affect rhizosphere 
microbiome only to a minor extent, the plant growth promotion 
effects of inoculants have also been reported (Piromyou et  al., 
2011; Touceda-González et  al., 2015). Even if the abundance 
and persistence of the PGPR inoculants over time are not 
guaranteed, the promotion of plant growth was observed (Chen 
et  al., 2022). This contradiction raises a question of how the 
long-term plant growth promotion is maintained even after 

TABLE 1 | Continued

PGPR inoculants
Isolation 
sources

PGP traits Plants
Inoculant 
dose

Stress
Plant 
growth 
duration

Soil 
type

Results Refs

Bacillus subtilis, 
Paenibacillus 
polymyxa

Commercial 
inoculants

/ Wheat 30 kg ha−1 High P At 
regreening, 
flowering, 
and harvest 
stages

R Significantly enriched 
various bacterial 
genera

Chen et al. 
(2021) (F)

Bacillus 
amyloliquefaciens 
FH-1

Rhizosphere 
of tea tree

N2-fixing, 
inorganic P, K 
solubilization, 
siderophore, 
ACC deaminase

Cucumber 108 CFU/ g soil Coastal 
saline-alkali 
soil

35 days R Reduced the 
rhizosphere bacterial

diversity, increased 
Proteobacteria, and 
decreased 
Acidobacteria; 
increased bacteria-
bacteria interactions

Wang et al. 
(2021) (L)

Soil type: R, rhizospheric soil; B: bulk soil. 
Experimental conditions are designated (L) for more controlled laboratory conditions, (G) for greenhouse conditions, or (F) for field trials.
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PGPR inoculants disappeared from the rhizosphere? A recent 
study reported a possible mechanism that PGPR-induced DNA 
methylation modifications in roots contributing to the long-
term plant growth promotion effects, while neither the 
colonization of inocula nor the changes in rhizosphere 
microbiome was necessary for the promotion process (Chen 
et  al., 2022). Furthermore, several studies have reported that 
PGPR inoculants have potential to cause changes in specific 
subgroups of microbial community in the rhizosphere (Naiman 
et  al., 2009; de Salamone et  al., 2010; Wang et  al., 2016; Di 
Salvo et  al., 2018a). For instance, the inoculation with PGPR 
strain Neorhizobium huautlense T1-17, which possess multiple 
PGP traits such as IAA, siderophore and 1-aminocyclopropane-
1-carboxylate (ACC) deaminase activity, significantly increased 
the proportion of IAA-producing bacteria in the rhizosphere 
of Chinese cabbages and radishes (Wang et al., 2016). Similarly, 
a significant increase in the number of microaerophilic nitrogen 
fixing microorganisms was observed in the rhizosphere of 
PGPR-inoculated crops, such as maize (Di Salvo et  al., 2018a) 
and rice (de Salamone et al., 2010). In addition, PGPR inoculation 
has no influence on culturable actinomycetes and bacteria, but 
changed the number of culturable fungi in the rhizosphere of 
wheat plants (Naiman et  al., 2009). Moreover, our pervious 
study on phytoremediation of heavy metal-contaminated soils 
suggested that PGPR inoculation greatly changed the bacterial 
community composition only within 10 days after inoculation, 
maintaining a microbial community profile (at the phylum 
level) similar to what was observed in the original soil in the 
late stage (Kong et al., 2019). However, enhanced co-occurrence 
associations were observed in the PGPR-inoculated bacterial 
community network, indicating the bacterial community had 
more complex and compact associations in the presence of 
PGPR inoculants during the phytoremediation process. 
Furthermore, the inoculation of phosphate-solubilizing bacterial 
strains enriched dominant microbial taxa with PGP function 
and keystone taxa related to Cd mobilization during the 
phytoremediation of soil Cd (He et  al., 2022). These above 
findings cannot be comprehensively explained by the competition 
between the resident and added strains. It reminds us that 
although addition of specific bacteria may result in competitive 
pressure on the native microbial community in the case of 
nutrient limitation, the cooperation between native and inoculated 
strains also needs to be  considered. In fact, an increasing 
number of cooperative behaviors are being discovered among 
microorganisms in laboratory (Sieuwerts et al., 2008; Harcombe, 
2010; Poltak and Cooper, 2011) or natural microbial communities 
(Schink, 2002; McCutcheon and Moran, 2008; Morris et  al., 
2013), which can significantly affect the fitness of interacting 
partners. For instance, metabolic cross-feeding interactions are 
ubiquitous in natural microbial communities. PGPR possess 
beneficial traits for better interaction with plants, which involves 
producing phytohormones that affect root growth dynamics, 
chelating compounds that aid in nutrient acquisition, or 
synthesizing polymeric substances to form biofilms (van Gestel 
et  al., 2014). The by-products of PGPR inoculants are released 
into the rhizosphere that can be used by other microorganisms 
as nutrients or energy source. For example, ACC 

deaminase-producing PGPR can facilitate plant growth and 
development through conversion of the immediate ethylene 
precursor ACC into α-ketobutyrate and ammonia, which can 
be  used by other associated microorganisms as substrates 
(Nascimento et  al., 2018). Furthermore, the horizontal transfer 
and microevolution of ACC deaminase genes not only occur 
between bacteria, but also may occur between bacteria and 
fungi (Nascimento et al., 2014). Therefore, establishing symbiotic 
or synergistic mutually beneficial relationships with the added 
PGPR strains might be  an adaption and survival strategy for 
some microbes, particularly in face to environmental stresses. 
Thus, the enhanced cooperative interactions in the PGPR-
inoculated soils may contribute to the plant growth-promoting 
effects of PGPR, particularly in stressful environments.

EFFECTS OF PGPR INOCULATION ON 
THE FUNCTIONAL DIVERSITY OF 
RHIZOSPHERE MICROBIAL COMMUNITY

Although PGPR inoculants have previously been examined for 
their impacts on the structural diversity of rhizosphere microbial 
community, there is limited information of the effects of the 
addition of inoculants on the function of the microbial 
community. Some researchers suggested that the ecological 
impacts of PGPR inoculation should receive more attention 
in order to know how the functional diversity is altered (Naiman 
et  al., 2009; de Salamone et  al., 2010; Di Salvo et  al., 2018a). 
The community-level physiological profiling (CLPP) using Biolog 
EcoPlates is an estimation of the potential catabolism of cultivable 
microorganisms from environmental samples, which has been 
widely used to analyze the functional diversity of both soil 
and rhizosphere microbial communities (Salvador et  al., 2017; 
Mhlongo et  al., 2018). The carbon sources tested in the Biolog 
EcoPlates can be  commonly found in plant root exudates 
(Campbell et  al., 1997). It is believed that the majority of 
primary metabolites in root exudates, including organic acid, 
sugar and amino acids can be utilized by rhizosphere microbial 
communities. Some authors have concluded that the physiological 
profiles of rhizosphere microbial communities of various crops 
can be modified by PGPR inoculation, such as rice (de Salamone 
et  al., 2010); tomato (Alzate et  al., 2020, 2021); maize (Di 
Salvo et  al., 2018a); and wheat (Naiman et  al., 2009; Di Salvo 
et  al., 2018b). For example, Alzate et  al. (2020) found that 
carbohydrates, carboxylic acids, amino acids and polymers were 
the main types of substrates that contribute to the functional 
diversity of the rhizosphere microbiome between PGPR 
inoculated and non-inoculated treatments. They suggested that 
PGPR inoculants can alter the rhizosphere functioning by 
affecting the root exudation profile, thus interfering in the 
plant–soil feedback and reshaping the rhizosphere microbiome. 
These authors also observed an increase in the content of 
ROS-scavenging and antioxidant compounds, and an 
up-accumulation of the aphytosiderophore avenic acid in the 
tomato rhizosphere inoculated with PGPR inoculation under 
saline stress, which are suggested as the mechanisms responsible 
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for higher plant biomass production in salinity (Alzate et  al., 
2021). Moreover, microbial communities can produce 
extracellular enzymes to acquire energy and resources from 
complex biomolecules in soils. Currently, there is a great interest 
in using extracellular enzyme activities as indicators of microbial 
function, since they are relatively simple to measure, sensitive 
to environmental stress and soil disturbance. A pot soil 
experiment showed that a triclocarban-degrading PGPR strain 
Pseudomonas fluorescens MC46 not only significantly promoted 
plant growth and health in triclocarban-contaminated soil, but 
also enhanced soil enzyme activities, indicating their role in 
improving soil fertility (Sipahutar et  al., 2018). Furthermore, 
the metabolic function of microbial community can also 
be  predicted by mapping sequences to KEGG database using 
PICRUSt software (Langille et  al., 2013). Using this approach, 
these authors found that inoculated phosphate-solubilizing 
bacteria up-regulated the expression of genes related to bacterial 
mobility, amino acid metabolism, and carbon metabolism of 
the rhizobacterial community during the process of Cd 
phytoremediation (He et  al., 2022). These findings suggested 
that PGPR inoculation that can modify the metabolic profile 
of rhizosphere microbiome via interfering root exudation 
patterns, which could be  one possible plant growth-
promotion mechanism.

EFFECTS OF PGPR INOCULATION ON 
THE CHEMICAL DIVERSITY IN THE 
RHIZOSPHERE

In the rhizosphere, a complex interaction network co-exists 
among plant roots, soil microbes and the soil. Governed by 
root exudates, these interactions primarily mediate plant growth, 
development and fitness. Root exudates mainly consist of low 
molecular weight organic compounds, which include amino 
acids, organic acids, sugars, phenolics and an array of secondary 
metabolites, and high molecular weight compounds such as 
polysaccharides and proteins (Walker et al., 2003). Plants actively 
modulate qualitative and quantitative root exudation profiles 
which can modify the rhizosphere properties to adapt to the 
environmental conditions (Vives-Peris et al., 2020). In addition 
to primary metabolites that can be  used by rhizosphere 
microorganisms, secondary metabolites have often been believed 
to play an active role in shaping the rhizosphere microbiome 
assembly, such as flavonoids (Hassan and Mathesius, 2012); 
benzoxazinoids (Hu et al., 2018; Cotton et al., 2019); coumarins 
(Stringlis et  al., 2018; Voges et  al., 2018); strigolactones (Nasir 
et  al., 2019); triterpenes (Huang et  al., 2019); camalexin 
(Koprivova et  al., 2019); ethylene (Chen et  al., 2020), etc. 
(Jacoby et  al., 2020b; Eichmann et  al., 2021).

The studies on metabolic variances in plant roots as a driver 
of root-associated microbiome have developed rapidly in recent 
years due to the advancement in sensitivity of analytical 
techniques. The field of metabolomics is now routine for the 
identification of primary and secondary metabolites of plants 
taking advantage of metabolic footprinting approaches such 

as liquid chromatography (LC)–mass spectrometry (MS; LC–
MS), gas chromatography-MS (GC–MS), capillary 
electrophoresis-MS (CE-MS), nuclear magnetic resonance 
spectroscopy (NMR), Fourier transform-near-infrared (FT-NIR) 
spectroscopy, MS imaging (MSI), and live single-cell-MS (LSC-
MS). (Pang et al., 2021). On the microbial side, defined synthetic 
communities (SynComs) have been successfully used in studying 
plant-microbe interactions (Lebeis et  al., 2015; Castrillo et  al., 
2017; Niu et  al., 2017; Liu et  al., 2019), which has been 
considered as an excellent tool to predict the plant phenotypes 
upon microbial inoculation (Herrera Paredes et  al., 2018). For 
example, previous study using SynComs approach revealed that 
the defense phytohormone salicylic acid modulates colonization 
of the root microbiome of Arabidopsis by specific bacterial 
taxa (Lebeis et al., 2015). Insights of the metabolic and signaling 
feedbacks between plants and their associated microorganisms 
in the rhizosphere provide new management approaches for 
biofertilization, biocontrol or bioremediation.

It is now widely accepted that plants can recruit beneficial 
microbes via altering their root exudates which may serve as 
signals in face to adverse environmental conditions. For example, 
barley plants selectively recruited fluorescent pseudomonads 
carrying antifungal traits upon pathogen infection, which leads 
to a reduced impact by pathogen attack on host plants 
(Dudenhöffer et  al., 2016). Similarly, inoculation with a foliar 
pathogen Pseudomonas syringae pv tomato resulted in significant 
changes in root exudates of Arabidopsis, and these changes 
lead to the recruitment of beneficial rhizosphere communities 
(Yuan et al., 2018). On the other hand, the metabolic composition 
of root exudates can be  altered systemically and specifically 
by different bacterial strains (Korenblum et  al., 2020). In a 
tomato split root system, these authors found that systemic 
exudation of acylsugars (one secondary metabolite) can 
be  triggered by the local root inoculated with Bacillus subtilis. 
This analysis also revealed that both leaf and systemic root 
metabolomes and transcriptomes changed according to the 
rhizosphere microbial community structure. Only a few studies 
so far have addressed the effect of PGPR inoculation on the 
metabolic profiles of roots exudates or rhizosphere (Table  2). 
Nevertheless, these limited studies have shown that PGPR may 
alter the chemical diversity of root exudates and induce the 
release of specific compounds involved in recruitment of more 
beneficial microbes. For example, a recent study using untargeted 
metabolomics approach to investigate chemical profiles of 
tomato rhizosphere following PGPR inoculation, in which these 
authors found that a high amount of phenylpropanoid 
compounds was accumulated in the rhizosphere, including 
several compounds involved in PGPR colonization and plant 
growth promotion (Alzate et  al., 2020). The metabolic profiles 
of plant tissues (including roots, stems, and leaves) following 
PGPRs inoculation were investigated using ultra-high 
performance LC–MS and their results revealed that PGPR 
inoculation induced dynamic changes in the metabolomes of 
plant involving hydroxycinnamates, benzoates, flavonoids, and 
glycoalkaloids (Mhlongo et  al., 2020). Also, Ray et  al. (2018) 
found that PGPR inoculation modified the phenolic profiles 
of root exudates of okra, which may attract more beneficial 
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TABLE 2 | The effects of PGPR inoculants on root exudates.

PGPR inoculants PGP traits Plants Inoculant dose Stress
Plant growth 

duration
Results Refs

Enterobacter 15S; 
Pseudomonas 16S

IAA, P solubilization, 
siderophores 
production

Tomato 106 CFU per 
seedling

/ 40 days Induced a differential 
accumulation of a high 
amount of phenylpropanoid 
compounds

Alzate et al. 
(2020) (S)

Pseudomonas sp.; 
Bacillus 
amyloliquefaciens 
FZB42; Pseudomonas 
jessenii RU47

/ Maize 0.4 or 
1.2*106 CFU/kg 
soil

/ 43 days Induced significant changes 
in secondary pathways of 
lipid metabolism

Nebbioso et al. 
(2016) (S)

Pseudomonas 
fluorescens (N04), Ps. 
koreensis (N19), 
Paenibacillus alvei 
(T22), and 
Lysinibacillus 
sphaericus (T19)

IAA, siderophores 
and P-solubilization

Tomato OD0.5–0.6, 
3 ml per pot

/ 24, 48 h Induced dynamic changes in 
the metabolomes involving in 
hydroxycinnamates, 
benzoates, flavonoids, 
glycoalkaloids, as well as 
aromatic amino acids

Mhlongo, et al. 
(2020) (S)

Acinetobacter pittii 
and Escherichia coli

P solubilization Solanum nigrum 
L.

4–5 × 1010 CFU/
plant

Cd 30 and 60 days Significantly increased the 
concentrations of malic, 
palmitic, L-proline, lactic, 
L-alanine and 
γ-aminobutanoic acid

He et al. (2022) 
(S)

Alcaligenes faecalis 
BHU 12, BHU 16 and 
BHU M7

IAA, ammonia 
production, 
P-solubilization, and 
production of 
hydrogen cyanide 
and proteolytic 
activity

Okra The germinated 
seedlings dipped 
into 4*108 CFU 
bacterial 
suspension

Pathogen 
infection

14 days Modified the phenolic 
profiles of root exudates

Ray et al. (2018) 
(S)

Bacillus pumilus AS 
121, Pseudomonas 
Mendocina AS 40, 
Arthrobacter sp. AS 
18, Halomonas sp. SL 
9, and Nitrinicola 
lacisaponensis SL 11

P solubilization and 
IAA, siderophore, 
and ammonia 
production

Wheat Seeds incubated in 
108 CFU/ml for 
3–4 h

Salt 15 and 30 days Increased presence of 
individual phenolics (gallic, 
caffeic, syringic, vanillic, 
ferulic, and cinnamic acids) 
and flavonoid quercetin in 
the rhizosphere; Increased 
the content of IAA in the 
rhizospheric soil and root 
exudates

Tiwari et al. 
(2011) (S)

Experimental conditions are designated (S) for soil culture or (H) for hydroponics.

rhizospheric microbiota for better resistance to pathogens. 
These findings demonstrated that PGPR inoculation can lead 
to plant metabolic reprogramming, which may contribute to 
their PGP effects. Since root exudates represent an important 
source for rhizosphere microorganisms, the variations of 
rhizosphere metabolites in response to PGPR inoculation 
subsequently alter functional activities of rhizosphere microbial 
community as described above.

Nevertheless, the specific PGP characteristics of the inoculated 
PGPR strains are not being emphasized well when these authors 
investigate the variations in chemical diversity of living plant 
roots or rhizosphere imposed by inoculation with distinct PGPR. It 
is well known that PGPR may facilitate plant growth and fitness 
using individual or multiple PGP mechanisms and a particular 
PGPR strain may employ different mechanisms under different 
environmental conditions (Kong and Glick, 2017). In addition, 
the PGP traits of PGPRs varies among different species and 
strains of the same species and are influenced by culture conditions, 
growth stage and substrate availability. For example, the levels 

of tryptophan, vitamins, salt, oxygen, pH, temperature, carbon 
source, nitrogen source and growth stage are all contributing 
factors in regulation of IAA biosynthesis by microbial isolates 
(Duca et  al., 2014). Current studies have also showed that the 
effects of bacterial inoculation on metabolic profiles in plant 
tissues or rhizosphere are strain-specific (Lucini et al., 2018; Alzate 
et  al., 2020; Mhlongo et  al., 2020). Therefore, the specific PGP 
traits of PGPR inoculants cannot be  overlooked when analyzing 
the effects of PGPR inoculation on metabolic activity profile of 
root exudates or rhizosphere functioning. For example, there are 
many studies regarding the effects of bacterial ACC deaminase, 
which is widespread in plant-associated bacteria and extremely 
important for bacterial PGP abilities (Glick et al., 1998; Nascimento 
et  al., 2014). ACC deaminase-containing PGPR are found to 
be enriched in the rhizosphere, and are more abundant in stressed 
soils than in non-stressed soils (Nascimento et  al., 2018). These 
authors reviewed and discussed the role of ethylene and ACC 
in plant-bacterial interactions and suggested that ACC and ethylene 
may act as signaling molecules to recruit specific bacteria to 
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reduce the elevated ACC and ethylene levels, alleviating the stress 
on plants (Nascimento et  al., 2018). A study in intercropping 
agro-ecosystem confirmed that ethylene produced by peanuts 
alters the rhizosphere microbial composition and re-assembles 
the microbial co-occurrence network, which provides more available 
nutrients to peanut roots and support seed production when 
grown with heterospecific plant neighbors (Chen et  al., 2020). 
In turn, ACC and ethylene-reducing bacteria can protect plants 
against the inhibitory effects of various environmental stresses 
(Glick, 2014). Nevertheless, more studies are necessary to 
understand how ACC deaminase-producing bacteria affect 
rhizosphere microbiome assembly via modulating plant ACC/
ethylene levels, which subsequently may feedback on plant 
phenotypic traits.

CONCLUSIONS AND FUTURE 
PERSPECTIVES

PGPR have been considered as the key elements of rhizosphere 
engineering for their ability to promote plant growth and fitness 
under abiotic and biotic stress conditions. In the past 2–3 
decades, hundreds of PGPR strains have been isolated, 
characterized and used to promote the growth and development 
of a variety of different plants under normal and stressful 
conditions. With a better understanding of how various PGPR 
contribute to plant growth, scientists have paid more attention 
to the effects of PGPR inocula on underground soil microbial 
community. Although an increasing number of studies have 
concluded that PGPR inoculation affect rhizosphere microbiomes, 
it remains unclear whether or how subsequent changes in 
rhizosphere microbiome contribute to improving the growth 
and stress resistance of host plants. PGPR inocula may directly 
affect the composition of rhizosphere microbiome, or they may 
indirectly affect rhizosphere microbiome composition via 
interfering root exudation patterns, which in both ways can 
alter the functional activity of the rhizosphere mcirobiome 
and finally facilitate plant growth and fitness. This suggests 
the need for a deeper understanding of the mechanisms 
underlying PGPR-induced plant growth promotion in the 
rhizosphere. In this regard, the three-way interactions among 
the PGPR inocula, indigenous rhizosphere microbiome and 
plant roots need to be  integratively studied to understand the 
plant growth-promoting process. Root exudates can provide 
the first insights into plant-microbe interactions, and the role 
of exudates for shaping rhizosphere microbiome has been 
readily confirmed. Nowadays, new approaches have been 
developed and allow us to get a deeper insight into PGPR-
roots-rhizosphere microbiome interactions. For example, 

metabolomics approach, especially untargeted can provide 
detailed information about the composition of root exudates 
and how they are affected by rhizosphere microbes, which 
allows us to find key compounds modulating plant–microbes 
interactions. By combining with metabolomics, plant 
transcriptomics and rhizospheric bacterial community integrative 
analyses can provide deeper insights into how inoculants promote 
plant growth and stress resistance. Furthermore, to get a better 
understanding of mechanisms underlying PGPR-induced plant 
growth promotion in the rhizosphere, the specific PGP traits 
of the used PGPR inoculants should also be  addressed, since 
the influence of PGPR inoculation on rhizosphere microbiome 
is strain-specific. However, the PGPR inoculants used in most 
studies possess multiple PGP activities and it is difficult to 
figure out which activity is more important. In the future, 
more efforts can be  taken in uncovering whether and which 
specialized molecules or metabolites produced by PGPR are 
involved in the modification of rhizosphere microbiome using 
wild-type versus PGP mutants. For example, studies using 
bacterial mutants impaired in ACC deaminase production have 
demonstrated that the expression of ACC deaminase can readily 
impact the colonization of other microorganisms present in 
the rhizosphere, including symbionts (Nascimento et al., 2018). 
Ultimately, understanding how PGPR modify rhizosphere 
microbiome and subsequently feedback on plant phenotypic 
traits will enable the development of rhizosphere engineering 
strategies using specific PGPR or signals to modify rhizosphere 
functioning for a given soil and environment.
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