AUTHOR=Benomar Lahcen , Bousquet Jean , Perron Martin , Beaulieu Jean , Lamara Mebarek TITLE=Tree Maladaptation Under Mid-Latitude Early Spring Warming and Late Cold Spell: Implications for Assisted Migration JOURNAL=Frontiers in Plant Science VOLUME=13 YEAR=2022 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2022.920852 DOI=10.3389/fpls.2022.920852 ISSN=1664-462X ABSTRACT=

Global warming is predicted to extend the growing season of trees and plants, and advance spring phenology. However, intensification of extreme climate events in mid-latitude forests, from weakening of the jet stream and atmospheric blockings, may expose trees to increased risk associated with more frequent late-spring frosts. Still, little is known regarding the intraspecific variation in frost tolerance and how it may be shaped by local adaptation to the climate of seed origin. As part of an assisted migration trial located in different bioclimatic zones in the province of Quebec, Canada, and following an extensive late-spring frost that occurred at the end of May 2021, we evaluated the frost damages on various white spruce (Picea glauca) seed sources tested on three sites (south, central, and north). The severity of frost damages was assessed on 5,376 trees after the cold spell and an early spring warming which advanced bud flush by approximately 10 days on average. The frost damage rate was similar among sites and seed sources and averaged 99.8%. Frost damage severity was unrelated to the latitude of seed origin but was variable among sites. The proportion of severely damaged trees was higher in the northern site, followed by central and southern sites. The proportion of severely damaged trees was linearly and inversely related to tree height before the frost event. Apical growth cancelation was not significantly different among seed sources including local ones, and averaged 74, 46, and 22%, respectively, in central, northern, and southern plantation sites. This study provides recommendations to limit the loss of plantation productivity associated with such a succession of spring climate anomalies. Implications for seed transfer models in the context of climate change and productivity of spruce plantations are discussed in the light of lack of local adaptation to such pronounced climate instability and ensuing large-scale maladaptation.