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In flowering plants, Flowering locus T (FT) encodes a major florigen. It is a key flowering 
hormone in controlling flowering time and has a wide range of effects on plant development. 
Although the mechanism by which FT promotes flowering is currently clearly understood, 
comprehensive effects of the FT gene on plant growth have not been evaluated. Therefore, 
the effects of FT on vegetative growth need to be explored for a complete understanding 
of the molecular functions of the FT gene. In this study, the Jatropha curcas L. FT gene 
was overexpressed in tobacco (JcFTOE) in order to discover multiple aspects and related 
mechanisms of how the FT gene affects plant development. In JcFTOE plants, root, stem, 
and leaf development was strongly affected. Stem tissues were selected for further 
transcriptome analysis. In JcFTOE plants, stem growth was affected because of changes 
in the nucleus, cytoplasm, and cell wall. In the nucleus of JcFTOE plants, the primary effect 
was to weaken all aspects of DNA replication, which ultimately affected the cell cycle and 
cell division. The number of stem cells decreased significantly in JcFTOE plants, which 
decreased the thickness and height of tobacco stems. In the cell wall of JcFTOE plants, 
hemicellulose and cellulose contents increased, with the increase in hemicellulose 
associated with up-regulation of xylan synthase-related genes expression. In the cytoplasm 
of JcFTOE plants, the primary effects were on biogenesis of ribonucleoprotein complexes, 
photosynthesis, carbohydrate biosynthesis, and the cytoskeleton. In addition, in the 
cytoplasm of JcFTOE plants, there were changes in certain factors of the core oscillator, 
expression of many light-harvesting chlorophyll a/b binding proteins was down-regulated, 
and expression of fructose 1,6-bisphosphatase genes was up-regulated to increase starch 
content in tobacco stems. Changes in the xylem and phloem of JcFTOE plants were also 
identified, and in particular, xylem development was affected by significant increases in 
expression of irregular xylem genes.
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INTRODUCTION

Flowering locus T (FT) encodes a protein that has a central role 
in initial stages of angiosperm flowering. The protein regulates 
a complex hierarchical signal network and promotes differentiation 
of apical meristems into flowers (Turck et  al., 2008; Pin and 
Nilsson, 2012). The FT-like proteins are globular proteins of the 
phosphatidylethanolamine binding protein family and are typically 
expressed in the phloem, are graft-transmissible, and can move 
to stem tips and effectively stimulate flowering (Putterill and 
Varkonyi-Gasic, 2016). In a photoperiod-dependent pathway, 
gigantea and CONSTANS (CO) proteins function together (Zeevaart, 
2008) to induce transcription of FT genes in vascular bundles 
at leaf tips (Sawa and Kay, 2011). After translation, FT proteins 
are transported from veins in leaf blades to apical meristems 
through the phloem (Notaguchi et  al., 2008). The FT proteins 
then combine with the bZIP transcription factor flowering locus 
D (FD) to form FD/FT heterodimer complexes (Wigge et  al., 
2005). Those complexes promote transformation from vegetative 
to reproductive growth via activation of the suppression of CO 
overexpression 1 (SOC1) and apetala 1 (AP1) proteins (Yoo et al., 
2005; Corbesier et  al., 2007). Moreover, two rice FT homolog 
Hd3a monomers bind C-terminal regions of dimeric 14-3-3 proteins 
to produce a complex that translocates to the nucleus and binds 
to the FD transcription factor. The florigen activation complex 
formed by FT, FD, and 14-3-3 proteins then induces transcription 
of downstream flowering-related genes, which leads to flowering 
(Taoka et  al., 2011, 2013; Putterill and Varkonyi-Gasic, 2016).

In addition to flowering, FT-like proteins are also major 
regulators in developmental processes. Pin and Nilsson (2012) 
found that the Populus FT2 gene directly or indirectly regulates 
transcriptional activity of genes that control cell division but 
could also have other roles. FT overexpression can induce 
stomatal opening via regulation of H+-ATPase activity in guard 
cells (Kinoshita et  al., 2011). The FT-like genes in Populus 
may also be  involved in regulating callose plug formation and 
therefore the ability of signals to move through pores and 
plasmodesmata to shoot apical meristems (Rinne et  al., 2011). 
In addition to controlling flowering and fruit set, the precursor 
of the florigen in tomato also regulates termination of 
symptomatic meristems and leaf structures, suggesting the 
florigen precursor is not only a signal for flower development 
but is also a general systemic regulator of tomato growth (Shalit 
et  al., 2009). Ectopic expression of the rice Hd3a gene in 
potato induces tubers under noninductive long days (Navarro 
et  al., 2011).

Florigen is a generic growth-attenuating hormone in both 
leaf and stem meristems (Shalit-Kaneh et  al., 2019). When 
transgenic Arabidopsis, maize, tomato, tobacco, and other model 
species overexpress the FT or FT-like genes, stem and leaves 
are smaller than those of the wild type. However, when expression 
of FT-like genes is suppressed, transgenic plants develop broader 
stems and significantly larger leaves than those of wild-type 
plants (Izawa et  al., 2002; Meng et  al., 2011; Li et  al., 2015). 
Therefore, FT or FT-like genes can have a distinct effect on 
stem and leaf development, mainly in the inhibition of stem 
and leaf growth.

To date, FT homologs have been identified in many species, 
demonstrating general conservation of functions across 
gymnosperms and angiosperms (Notaguchi et  al., 2008; Laurie 
et  al., 2011). The FT-like genes have evolved many roles and 
have important effects on plant diversity, adaptability, and 
domestication (Blackman et al., 2010; Liu et al., 2016). Therefore, 
FT-like genes can drive plant evolution as a single essential 
gene, the evolution of which has played a central role in plant 
diversification and adaptation (Pin and Nilsson, 2012).

Although previous research on the regulation of flowering 
by FT has been very thorough (Jaeger and Wigge, 2007; Turck 
et  al., 2008; Taoka et  al., 2013; Ho and Weigel, 2014), most 
studies only identify one or a few aspects that are regulated 
by FT during plant growth (Kinoshita et  al., 2011; Gao et  al., 
2016; Chen et  al., 2021). A comprehensive analysis of the 
influence of FT on growth and development will increase 
understanding of the function and evolution of FT and its 
homologous genes, as well as utilization of those gene resources. 
In this study, an FT homolog from Jatropha curcas L. (JcFT) 
that encoded the Jatropha protein Heading Date 3A (Li et  al., 
2014) was overexpressed in tobacco. To identify the multiple 
effects of FT on plant growth and explore the regulatory 
networks, transcriptome analysis was combined with 
morphological observations and stem carbohydrate content 
determination. Some results from previous research were 
confirmed or further explained, but novel mechanisms of FT 
involvement in plant growth and development were also 
identified. We  discovered FT overexpression affected gene 
expression in the cell wall, cytoplasm and nucleus, including 
some important biological processes such as DNA replication, 
cell cycle, hemicellulose and cellulose metabolism. Stem structure 
and composition were altered in FT-overexpressing plants. 
We  also revealed the main reasons for the short and thin 
stems and the impaired cell wall and vascular development 
in FT-overexpressing plants.

MATERIALS AND METHODS

Vector Construction, Plant Transformation, 
and Cultivation
The gene JcFT (Accession: NM_001308752; Li et  al., 2014) was 
overexpressed in Nicotiana tabacum “SR1.” The JcFT sequence 
was isolated from J. curcas and cloned into SmaI and SacI sites 
of the binary vector pBI121 (DNA Cloning Service, Genewiz, 
Suzhou, China). The constructed vector was designated as CaMV 
35S::JcFT, and an empty vector was used as the control 
(Figures  1A,B). Constructs in binary vectors were introduced 
into Agrobacterium tumefaciens strain EHA105 and then 
transformed into wild-type N. tabacum “SR1” via a leaf disk 
method (Gallois and Marinho, 1995). Transgenic plants were 
identified via polymerase chain reaction (PCR) amplification of 
aminoglycoside 3′-phosphotransferase (NPTII) and JcFT genes using 
leaf DNA as the template. Primers for NPTII and JcFT amplification 
are shown in Supplementary Table  1. Plants were grown at 
26°C under a 16-h light/8-h dark photoperiod. Transgenic seeds 
from the T5 generation were harvested and used in the study.
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RNA Isolation, Library Construction, and 
Sequencing
One hundred seeds of each JcFT transgenic tobacco and the 
control were sown simultaneously. Transgenic plants were 
confirmed using morphological characteristics and PCR analysis 
(Figures  1C–F). Thirty JcFT transgenic plants and 30 control 
plants were selected for further investigation. Although JcFT 
transgenic tobacco bloomed approximately 36 days after seeding, 
stems of JcFT transgenic tobacco and the control were too 
small, underdeveloped, and difficult to sample. Therefore, 
sampling began at 43 days after seeding. Middle sections of 
18 stems (1–2 cm; remaining stem pieces were used in section 
analysis) were excised using an enzyme-free blade from healthy 
JcFTOE and control plants. Three plants were sampled every 
3 days, which were then mixed and ground as a single 
transcriptome sample. The samples were collected in triplicate.

Total RNA was isolated using TaKaRa MiniBEST Plant RNA 
Extraction reagents following the manufacturer’s instructions 
(Takara Bio, Inc., Dalian, China). Integrity and concentration 
of RNA were checked using a NanoDrop ND-1000 
spectrophotometer (Thermo Scientific, Wilmington, DE, 
United  States) and an Agilent 2100 Bioanalyzer (Agilent 
Technologies, Santa Clara, CA, United  States). A NEBNext 
Poly (A) mRNA Magnetic Isolation Module (E7490, NEB, MA, 
United  States) was used to isolate mRNA. The cDNA library 
was constructed using a NEBNext Ultra RNA Library Prep 
Kit for Illumina (E7530, NEB) and NEBNext Multiplex Oligos 

for Illumina (E7500, NEB) following the manufacturer’s 
instructions. In brief, the enriched mRNA was fragmented 
into approximately 200-nt RNA inserts, which were used to 
synthesize first and second-strand cDNA. End-repair/dA-tail 
and adaptor ligation were performed on double-stranded 
cDNA. Suitable fragments were isolated by Agencourt AMPure 
XP beads (Beckman Coulter, Inc., CA, United States) and then 
enriched by PCR amplification with the following conditions: 
initial denaturation at 98°C for 30 s; 14 cycles of denaturation 
at 98°C for 10 s, annealing at 65°C for 30 s, and extension at 
72°C for 30 s; and final extension at 72°C for 5 min. Amplification 
ended with a 4°C hold. Last, the cDNA libraries of tobacco 
stems were sequenced on a flow cell using an Illumina HiSeq™ 
2500 sequencing platform (Illumina, Inc., CA, United  States).

Global and Differential Gene Expression 
Analysis of RNA-Seq Data
To ensure accuracy of subsequent analyses, reads were first 
filtered to obtain clean reads by removing reads containing 
linkers and those of low quality (reads in which the proportion 
of undetermined bases exceeded 10% or the number of bases 
with a quality score ≤10 accounted for more than 50% of 
the entire read; Ewing et al., 1998). Clean reads were mapped 
to the tobacco cultivar TN90 genome1 using the HISAT2 
program (Kim et  al., 2015). StringTie software (Pertea et  al., 

1 https://www.ncbi.nlm.nih.gov/bioproject/208209

FIGURE 1 | Traits of JcFTOE transgenic and control plants. T-DNA of transformation vectors of (A) JcFTOE and (B) the control. (C) Roots, plant height, leaf, stem 
thickness, and leaf number of JcFTOE and control (CK) plants. (D) Stem cross sections of JcFTOE and control plants. (E,F) Gel electrophoresis of PCR-amplified 
products used to identify transgenic tobacco (O, PCR amplification of NPTII; P, PCR amplification of JcFT). (G–K) Flowering time, plant height, stem diameter, leaf 
area and leaf number of JcFTOE and control plants (the values represent mean, the vertical bars indicate standard deviation, n = 24, ****p < 0.0001). (L–Q) Different 
growth stages of JcFTOE and control plants. Sampling from 43 to 49 days after seeding.
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2015) was used to construct transcripts and evaluate gene 
expression. Pearson correlation analysis was performed on 
expression levels of paired samples (Schulze et  al., 2012), 
and the coefficient of correlation r was used to evaluate 
correlation strength. BLAST software (Altschul et  al., 1997) 
and NR (non-redundant protein sequence database), Swiss-
Prot, GO (gene ontology), COG (cluster of orthologous groups 
of proteins), KOG (clusters of orthologous groups for eukaryotic 
complete genomes), Pfam, and KEGG (kyoto encyclopedia 
of genes and genomes) databases were used to annotate the 
genes. DEGseq (Wang et  al., 2010) was used to detect 
differentially expressed genes (DEGs) between sample groups 
according to the screening criteria of log2 fold change (FC) ≥ 2 
and FDR (false discovery rate) < 0.01. Results of differential 
expression analysis and the interaction pairs included in the 
STRING database (Franceschini et  al., 2013) were combined 
to construct a DEG interaction network. The constructed 
protein interaction network was imported into Cytoscape 
version 3.8.1 (Shannon et  al., 2003) for visual analysis. The 
functional grouping network of terms or pathways of the 
DEG sets was further analyzed by ClueGO (only showing 
pathways with p ≤ 0.05; Bindea et al., 2009). Overrepresented 
GO terms in the network were identified and displayed as 
a network of significant GO terms using BiNGO (significance 
level of 0.05; Maere et al., 2005). Weighted gene co-expression 
network analysis (WGCNA; Maertens et  al., 2018) was used 
to identify clusters (modules) of highly correlated DEGs.

Reverse-Transcription Quantitative 
Polymerase Chain Reaction
Total RNA was extracted from fresh tissue using a plant RNA 
extraction kit (Chengdu biofit biotechnologies CO., LTD, 
Chengdu, China). First-strand cDNA was synthesized using a 
HiScript® III RT SuperMix for qPCR Kit with gDNA wiper 
(Vazyme, Nanjing, China) according to the manufacturer’s 
instructions. Reverse-transcription quantitative PCR (RT-qPCR) 
was performed using AceQ® qPCR SYBR green master mix 
(Vazyme) on a CFX Connect Real-Time System (Bio-Rad, CA, 
United  States). Primers used in RT-qPCR are presented in 
Supplementary Table  1. The RT-qPCR was performed using 
three technical replicates and two independent biological 
replicates for each sample. Data were analyzed using the 2–ΔΔCT 
method (Livak and Schmittgen, 2001). The L25 ribosomal protein 
(L25) and Elongation factor 1a (EF-1a) genes were used as 
internal reference genes (Schmidt and Delaney, 2010).

Plant and Cell Morphology
Flowering time, plant height, stem diameter, and leaf area were 
determined for 12 transgenic and 12 control plants. Middle 
sections of stems were embedded in paraffin (Carlquist, 1982) 
and sectioned in either the transverse or longitudinal plane 
into 3-μm thick slices using a Leica RM2235 microtome 
(Nussloch, Germany). Sections were placed on glass slides, 
stained with plant safranin and fast green staining solution 
(Servicebio, Wuhan, China), and observed under a tissue 
panoramic imaging scanning system (Wisleap WS-10, Beijing, 

China). Observation of epidermal cells was based on the peel 
method (Zhu et  al., 2016). In addition, sections were observed 
and photographed with an inverted optical microscope (Olympus 
IX71, Tokyo, Japan), and sizes of 400 pith cells of six JcFTOE 
and six control plants were measured using Image-Pro Plus 
6.0 (Mei et  al., 2016). ANOVA was performed in IBM SPSS 
Statistics (version 23.0, NY, United States) with tests of normality 
and homogeneity of variance that met the prerequisites 
for ANOVA.

Carbohydrate Content Analysis
Twenty-four stem samples (12 JcFT transgenic plants and 12 
control plants), collected at the same time as the transcriptome 
samples, were air-dried and then dried to a constant weight 
at 80°C for analysis of carbohydrate content, including water-
soluble sugars, water-soluble starch, cellulose, hemicellulose, 
lignin, and xylan. The anthrone-sulfuric acid colorimetric 
method was used to determine the content of water-soluble 
sugars and water-soluble starch following the Laurentin and 
Edwards (2003) method. The Van Soest method was used 
to determine the cellulose, hemicellulose, and lignin content 
in stems (Hindrichsen et  al., 2006). Microsoft Excel was used 
for ANOVA.

RESULTS

Overview of RNA-Seq Data
A total of 38.86  Gb of clean data were obtained from the 
transcriptome analysis of stems of three JcFTOE and three 
control plants (NCBI Sequence Read Archive accession number: 
PRJNA811432). Clean data of each sample reached 6.29 Gb, 
and the Q30 base was greater than 91.76%. Of the clean reads, 
94.79–95.19% mapped to the N. tabacum “TN90” genome, 
with 89.88–91.05% mapped to exons, 4.52–5.54% mapped to 
introns, and 4.30–4.92% mapped to intergenic regions. Sequencing 
output data of each sample are presented in Supplementary  
Table  2. Pearson coefficients of correlation (r) between the 
three JcFTOE samples ranged from 0.8 to 0.95 and those of 
the three control samples from 0.89 to 0.92. The r values 
between JcFTOE and control samples were lower (0.286–0.56). 
Therefore, the three JcFTOE and three control samples were 
classified into one category (Supplementary Figure 1), suggesting 
that sampling and sequencing data produced consistent results.

Effect of JcFTOE on Tobacco Traits
Compared with control plants (n = 24), flower budding 
accelerated significantly in JcFTOE tobacco plants, but plant 
height, leaf area, and stem thickness decreased significantly. 
Compared with controls, time to bud (36.21 days) and plant 
height (30.95 cm) decreased significantly in JcFTOE plants 
(Figures 1G,H), whereas stem diameter (0.381 cm) decreased 
by more than twice (Figures 1D,I) and leaf area (43.864 cm2) 
decreased by more than four times (Figure  1J). In addition, 
numbers of leaves of JcFTOE plants also decreased significantly 
(Figures  1C,K), and root development was relatively weak 
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(Figure 1C). During the sampling period, the stems of JcFTOE 
and control plants were increasing in thickness and height 
(Figures  1L–Q), which can well reflect the influence of the 
JcFT on stem growth.

Biological Processes Affected in JcFTOE 
Plants
With overexpression of JcFT, there were 9,564 DEGs (FC  ≥  2 
and FDR < 0.01) in JcFTOE plants. The KOG (Eukaryotic 
Orthologous Groups) classification indicated that the DEGs 
were associated with 22 biological processes, including ribosomal 
structure and biogenesis, posttranslational modification, 
carbohydrate transport and metabolism, amino acid/lipid 
transport and metabolism, signal transduction, transcription, 
replication, inorganic ion transport, the cell cycle, cell division, 
and cell wall biogenesis, among others (Figure  2A). Of the 
DEGs, 5,516 were up-regulated and 4,048 were down-regulated. 
In the KEGG (Kyoto Encyclopedia of Genes and Genomes) 
pathway enrichment analysis, the up-regulated genes were 
significantly associated with carbon fixation, including carbon, 
glyoxylate, dicarboxylate, phenylalanine, starch, and sucrose 
metabolism; biosynthesis of carotenoids and amino acids; and 
photosynthesis (Figure  2B). The down-regulated DEGs were 
significantly associated with ribosomes, antenna proteins, and 
DNA replication (Figure  2C).

The DEGs were also analyzed using ClueGO in the Cytoscape 
software. Fourteen significant pathways or terms were annotated, 
including ribosome biogenesis, DNA replication initiation, 
carotenoid metabolic process, fructose 1,6-bisphosphate 
1-phosphatase activity, photosynthesis, photosystem II assembly, 
and cinnamic acid biosynthetic process, among others. Most 
DEGs were associated with ribosomal biogenesis (Supplementary  
Figure 2). Among the processes, most GO terms were associated 
with DNA replication initiation, with seven terms accounting 
for 30.43% in the group, followed by carotenoid metabolic 
process and fructose 1,6-bisphosphate 1-phosphatase activity, 
with three and two terms accounting for 13.04 and 8.7%, 
respectively (Figure  2D). Ribosomes, similar to remaining 
processes, contained one GO term that accounted for only 
4.35% (Figure  2D).

To increase understanding of the pathways associated with 
DEGs, the BiNGO app in Cytoscape software was used to 
annotate overrepresented GO terms and present them in a 
network. Terms were combined into nine groups: DNA 
replication, ribosome biogenesis, photosynthesis, carotenoid 
biosynthesis, carbohydrate metabolism, cell wall organization 
or biogenesis, glycine decarboxylation, negative regulation 
of biological process, and positive regulation of biological 
process (Figure  3). In JcFTOE plants, there were a variety 
of effects on DNA replication, including on preinitiation 
complex assembly, pre-replicative complex assembly, and DNA 
unwinding, strand elongation, and replication initiation, among 
which pre-replicative complex assembly and replication 
initiation were most significantly affected (Figure  3A). 
Ribosomal biogenesis involved maturation of the large subunit 
(LSU) rRNA and assembly of large and small ribosomes 

(Figure  3B). Effects on photosynthesis primarily included 
those on light harvesting and electron transport in photosystem 
I  and II assemblies (Figure  3C). Effects on carotenoid 
biosynthesis involved terpenoid biosynthesis (Figure  3D). 
Catabolism of amino acids, primarily glycine and serine, 
was also affected (Figure  3E). Effects on carbohydrate 
metabolism included those on fructose 6-phosphate and 
1,6-diphosphate metabolic processes; gluconeogenesis and the 
biosynthesis of sucrose; starch metabolism; and cellulose 
biosynthesis (Figure 3F). In cell wall organization or biogenesis, 
biogenesis of both primary and secondary cell walls was 
significantly affected, largely because of effects on 
glucuronoxylan biosynthesis and hemicellulose metabolism 
(Figure  3G). In JcFTOE plants, there was both negative and 
positive regulation. Negative regulation primarily involved 
those genes associated with DNA replication (including 
replication fork arrest and replication checkpoints), protein 
metabolic process and translation, and nucleobase, nucleoside, 
nucleotide, and nucleic acid metabolic processes (Figure 3H). 
Positive regulation primarily involved those genes associated 
with gibberellic acid (GA)-mediated signaling pathway and 
protein amino acid phosphorylation (Figure  3I).

The biological processes associated with DEGs indicated 
that the stem development was affected in three spatial systems 
in JcFTOE plants. The nucleus, cytoplasm, and cell wall systems 
are described in Figure  4. DNA replication was the main 
process affected in the nucleus. In the cytoplasm, ribosome 
biogenesis, translation, photosynthesis, carbohydrate biosynthesis, 
and the cytoskeleton were primarily affected. The primarily 
effect in cell walls was associated with xylan (a component 
of hemicellulose) and cellulose.

Effects of JcFTOE on Circadian Rhythm
In WGCNA of this study, 6,499 of 9,564 DEGs (67.9%) clustered 
into three modules (Figure  5A). The turquoise module was 
positively correlated with JcFTOE (r = 0.95), whereas blue and 
brown modules were negatively correlated with JcFTOE (r = −1 
and −0.95, respectively; Figure  5B).

The blue module had the highest correlation with JcFTOE, 
with a coefficient of −1, indicating the type of DEGs and 
associated biological processes in the module best reflected 
the influence of JcFTOE. In the KEGG enrichment analysis, 
the main biological processes were circadian rhythm and antenna 
proteins (Figure  5C). Circadian rhythm genes of the blue 
module included late elongated hypocotyl (LHY), pseudo-response 
regulator 5 (PRR5), timing of CAB expression 1 (TOC1), gigantea 
(GI), early flowering 3 (ELF3), phytochrome B (PHYB), constitutive 
photomorphogenesis 1 (COP1), flavin-binding kelch domain F 
box protein 1 (FKF1), and protein long hypocotyl 5 (HY5). The 
genes LHY, TOC1, PRR5, and GI are associated with core 
oscillators (Nohales and Kay, 2016), and changes in their 
transcription levels were greater than those of other factors. 
Of four PRR5 genes, two were up-regulated (log2 FC = 2.75) 
and two were down-regulated (log2 FC = −3.82). Two LHY 
genes were down-regulated (log2 FC = −8.07), whereas five 
TOC1 and GI genes were up-regulated (log2 FC = 4.98 and 
2.38, respectively).
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Effects of JcFTOE on DNA Replication
According to results of the BiNGO analysis, in JcFTOE plants, 
the typical effect on the nucleus was associated with DNA 
replication, which is also the key point that affects the cell 
cycle and cell division. Genomic DNA replication consists of 
three stages: initiation, elongation, and termination (Xue et  al., 
2015). In this study, 64 DEGs were associated with DNA 
replication (Supplementary Table  3). All of those genes were 
down-regulated in JcFTOE tobacco stems, including those 

associated with DNA replication initiation, DNA unwinding, 
and DNA strand elongation (Figure  3A). The 64 DEGs were 
associated with almost all of the components required for DNA 
replication, including DNA polymerase α-primase complex, 
DNA polymerase δ/ε complex, minichromosome maintenance 
protein (MCM) complex, replication protein A (RPA), clamp 
and clamp loader, RNaseHII, and helicase (Figure 6). Therefore, 
the weakening of DNA replication in JcFTOE plants was likely 
the result of comprehensive effects on the replication process.

A

B

D

C

FIGURE 2 | KOG (Eukaryotic Orthologous Groups classification) and ClueGO grouping of differentially expressed genes and KEGG (Kyoto Encyclopedia of Genes 
and Genomes) pathway enrichment analysis. (A) KOG classification of DEGs. KEGG pathway enrichment of (B) up-regulated and (C) down-regulated DEGs. 
(D) DEG ClueGO grouping of terms or pathways, with percentage referring to the proportion of annotated terms to the total terms in each group. **Significantly 
annotated.
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Effects of JcFTOE on Cell Cycle Regulation 
and Cell Division
Stem diameters of JcFTOE tobacco plants were significantly 
smaller than those of control plants (Figures  11, 7A), which 
was most likely due to changes in cell size or number. In 
JcFTOE tobacco plants, pith cells, which accounted for the 
highest proportion of the stem, were significantly larger than 
those in control plants (Figure 7B). Stem epidermis and cortex 
cells in JcFTOE plants were also larger than those in control 
plants. Specifically, some cortex cells were significantly longer 
than those in the control, resulting in elliptical cells compared 
with the nearly round cells in the control (Figures  7C,D). 
However, number of cell layers in cortex, pith, and vascular 

bundles of JcFTOE tobacco stems decreased (Figures  7A,C,D). 
In longitudinal sections of JcFTOE stems, although there were 
fewer longitudinal cells, they were also longer than those in 
control stems (Figures  7E,F). Those results confirmed that a 
significant decrease in number of cells in JcFTOE stems was 
the primary reason for smaller and shorter stems. Changes 
in cell number are the result of cell division and proliferation, 
which are regulated by the cell cycle. Therefore, the biological 
processes of cell cycle regulation annotated by ClueGO were 
analyzed. The data set contained 55 DEGs, of which 48 were 
down-regulated (Supplementary Table  4).

BiNGO was used to further annotate the 55 DEGs, and in 
cell cycle regulation, there were three aspects: cell cycle 

A F

B G

C H

D

E

I

FIGURE 3 | Overrepresented GO (gene ontology) terms of differentially expressed genes annotated by BiNGO separated into nine groups. (A) DNA replication, 
(B) ribosomal biogenesis, (C) photosynthesis, (D) carotenoid biosynthesis, (E) catabolism of amino acids, (F) carbohydrate metabolism, (G) cell wall organization or 
biogenesis, (H) negative regulation, and (I) positive regulation. Color of a node represents the corrected p-value, with the scale ranging from yellow (p = 0.01) to dark 
orange (p = 0.01 × 10−5) and size of a node indicates the number of genes involved.
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checkpoint, regulation of cyclin-dependent protein kinase activity, 
and regulation of cell cycle process (yellow arrows in Figure 7G). 
The DEGs associated with cell cycle checkpoint were primarily 
DNA replication checkpoint genes (cyan arrows in Figure 7G), 
which were the same as those associated with negative regulation 
of DNA-dependent DNA replication initiation. The cell cycle 
process was regulated both negatively and positively (green 
arrows in Figure  7G), with the positive regulation primarily 
associated with cell cycle arrest. Furthermore, when the 55 

DEGs were annotated to the biological regulation process, both 
negative and positive regulation were also detected. Negative 
regulation was primarily associated with DNA replication in 
DNA-dependent DNA replication initiation and replication fork 
protection and cell cycle process and cyclin-dependent protein 
kinase activity (red arrows in Figure  7G). Positive regulation 
was associated with cell cycle arrest (blue arrows in Figure 7G). 
The analyses suggested that the cell cycle was inhibited in 
JcFTOE plants.

FIGURE 4 | Overview of effects on stem development in JcFTOE plants (↑ and ↓ denote up- and down-regulated expression, respectively).

A B C

FIGURE 5 | Weighted Gene Co-Expression Network Analysis (WGCNA) of differentially expressed genes (DEGs) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis of the blue module. (A) Dendrogram of DEGs and heat map of trait correlations. The map is divided into three parts: top, 
dendrogram of DEGs; middle, colors of modules of corresponding DEGs; bottom, correlations between sample DEGs and their modules. An increase in redness 
indicates a more positive correlation, and an increase in blueness indicates a more negative correlation. (B) Correlation heat map between modules and traits. The 
closer the correlation is to the absolute value of 1, the more likely the trait is associated with gene function of the module. (C) KEGG pathway enrichment analysis of 
genes in the blue module.

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Wu et al. Flowering Locus T-Mediated Stem Growth

Frontiers in Plant Science | www.frontiersin.org 9 June 2022 | Volume 13 | Article 922919

According to the above BiNGO annotation, negative regulation 
of DNA replication was the most important effect on the cell 
cycle in JcFTOE plants. The DNA-dependent DNA replication 
initiation was the key process and was associated with 16 
genes, which primarily encoded CDT1-like protein A (CDT1a) 
and cell division control protein 6 (CDC6) homolog B. The 
genes were all down-regulated in JcFTOE stems (Figure  7H). 
Expression levels of 10 genes analyzed by RT-qPCR (Figure 7I) 
were consistent with those of the transcriptome analysis. The 
proteins CDT1 and CDC6 have key roles in regulating DNA 
replication as well as in activation and maintenance of cell 
cycle checkpoints (Truong and Wu, 2011; Youn et  al., 2020). 
Down-regulation of CDT1  in Arabidopsis thaliana alters both 
nuclear DNA replication and plastid division, slowing the cell 
cycle and resulting in smaller leaves than those of wild-type 
plants (Raynaud et  al., 2005).

Replication fork protection was associated with five down-
regulated timeless (TIM) and timeless-interacting proteins 
(TIPIN). During DNA replication, the TIM–TIPIN heterodimer 
forms a replication fork protection complex (FPC). The FPC 
is associated and moves with the replication fork to help 
maintain its integrity and stability, thereby ensuring an effective 
replication process (Errico and Costanzo, 2012; Rageul et  al., 
2020; Lo et  al., 2021). Positive regulation of cell cycle arrest 
was associated with four down-regulated breast cancer-associated 
gene 1 (BRCA1) and BRCA1-associated RING domain protein 
1 (BARD1), which are components of replication fork protection 
(Daza-Martin et  al., 2019). Therefore, results in this study 
suggested that down-regulation of TIM, TIPIN, BRCA1, and 
BARD1 reduced replication efficiency.

Down-regulation of CDT1, CDC6, TIM, TIPIN, MCM, 
BRCA1, and BARD1  in JcFTOE plants slowed formation of the 
pre-replication complex and the replication fork protection 
complex, thereby reducing the efficiency of replication initiation 
and strand elongation. Because of the decrease in DNA replication 
efficiency and cell division, numbers of cells in stems decreased 

significantly. Combined with the transcriptome data, these 
results suggested that the decrease in cell number was the 
key reason why stem diameters decreased in JcFTOE plants.

Effects of JcFTOE on Ribonucleoprotein 
Complex Biogenesis, Photosynthesis, 
Carbohydrate Biosynthesis, and 
Cytoskeleton
In the cytoplasm of JcFTOE plants, the biological processes 
primarily affected included ribonucleoprotein complex biogenesis, 
translation, photosynthesis, and carbohydrate biosynthesis. The 
cytoskeleton was also affected.

Ribonucleoprotein complex biogenesis was associated with 
209 DEGs, of which 178 were down-regulated and 31 were 
up-regulated in JcFTOE tobacco stems. According to BiNGO 
annotations, the 209 DEGs were primarily associated with 
ribosomal small/large subunit assembly and rRNA processing 
(Figure  3B), and their expression was significantly down-
regulated. Down-regulated genes included 40 of 43 associated 
with ribosomal large subunit assembly, 27 of 29 associated 
with ribosomal small subunit assembly, and 84 of 110 associated 
with rRNA processing.

Effects on photosynthesis were largely reflected in light 
harvesting in photosystem I  and electron transport chain of 
the light reaction (Figure  3C). Light harvesting was associated 
with 35 DEGs, all of which were light-harvesting chlorophyll 
a/b binding protein (LHCB) genes, with 30 that were down-
regulated and five that were up-regulated. The LHCB proteins 
typically form a complex with chlorophyll and xanthophylls 
that serves as the antenna complex (Pietrzykowska et al., 2014). 
Gene expression of LHCB is regulated by multiple environmental 
and developmental cues, which primarily include light, chloroplast 
retrograde signal, the circadian clock, and the phytohormone 
abscisic acid (ABA; Xu et al., 2012). Therefore, in JcFTOE plants, 
stem development was affected by the down-regulation of many 

FIGURE 6 | KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway of DNA replication where enzymes/proteins from the DEGs (differentially expressed 
genes) are located (Green boxes on the right indicate DEGs with down-regulated expression, whereas white boxes indicate no change in expression).
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light-harvesting chlorophyll a/b binding genes in photosystem 
I, which might weaken light-harvesting ability. However, the 
electron transport chain contained 16 genes (of which 14 were 
up-regulated) that functioned in hydrolysis, redox, ATP, and 
NDH production, with encoded proteins including oxygen- 

evolving enhancer protein 3 (PsbQ), PGR5-like protein 1A 
(PGRL1), photosynthetic NDH subunit of lumenal location 
(PNSL2), and ATP synthase subunit delta.

Carbohydrate biosynthesis included fructose metabolism, 
gluconeogenesis, and polysaccharide metabolism (Figure  3F). 

FIGURE 7 | Comparison of stem cell morphology, number, and size and cell cycle regulation between JcFTOE and control (CK) plants. (A) Stem cross sections of 
JcFTOE and control plants (The values in the central boxes represented the diameter size of the samples, scale bar = 1 mm). (B) Average size of pith cells in JcFTOE 
and control plants (The values represented mean, the vertical bars indicated standard deviation, n = 66, **p < 0.01). (C,D) Stem cross sections (same magnification) 
of JcFTOE and control plants at 49 days after seeding (scale bar = 100 μm). Double arrows indicate thickness of the cortex, and straight lines indicate larger cells in 
the cortex. (E,F) Stem longitudinal sections (same magnification) of JcFTOE and control plants at 49 days after seeding (scale bar = 100 μm). (G) BiNGO annotated 
overrepresented GO (gene ontology) terms associated with cell cycle regulation. Color of a node represents the corrected p-value, with the scale ranging from 
yellow (p = 0.01) to dark orange (p = 0.01 × 10−5) and size of a node indicates the number of genes involved. Different colors of arrows suggested different types of 
enriched pathways. (H) Expression heat map of differentially expressed genes (DEGs) associated with DNA-dependent DNA replication initiation. Control samples: 
T1, T2, T3; JcFTOE samples: T4, T5, T6. Blue indicates a decrease in gene expression; red indicates an increase in gene expression. (I) Reverse-transcription qPCR 
of 10 DEGs associated with DNA-dependent DNA replication initiation (bars represented gene expression mean and standard error of mean, n = 3, **p < 0.01, 
***p < 0.001, ****p < 0.0001, and the corresponding gene accession number was under the bars.). Epi: epidermis; Co: cortex; Ph: phloem; Xy: xylem; Pi: pith.
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Fructose metabolism was the most important process and was 
associated with 26 DEGs. Twenty-three of those DEGs were 
up-regulated, with encoded proteins including fructose 
1,6-bisphosphatase, fructose 2,6-bisphosphatase, fructose-
bisphosphate aldolase, and fructose kinase-2. The DEGs associated 
with sucrose metabolism were all fructose metabolism-related 
genes (Supplementary Table 5). However, the DEGs associated 
with gluconeogenesis metabolism included genes other than 
those associated with fructose metabolism. Therefore, it was 
hypothesized that changes in fructose metabolism might 
subsequently cause changes in gluconeogenesis metabolism. 
Among the DEGs associated with polysaccharide metabolism, 
eight up-regulated genes were associated with starch biosynthesis, 
with four encoding 1,4-alpha-glucan-branching enzyme 1 and 
4 encoding phosphoglucan phosphatase. Therefore, it was 
hypothesized that the starch content of JcFTOE tobacco stems 
would be  higher than that in control stems. Indeed, water-
soluble starch content of JcFTOE tobacco stems was significantly 
higher than that of control stems, whereas water-soluble sugar 
content was not significantly different (Figure  8).

According to the KOG classification, 70 DEGs were closely 
associated with the cytoskeleton (Figure  2A and 
Supplementary Table  6), suggesting strong effects on cell 
cytoskeletons in stems of JcFTOE plants. Major types of genes 
encoded actin, tubulin, kinesin-like protein, and myosin, with 
the greatest number of genes encoding kinesin-like proteins. 
The different types of cytoskeleton-related genes were both 

up- and down-regulated. The cytoskeleton is a dynamically 
adaptive structure composed of microtubules and actin filaments 
(Lian et  al., 2021). Microtubules are dynamic heteropolymers 
of α and β-tubulin that coordinate their assembly in response 
to various intracellular and extracellular signals and have key 
roles in the cell cycle and cell wall construction (Verma, 2001; 
Cai, 2010). The actin cytoskeleton has a key role in many 
cellular processes that regulate cell growth and morphology 
(Hussey et al., 2006; Breuer et al., 2017). Kinesins and myosins 
are motor proteins that actively move along microtubules and 
actin filaments, respectively, and perform transport functions 
(Nakamura et al., 2014; Nebenfuhr and Dixit, 2018). Therefore, 
changes in expression of genes associated with the cytoskeleton 
of JcFTOE tobacco stems were coordinated with changes in 
cell division and cell morphology.

Effects of JcFTOE on Cell Wall
Plant cell walls are composed primarily of cellulose, pectins, 
hemicelluloses, and lignin (Rennie and Scheller, 2014). 
Hemicelluloses include xyloglucans, xylans, mannans, 
glucomannans, and β-(1 → 3,1 → 4)-glucans (Scheller and Ulvskov, 
2010). In JcFTOE plants, primary and secondary cell wall 
biogenesis were both affected, primarily by affecting hemicellulose 
metabolism (Figure  3G).

Biogenesis of the primary cell wall was associated with 10 
DEGs. Seven up-regulated genes encoded cellulose synthase-
like proteins E1, E6 (CSLE1, CSLE6), G2, and G3 (CSLG2, 

FIGURE 8 | Carbohydrate components in tobacco stems of JcFTOE and control (CK) plants (The values represented mean, the vertical bars indicated standard 
deviation, n = 3, **p < 0.01; ***p < 0.001).
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CSLG3), and three down-regulated genes encoded cellulose 
synthase-like protein D3 (CSLD3). The genes were all cellulose 
synthase-like (CSL) genes that encoded glycosyltransferases, 
which were likely associated with hemicellulose polymer 
biosynthesis (Galinousky et  al., 2020).

Thirty-two DEGs were associated with secondary cell wall 
biogenesis. Sixteen of those were annotated as glucuronoxylan 
4-O-methyltransferase (GXM), β-1,4-xylosyltransferase (associated 
with irregular xylem (IRX) 9, 10, 10-like, and 14H), and IRX15-
like genes. Seven were annotated as cellulose synthase A catalytic 
subunit 4, 7, 8 (CESA4, 7, 8) genes, and seven were annotated 
as fasciclin-like arabinogalactan 11 or 12 (FLA11 or FLA12) genes. 
The two other genes were annotated as wall acetylation 3 (RWA3) 
and trichome birefringence-like 16 (TBL16). Except for one down-
regulated gene (TBL16), the other 31 genes were up-regulated. 
Furthermore, among the 32 DEGs associated with secondary cell 
walls, 18 were associated with xylan biosynthesis, deposition, and 
acetylation, whereas the others were associated with cellulose 
biosynthesis and the connection between hemicellulose and cellulose.

In addition, 36 DEGs associated with hemicellulose 
metabolism were all xylan metabolism-related proteins. According 
to Swiss-Prot annotations, the genes primarily encoded beta-
D-xylosidase, glucuronoxylan 4-O-methyltransferase, beta-1,4-
xylosyltransferase, xylan glucuronosyltransferase, and protein 
IRX15-like. Those genes associated with xylan biosynthesis, 
with one exception, were all up-regulated in JcFTOE stems 
(Supplementary Table  7). Therefore, in JcFTOE plants, 
hemicellulose was affected by increases in xylan biosynthesis. 
In the analysis of stem carbohydrate contents, xylan and 
hemicellulose contents in JcFTOE tobacco stems were indeed 
significantly higher than those in the control (Figure  8).

In summary, stem development in JcFTOE tobacco plants 
was affected by increases in contents of xylan, hemicellulose, 
and cellulose in cell walls.

Effects of JcFTOE on Vascular Bundle 
Development
Tobacco stems contain bicollateral vascular bundles (Boucheron 
et  al., 2002). The stele has six parts from outside to inside: 
pericycle, external phloem, cambium, xylem, internal phloem, 
and pith. In stem sections, morphology and structure of the 
stem vascular bundle in JcFTOE plants were clearly different 
compared with those of control plants. Stems of JcFTOE plants 
had more internal phloem bundles than those of controls, and 
the external phloem had stronger phloem fibers. In addition, 
JcFTOE stems had fewer cambium cells than those of control 
stems, indicating weaker secondary growth. In particular, the 
degree of xylem development in JcFTOE tobacco was significantly 
weaker than that in control tobacco and was characterized by 
fewer cell layers, weaker cell division and differentiation, and 
smaller vessels (Figures  9A,B).

Thirty-two DEGs were associated with secondary cell wall 
biogenesis. According to previous studies (Zang et  al., 2015; 
Zhong et  al., 2019), 25 of the DEGs were IRX genes 
(Supplementary Table 8). The IRX genes are closely associated 
with xylem development and encode enzymes or transcription 

factors that participate in biosynthesis of secondary wall cellulose, 
xylan, lignin, and pectin (Hao and Mohnen, 2014). In this 
study, all IRX genes were up-regulated (Figures  9C,D), with 
13 associated with xylan biosynthesis, seven with cellulose 
biosynthesis, and five with microfibril orientation. Thus, the 
up-regulated DEGs contributed to increasing contents of xylan 
(a component of hemicellulose) and cellulose in the xylem. 
According to the transcription data, there were no differences 
in lignin-related gene expression. Therefore, contents and 
characteristics of hemicellulose and cellulose in secondary cell 
walls might be the primary factors affecting xylem development 
in JcFTOE plants. Moreover, such increases in cell wall xylan 
and cellulose contents might weaken xylem differentiation 
and development.

Effects of JcFTOE on Plant Hormones
Florigen is a proteinaceous hormone that has wide-ranging 
regulatory effects on growth (Lifschitz et al., 2014). In addition 
to inducing flowering, it also regulates, for example, tuber 
formation in potatoes, leaf size in Arabidopsis and tobacco, 
cluster shape in grape, and bud formation in poplar (Danilevskaya 
et  al., 2011; Shalit-Kaneh et  al., 2019). In this study, signal 
transduction of a variety of plant hormones was affected in 
JcFTOE plants, including auxin, cytokinin, GA, ABA, and salicylic 
acid (SA). Therefore, the FT protein hormone may interfere 
with functions of a variety of other plant hormones by affecting 
hormone signal transduction.

Transcriptome data showed that the JcFT florigen protein 
had different effects on different hormone signal transduction 
pathways. The primary factors associated with each pathway 
and numbers of up- and down-regulated DEGs are presented 
in Figure  10. The greatest number of DEGs was associated 
with the auxin signal transduction pathway. Differentially 
expressed genes associated with auxin and cytokinin tended 
to be down-regulated in JcFTOE stems, whereas those associated 
with gibberellin, ABA, and SA were up-regulated.

There were three major families of auxin early response 
genes, including auxin/indole-3-acetic acid (Aux/IAA), gretchen 
hagen 3 (GH3), and small auxin up RNA (SAUR). Most DEGs 
were SAUR and Aux/IAA genes, and most were down-regulated. 
However, GH3 was up-regulated in JcFTOE stems. In addition, 
auxin influx carriers like-aux1 (LAX) and transport inhibitor 
response protein 1 (TIR1) were generally down-regulated. The 
largest family of early auxin-responsive genes in higher plants 
is the SAUR family, but the function of only a few SAUR 
genes is known (Zhang et  al., 2021). SAUR genes can affect 
the distribution of indole-3-acetic acid (IAA; Huang et  al., 
2020). For example, SAUR69 inhibits auxin transport in tomato 
fruits (Shin et al., 2019), and SAUR45 affects auxin biosynthesis 
and transport in rice (Xu et  al., 2017). In this study, SAUR 
was primarily associated with auxin-induced protein 15A/15A-
like. Therefore, the function of many of the SAUR DEGs in 
this study might be associated with transport and biosynthesis 
of auxin. However, further research is needed. The GH3 gene 
encodes an enzyme that catalyzes the coupling of free IAA 
to amino acids and therefore primarily regulates growth and 
development by regulating the level of free IAA. Overexpression 
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of GH3 in rice leads to a decrease in free IAA content and 
dwarfing of transgenic plants (Gan et al., 2019). In this study, 
four GH3s were all up-regulated, suggesting free IAA levels 
decrease in JcFTOE plants. Aux/IAA family members may bind 
with auxin response factors (ARFs) and repress expression 
of genes activated by ARFs in the absence of auxin. When 
Aux/IAA is degraded by the 26S proteasome to release ARFs 
at high auxin levels, auxin response genes are expressed (Luo 
et  al., 2018). In this study, down-regulation of Aux/IAA in 
JcFTOE tobacco stems indicated that the amount of bound 
ARF decreased. The auxin influx carrier identified in this 
study was LAX2, which is a functional auxin influx carrier 
implicated in regulating vascular development in cotyledons 
(Swarup and Peret, 2012).

Thus, in JcFTOE in tobacco stems, biosynthesis and transport 
of auxin and content of free IAA might decrease, which 
would regulate expression of auxin response genes. Auxin is 
essential in formation of the vascular system, and it has an 

important regulatory role in early transdifferentiation into 
xylem cells (Yoshida et al., 2009). Therefore, changes in auxin 
signaling pathway factors might be one of the most significant 
factors that led to changes in vascular bundles of JcFTOE 
tobacco plants.

In the cytokinin signaling pathway of JcFTOE plants, effects 
were generally associated with cytokinin receptor 1 (CRE1) 
and type-A authentic response regulator (ARR). Of type-A 
ARRs, ARR 5, 6, 9, and 15 were all down-regulated in JcFTOE 
tobacco. The genes encoding those proteins are negative regulators 
of cytokinin response, and their mutants have increased sensitivity 
to cytokinins (To et  al., 2004; Bhaskar et  al., 2021). Therefore, 
stems in JcFTOE tobacco might be  more sensitive to cytokinins 
than those of the control.

The gibberellin signaling pathway was primarily associated 
with GID1 and phytochrome-interacting factor 3, 5 (PIF3, 5), 
with GID1 the most important in the positive regulation of 
gibberellin signals described above.

FIGURE 9 | Development of stem vascular bundles in JcFTOE and control plants. (A,B) Stem cross sections (same magnification) of JcFTOE and control plants at 
49 days after seeding (scale bar = 50 μm). Whereas JcFTOE plants have five smaller internal phloem bundles, control plants have three larger internal phloem bundles. 
Circles indicate fiber cells in the external phloem. (C) Expression heat map of 25 differentially expressed genes identified as IRX genes. Control samples: T1, T2, T3; 
JcFTOE samples: T4, T5, T6. Blue indicates a decrease in expression; red indicates an increase in expression. (D) Reverse-transcription qPCR verification of 25 
differentially expressed IRX genes (bars represented gene expression mean and standard error of mean, n = 3, **p < 0.01, ****p < 0.0001, and the corresponding 
gene accession number was under the bars). CK: control; Pi: pith, Co: cortex, Ph: phloem, Ca: cambium, Xy: xylem, Ip: internal phloem, Ep: external phloem.
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The ABA signal transduction pathway was associated with 
pyrabactin resistance 1-like (PYL), clade A protein phosphatases 
type-2C (PP2C), sucrose non-fermenting 1-related subfamily 
2 (SnRK2), and ABA-insensitive 5 (ABI5). The PYL receptors 
have major roles in ABA sensing and signal transduction. 
They perceive intracellular ABA and form a ternary complex 
with PP2Cs, thereby inhibiting them. The inhibition allows 
activation of downstream targets of PP2Cs, including  
SnRK2 protein kinase, which has a key role in regulation 
of the transcriptional response to ABA (Bueso et  al., 2014). 
The most PYL and SnRK2  in JcFTOE tobacco stems were 
up-regulated, whereas most PP2Cs were down-regulated. 
Therefore, the response to ABA likely increased in JcFTOE  
stems.

The SA signaling pathway was associated with nonexpresser 
of PR gene 1 (NPR1), TGACG sequence-specific binding proteins 
(TGA), and pathogenesis-related (PR) protein 1. Notably, the 
six associated TGA 1 or 2 and two PR1 proteins were all 
up-regulated in JcFTOE tobacco stems. Expression of PR genes 
is associated with induction of plant systemic acquired resistance 
(Durrant and Dong, 2004). Salicylic acid activates defense 
responses through its downstream component NPR1 (Zhang 
et  al., 2010). The TGA transcription factors regulate PR genes 
because they physically interact with the known positive regulator 
NPR1 (Kesarwani et  al., 2007). Therefore some aspects of 
tobacco resistance might also increase in JcFTOE plants. Repeated 
observations indicate that JcFTOE tobacco is more resistant to 
plant hoppers than the control, because under the same 
conditions, control tobacco leaves wilted under plant hopper 
attack, whereas JcFTOE tobacco leaves remained firm and healthy 
(data not shown).

DISCUSSION

In the JcFTOE plants, stem stature and thickness decreased. 
Stems of most plants that overexpress FT or FT-like genes 
are similarly affected (Lifschitz et  al., 2006; Li et  al., 2015; 
Gao et  al., 2016; Adeyemo et  al., 2017; Pasriga et  al., 2019; 
Odipio et  al., 2020). Therefore, inhibition of stem growth is 
likely a basic effect of the FT gene. However, the mechanisms 
by which FT causes stem thinning have not been fully 
investigated. The results in this study indicated that stem 
thinning might be  due to the slowing of cell division because 
of effects on DNA replication and the cell cycle, which 
ultimately decreased cell number and resulted in thinner and 
shorter stems. Shalit et  al. (2009) investigated the tomato 
precursor of florigen, single flower truss (SFT), and a potent 
SFT-dependent SFT inhibitor, self-pruning (SP). They found 
that a high SFT/SP ratio is associated with growth restriction 
of the shoot apical meristem, which resulted in faster 
transformation to flowering (Shalit et al., 2009). In this study, 
an SP (LOC107810240) was significantly down-regulated (log2 
FC = −4.83) in JcFTOE tobacco stems, therefore, FT could 
reduce expression of the SP gene in stems, further increasing 
the FT/SP ratio. We speculate that the transition from vegetative 
to reproductive growth may involve short-term slowing of 
growth in order to complete the transition. The inhibitory 
function of FT on stem cell division demonstrated in this 
study might be  the trigger for such a slowdown.

In the WGCNA, DEGs associated with circadian rhythm 
and antenna proteins were grouped into a module that was 
most highly correlated with JcFTOE (r = −1; Figure 5C). Several 
cis-acting sequence elements have been identified for circadian 

FIGURE 10 | Hormone types and associated differentially expressed genes (DEGs). The y-axis indicates number of DEGs displayed on the bars, and the x-axis 
shows names of DEGs. LAX: like-aux1; TIR1: transport inhibitor response protein 1; Aux/IAA: including auxin/indole-3-acetic acid; SAUR: small auxin up RNA; GH3: 
gretchen hagen 3; CRE1: cytokinin receptor 1; A-ARR: type-A authentic response regulator; GID1: gibberellin-insensitive dwarf 1; PIF: phytochrome-interacting 
factor; PYL: pyrabactin resistance 1-like; PP2C: clade A protein phosphatases type-2C; SnRK2: sucrose non-fermenting 1-related subfamily 2; ABI5: abscisic acid-
insensitive 5; NPR1: nonexpresser of PR gene 1; TGA: TGACG sequence-specific binding proteins; PR-1: pathogenesis-related protein 1.
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control of CAB gene expression (Millar and Kay, 1996; Andronis 
et  al., 2008). Transcription of CAB genes is circadian-regulated 
(Millar and Kay, 1991), and rhythmic expression of CAB genes 
has often been used as a marker for circadian regulation in 
plants (Thain et  al., 2002). Therefore, the significant changes 
in CAB expression in JcFTOE plants confirmed that the circadian 
clock was altered.

Considering the effects of JcFTOE on photosynthesis, LHCB 
was found to be  mainly down-regulated, while 14 genes 
involved in the electron transport chain were up-regulated. 
These included PGR5-like protein 1A (PGRL1) and oxygen-
evolving enhancer protein 3 (PsbQ). The antenna complex 
absorbs sunlight and transfers the excitation energy for 
photosynthesis in green plants, and the LHCB proteins are 
important components of the antenna complex (Bassi et  al., 
1999). Studies have demonstrated the importance of the cyclic 
electron transport (CET)-dependent proton motive force (pmf) 
under low light for ATP synthesis (Walker et al., 2014). PGR5/
PGRL1 and NDH can mediate CET processes in low light 
and facilitate CO2 assimilation by supplying additional ATP 
(Ma et  al., 2021). Studies have also indicated that the PsbQ 
protein is required for photoautotrophic growth under low-light 
conditions (Yi et  al., 2006). Therefore, we  speculated that 
the down-regulated expression of LHCB observed in this study 
implied an impairment of light absorption, which may 
be  perceived by JcFTOE tobacco as a low-light signal. The 
up-regulated expression of the related genes in the electron 
transport chain observed in this study may be  a synergistic 
response to the down-regulation of LHCB.

Complex effects on multiple circadian clock elements and 
DNA replication were also observed in JcFTOE plants. 
Transcription levels of core oscillators of circadian rhythm 
(LHY, TOC1, PRR5, and GI) were significantly affected by 
the overexpression of JcFT. The core oscillator GI is a unique 
plant protein that is involved in many developmental processes, 
including flowering time regulation, circadian rhythm control, 
sucrose signaling, and starch accumulation, among others 
(Mishra and Panigrahi, 2015; Cha et  al., 2017). The results 
suggested that changes in the circadian rhythm was a 
characteristic effect of JcFT.

Formation of a pre-replication complex is key to the control 
of DNA replication before a cell enters the S phase. The complex 
is assembled at the replication origin by sequential association 
of the origin recognition complex, followed by CDT1 and 
CDC6, which ultimately recruit the DNA helicase MCM to 
open the replication fork, allowing DNA replication to begin 
(Takisawa et  al., 2000; DePamphilis, 2003; Brasil et  al., 2017). 
Therefore, CDC6 has a key role in regulating DNA replication, 
as well as in activation and maintenance of cell cycle checkpoints 
(Youn et  al., 2020). Binding of TOC1 to the CDC6 promoter 
is responsible for diurnal suppression of DNA replication. Thus, 
TOC1 safeguards the transition from G1 to S phases and 
controls the timing of the early mitotic cycle and plant growth. 
When TOC1 is overexpressed, plants have a shorter and delayed 
S phase (Fung-Uceda et  al., 2018). The protein PRR5 directly 
down-regulates CCA1 and LHY expression (Nakamichi et  al., 
2010), and LHY is a MYB transcription factor that directly 

binds to the TOC1 promoter to negatively regulate its expression 
(Gendron et  al., 2012). Therefore, the down-regulation of LHY 
and the up-regulation of TOC1 in this study were generally 
consistent with the weaker growth of JcFTOE tobacco. Changes 
in the core oscillator proteins LHY, PRR5, TOC1, and GI, as 
well as the significantly down-regulated expression of CAB 
antennae proteins, are among the most common effects on 
stems in JcFTOE tobacco.

The rice FT homolog Hd3a interacts with 14-3-3 proteins, 
and two Hd3a monomers bind to C-terminal regions of 
dimeric 14-3-3 proteins to produce a complex (Taoka et  al., 
2011, 2013; Putterill and Varkonyi-Gasic, 2016). The 14-3-3 
proteins are notable for their ability to bind a variety of 
signal proteins with diverse functions, including kinases, 
phosphatases, and transmembrane receptors. As a result, they 
have important roles in a wide range of important regulatory 
processes, including cell cycle control, mitotic signal 
transduction, and apoptotic cell death (Fu et  al., 2000). 
Ligands of 14-3-3 proteins share a common binding 
determinant, which mediates contact with 14-3-3 proteins 
(Fu et  al., 2000). For example, in shoot apical meristems of 
rice, rice centroradialis (RCN) competes with Hd3a in binding 
to 14-3-3 proteins and represses florigenic activity. When 
RCN is knocked out, Hd3a more easily binds to 14-3-3 
proteins to form an excess of complexes (Kaneko-Suzuki 
et  al., 2018). This type of interaction helps to understand 
why multiple biological processes were affected during stem 
development in JcFTOE plants. Binding of the JcFT protein 
to 14-3-3 proteins might affect the binding of many other 
proteins to 14-3-3 proteins and lead to changes in expression 
of related genes, thereby altering many biological processes. 
This study demonstrated that 14-3-3 proteins could directly 
interact with 294 proteins of DEGs involved in 15 biological 
processes (Supplementary Table  9). In addition, most of 
the biological processes annotated from the DEGs were 
directly associated with 14-3-3 proteins. Therefore, 14-3-3 
proteins likely have important roles in FT function. In 
addition, 14-3-3 proteins might be  primary mediators of the 
effects on stem development in JcFTOE tobacco.

The 14-3-3 proteins also mediate circadian regulation (Prado 
et  al., 2019). Therefore, it was hypothesized that FT mediated 
circadian regulation via 14-3-3 proteins and affected DNA 
replication, expression of CAB, and other processes. A conceptual 
model of regulation of DNA replication and circadian rhythm 
developed for JcFTOE plants is shown in Figure  11.

In this study, among the DEGs associated with secondary 
cell wall biogenesis, all 18 genes associated with xylan 
biosynthesis, deposition, and acetylation were up-regulated. 
Those genes included glucuronoxylan 4-O-methyltransferase, 
β-1,4-xylosyltransferase, IRX15-like, CESA4, 7, and 8, and 
FLA. Glucuronoxylan 4-O-methyltransferase, β-1,4-
xylosyltransferase, and IRX15-like are closely associated with 
biosynthesis of glucuronoxylan, and mutations in those genes 
lead to decreases in xylan content (Tanaka et  al., 2003; Wu 
et  al., 2009; Mortimer et  al., 2010; Brown et  al., 2011). The 
genes CESA4, 7, and 8 have essential roles in cellulose biosynthesis 
in secondary cell walls (Chen et  al., 2005; Stork et  al., 2010; 
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McFarlane et  al., 2014). A causal relationship between FLA 
transcript abundance in plant stems and cellulose microfibril 
orientation and wood properties has been previously reported 
(MacMillan et  al., 2010). Because xylan is an important 
component of hemicellulose (Pauly et  al., 2013), up-regulation 
of associated genes may affect the content and characteristics 
of hemicellulose and thereby affect cell wall development 
(Grantham et  al., 2017). Therefore, in JcFTOE plants, stem 
development might be  affected by increases in hemicellulose 
and cellulose contents in secondary cell walls.

In JcFTOE plants, expression of many IRX genes was 
significantly up-regulated, and as a result, xylem development 
was significantly affected. Clarifying how JcFT regulates IRX 
gene expression may help to understand the evolution and 
function of FT.

In addition to observations of stem anatomy in horizontal 
and longitudinal sections, epidermal cells of leaves, petioles, 
and stems were also examined. In JcFTOE plants, an important 
feature was longer cells (Supplementary Figure  3). Gibberellic 
acid regulates various developmental processes, including 
elongation of cells and shoots, transition to flowering, and 
flower growth, among other processes (Illouz-Eliaz et al., 2019). 
In this study, the GA-mediated signal pathway was significantly 
affected in JcFTOE plants (Figures 3I, 10), which might increase 
the response of tobacco stems to gibberellin. Therefore, it was 
hypothesized that the lengthening of cells in JcFTOE plants 
was most likely caused by changes in the gibberellin signaling  
pathway.

In addition, it is necessary to investigate the effects of 
different FT overexpression levels on plant development to 

better understand the mechanisms through which FT regulation 
influences flowering and growth. We  examined the effects of 
JcFT overexpression on flowering 37 and 42 days after sowing 
(Supplementary Figure  5A). The results showed significantly 
higher expression of JcFT in JcFTOE plants that flowered at 
37 days compared with those that flowered at 38–42 days. 
However, there was no significant difference in the expression 
level of JcFT in JcFTOE plants flowering between 38 and 
41 days (Supplementary Figure  5B). This suggests JcFTOE 
plants with high levels of JcFT bloomed earlier. However, 
there was no linear relationship between the flowering sequence 
and the JcFT expression level. It is possible that this investigation 
was limited by the experimental material. The stems and 
leaves of the JcFTOE plants used in the experiments did not 
differ significantly in size, and the effect of JcFT expression 
on stem and leaf growth could not be adequately determined. 
To gain a deeper understanding of the role of JcFT in 
development, it would be  necessary to use larger samples 
and, especially, to develop JcFTOE plants with visible differences 
in the stem and leaf sizes.
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