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Nitrogen (N) is often recognized as the primary limiting nutrient element for the growth and 
production of forests worldwide. Litterfall represents a significant pathway for returning nutrients 
from aboveground parts of trees to the soils and plays an essential role in N availability in 
different forest ecosystems. This study explores the N transformation processes under litterfall 
manipulation treatments in a Masson pine pure forest (MPPF), and Masson pine and Camphor 
tree mixed forest (MCMF) stands in subtropical southern China. The litterfall manipulation 
included litterfall addition (LA), litterfall removal (LR), and litterfall control (LC) treatments. The 
project aimed to examine how litterfall inputs affect the soil N process in different forest types 
in the study region. Results showed that soil ammonium N (NH4

+-N) and nitrate N (NO3
−-N) 

content increased under LA treatment and decreased under LR treatment compared to LC 
treatment. LA treatment significantly increased soil total inorganic N (TIN) content by 41.86 
and 22.19% in MPPF and MCMF, respectively. In contrast, LR treatment decreased the TIN 
content by 10 and 24% in MPPF and MCMF compared to LC treatment. Overall, the soil net 
ammonification, nitrification, and N mineralization rates were higher in MCMF than in MPPF; 
however, values in both forests were not significantly different. LA treatment significantly 
increased annual net ammonification, nitrification, and mineralization in both forest types 
(p < 0.05) compared to LC treatment. LR treatment significantly decreased the values (p < 0.05), 
except for ammonification, where LR treatment did not differ substantially compared to LC 
treatment. Our results suggested that changes in litterfall inputs would significantly alter soil 
N dynamics in studied forests of sub-tropical region. Moreover, mixed forest stands have 
higher nutrient returns due to mixed litter and higher decomposition compared to pure 
forest stands.
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INTRODUCTION

Nitrogen (N) is often recognized as a limiting nutrient element 
for tree growth in various forest ecosystems (Schimel and 
Bennett, 2004; Farooq et  al., 2021a). Soil N mineralization is 
defined as the process in which the organic N is converted 
to inorganic N in the soil through the decomposition processes. 
It is a vital index determining forest growth, nutrient cycling, 
and soil fertility in forest ecosystems (LeBauer and Treseder, 
2008). N mineralization is crucial in maintaining soil health, 
regulating site fertility, enhancing biomass productivity, and 
improving forest ecosystem services (Urakawa et  al., 2016). 
As an essential part of N cycling in forest ecosystems (Farooq 
et al., 2021b), N mineralization is influenced by different biotic 
and abiotic factors, including forest types (Hobbie, 2015), 
quantity and quality of the litterfall (Fierer et  al., 2005), site 
conditions (Cookson et  al., 2007; Farooq et  al., 2019a), and 
climatic factors.

Forest types could cause a significant change in the rates 
and patterns of the N mineralization process (Mgelwa et  al., 
2019). Differences in litter quantity and quality resulting from 
various tree species in these forests would alter litter decomposition. 
For example, Pérez et  al. (1998) reported that annual N 
mineralization rates varied from 20 to 23 kg‧ha−1 and 31 to 
37 kg‧ha−1 for Fitzroya and Nothofagus forest, respectively, in 
the coastal range of southern Chile. Son and Lee (1997) reported 
that N mineralization and nitrification were significantly different 
among the tree species, and the annual N mineralization rate 
was about 44 kg‧ha−1 for P. rigida, 92 kg‧ha−1 for Larix leptolepis, 
and 112 for Q. serrata. Litterfall quantity and quality accumulated 
on the forest floors were attributed to the variation of soil N 
dynamics because litterfall strongly influenced environmental 
factors which regulated soil N transformations.

Serval studies have examined the influence of litter amounts 
on soil N mineralization processes; however, the effect of 
litterfall changes on N mineralization and nitrification processes 
is still not fully understood in different forest types, because 
the increasing atmospheric CO2 concentration could stimulate 
tree productivity and thereby increase litterfall production in 
different forest ecosystems (Sayer et  al., 2007). Therefore, 
understanding how these environmental factors regulate soil 
N transformations in forests is essential for sustainable forest 
ecosystem management.

The present study aimed to investigate the influence of 
litterfall manipulation treatments on the soil N transformation 
process (inorganic N, N mineralization, ammonification and 
nitrification, and net annual production) in two common but 
important forest types in subtropical China: Masson pine pure 
forests (MPPF) and Masson pine and Camphor tree mixed 
forests (MCMP). Masson pines are important for the ecological 
balance of forest ecosystems. This species prevents soil erosion 
because the pine tree’s roots hold the soil in place (Gilani 
et  al., 2020). Whereas apart from providing attractive red and 
yellow striped wood, the Camphor tree has various 
medicinal properties.

We hypothesized that (1) sites receiving more litterfall would 
have higher N mineralization and nitrification rates than sites 

that received less litterfall, and (2) the MCMP stands would 
have a higher N transformation rate than the MPPF stands 
due to mixed litterfall.

MATERIALS AND METHODS

Study Sites
The study was performed at Hunan Botanical Garden in 
Changsha city, China, Hunan Province. It is a typical moist 
subtropical zone with a mean annual temperature of 17.2°C 
and mean temperatures of 4.7 and 29.4°C in January and July, 
respectively. Annual precipitation ranged between 1,200 and 
1700 mm with an average annual rainfall of 1,422 mm, most 
from April to August. The mean annual relative humidity was 
>80%. The frost-free period was 270–310 days per year. The 
garden area covers about 140 ha, and the elevation is 50–110 m 
with an average site slope of 5–15o. According to US soil 
taxonomy, the soil is classified as typical red earth, and the 
soil texture ranges from clay loam to sandy loam. Soil pH 
on the surface (0–10 cm) was acidic, with an average pH of 
5.0. The dominant tree species in the garden are Camphor 
tree [Cinnamomum camphora (L.) J. Presl.], Chinese fir 
[Cunninghamia lanceolata (Lamb.) Hook.], Chinese sweet gum 
(Liquidambar acalycina H.T. Chang), Masson pine (Pinus 
massoniana Lamb.), and Slash pine (Pinus elliottii Engelm.). 
The major understory plants included Camptotheca acuminate 
Decne, Clerodendrum cyrtophyllum Turcz, Litsea mollis Hemsl, 
Cyclobalanopsis glauca, Camellia oleifera, Castanopsis sclerophylla 
(Lindl. and Paxton) Schottky, Lophatherum sinense Rendle, and 
Phytolacca acinosa Roxb.

Experimental Design
Masson pine pure forests (MPPF) and Masson pine and Camphor 
tree mixed forests (MCMP) were selected as research plots. 
Both MPPF and MCMF stands were planted in 1991. The 
initial tree density was 2 m × 2 m in MPPF stands, and 2 m × 3 m 
in MCMF stands, with a proportion of 50%:50% of the Masson 
pine and Camphor tree species in the stands. The experiment 
was set up as a split-plot design, with the main factor as 
forest types. Four replication plots with 20 m × 20 m were 
established in each forest type. Litter treatments as the sub-factors 
nested in the forest types. The litter traps were designed as 
2 × 3 m square in size using a nylon netting screen (mesh size 
1 mm). Using ropes, the litter traps were mounted on wooden 
poles approximately 80 cm above the ground. Three replications 
of litter traps were randomly set up in each plot for collecting 
the litterfall. The characteristics of the selected two forest types 
in the study area are shown in Table  1 (Figure  1).

Litterfall Manipulation Treatments
In this study, litterfall manipulation contained three treatments: 
litterfall removal (LR), litterfall addition (LA), and natural 
litterfall input (as litter control, LC). The LR treatment was 
performed by removing all the litter materials from the 
forest floor in the study plot. Then, the litter traps were 
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installed in the plot to prohibit litter from falling on the 
floor. All the litter was collected and removed from the 
mesh traps on a 2-week basis. The LA treatment was 
performed to transfer and evenly distribute litter materials 
obtained from an LR plot described above on a LA plot. 
The LA treatment was carried out at the time when LR 
was performed. The LC treatment was performed to keep 
the natural status of litterfall on the floor, and the normal 
litterfall process was allowed, neither removal nor addition 
in the plots.

Soil Sample Collections
Soil samples were collected from all litterfall treatment plots 
in February, May, August, and November 2016. Approximately 
100 g of mineral soils was collected from 0 to 15 cm soil 
depth from each of the five locations in a plot about 1 m 
apart. The soil samples from these five points were pooled 
to form a soil composite sample. The soil samples were 
loaded into plastic bags and delivered to the Central South 
University of Forestry and Technology (CSUFT) laboratory 
for further analysis.

Soil N Transformation Dynamics 
Measurements
Soil NH4

+-N and NO3
−-N contents were measured using a 

Flow Injection Auto Analyzer (Lachat Instruments, Milwaukee, 
WI; Son et  al., 1995). Briefly, 10 g of 2-mm sieved and field-
moist soils with 100 ml of 2 M KCl on a glass bottle was 
shaken for 60 min on a reciprocating shaker. Then, the extracts 
were settled for 30 min. After that, the extracts were passed 
through a Whatman #42 filter paper. These extracts were 
analyzed for NH4

+-N and NO3
−-N concentrations.

Using a resin core method, soil net N mineralization was 
measured four times in 2016 (February, May, August, and 
November; Hatch et  al., 2000). Undisturbed soil cores were 
isolated and incubated inside PVC cylinders (4.0 cm in diameter, 
12 cm high, equipped with 5 g anion exchange resin). Two 
PVC cylinders were used for each N mineralization measurement 
time in each litterfall manipulation plot. One PVC cylinder 
was used for in situ incubation, and the other was used to 
take soil samples. At the beginning and end of each incubation 
period, the soil NH4

+-N and NO3
−-N measurements were used 

to calculate soil N mineralization rate, soil net N ammonification 
rate, and soil net N nitrification rate under different litterfall 
treatments in the examined forests.

 
Soil net N ammonification rate Soil NH -N content after 4

incubation Soil NH -N content 4
before incubation/30 days 
of incubation

+=
+−

 
 (1)

 

Soil net nitrification rate Soil NO -N content after 3
incubation Soil NO -N content 3
before incubation/30 days 
of incubation

−=
−−

 (2)

TABLE 1 | Characteristics of the two selected forest types in the study site (DBH = Diameter at breast height).

Forest type
Stand density 

(trees ha−1)
Stand age (year−1) Mean DBH (cm) Average height (m)

Under crown  
height (m)

Canopy density

MPPF* 1324 25 16.9 ± 2.32 12.7 ± 2.23 7.8 ± 3.23 0.8
MCMF 1356 25 16.2 ± 2.94 12.3 ± 3.12 6.2 ± 3.26 0.9

*MPPF, Masson pine pure forests; MCMF, Masson pine and Camphor tree mixed forests.

FIGURE 1 | Location of the study area, Hunan Botanical Garden in 
Changsha city, Hunan Province, China (113°02′-113°03′ E, 28°06′-28°07′ N).
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Soil net N mineralization rate Soil inorganic N content after 
incubation Soil inorganic N 
content before incubation/30 days 
of incubation

=
−

 (3)

No N was assumed to be  lost for denitrification (Giardina 
et  al., 2001). Annual net N ammonification, net nitrification, 
and net mineralization amount were calculated by summing 
these N values of incubation periods spanning a year (Son 
and Lee, 1997; Yoon et  al., 2015).

Data Analysis
Two-way ANOVA was performed to statistically test the effects 
of forest types (Masson pine forest and the Mixed forest), 
litterfall manipulation treatment (LA, LR and LC), and their 
interactions on characteristics of soil N transformations. Log 
transformations were done for the original soil net 
ammonification, nitrification, and mineralization data to satisfy 
the normality and homoscedasticity assumptions of ANOVA. Pair-
wise t-tests were used to examine differences between two 
types of forest stands, and then the means of LA, LR, and 
LC were compared by a Tukey–Kramer test within each forest 
type. Statistical analyses were conducted using the SAS statistical 
package (SAS Institute, Inc., Cary, NC 1999–2001).

RESULTS

The average soil NH4
+-N and NO3

−-N and total inorganic N 
contents in LC plots were significantly higher in MCMF than 
in MPPF (p = 0.036; Table 2). LA treatment increased soil NH4

+-N 
content by 23% in MPPF and about 18% in MCMF compared 
to LC; however, the differences in NH4

+-N content between LA 
and LC treatments were not significantly different (p = 0.058). 
LR treatment significantly declined soil NH4

+-N content in MCMF 
(p = 0.048), but not in MPPF (p = 0.061). In contrast, LA treatment 
significantly increased soil NO3

−-N content by about 50 and 
25% in MPPF and MCMF, respectively, compared to LC treatment 

(p = 0.021, Table 2). Soil NO3
−-N content was reduced by 15–20% 

in LR plots in both forest types, but this reduction was not 
significant compared to LC plots (p > 0.05). In terms of total 
inorganic N content, overall, it was higher (33.15 ± 5.95 mg‧kg−1) 
under LA treatment in the MCMF forest stand. LA treatment 
significantly increased soil total inorganic N content (about 41%), 
while LR treatment decreased (about 10%) compared to LC 
treatment in MPPF. Same as MPPF, in MCMF, both LA and 
LR treatments significantly altered total inorganic N content 
(p = 0.047) compared to LC, with the former increasing it by 
22% and the latter by 24% (Table  2).

Overall, the soil net N ammonification rate, nitrification 
rate, and mineralization rates were higher in MCMF than in 
MPPF; however, their specific values in both forests were not 
significantly different (p = 0.054; Table  3). LA treatment 
significantly increased soil ammonification rate, nitrification 
rate, and mineralization rate by 8.54, 13.66, and 14.29% in 
MPPF, respectively; on the contrary, LR treatment decreased 
these rates significantly, except for the soil net ammonification, 
where the rate did not differ considerably between LR plots 
and LC plots in MPPF. In MCMF, soil ammonification rate, 
nitrification rate, and mineralization rate significantly increased 
by 56.80, 35.08, and 38% in LA plots. These rates were 
significantly reduced by 34% in LR plots compared to the LC 
plots (Table 3). No significant differences were found in annual 
net ammonification, nitrification, and mineralization amount 
in LC plots in the studied forests (p < 0.05; Table  3).

Among all the treatments, annual NH4
+-N was higher under 

LA treatment and lowest under LR treatment in the MCMF 
forest. For the remaining treatments, the difference was not 
significantly different for both forest stands (p = 0.052). The 
same patterns go for annual NO3

−-N and annual total inorganic 
N production; however, significant differences were observed 
among all the studied treatments (p = 0.039; Table  4).

In MPPF stand, NH4
+-N was significantly correlated to net 

ammonium rate and annual ammonium N production. Net 
nitrification rate was significantly associated with net mineralization 
rate, annual NO3

−-N, and annual total inorganic N production 
(Figure 2). In Masson pine and camphor tree mixed forest (MCMF) 

TABLE 2 | Changes in the content of soil nitrogen forms under different litterfall manipulation treatments in two sub-tropical forest types.

N form Treatment

MPPF MCMF

Content (mg‧kg−1) Change (%) Content (mg‧kg−1) Change (%)

NH4
+-N LA* 9.66 ± 2.94 Ab 23.21↑ 14.07 ± 3.93 Aa 18.24↑

LC 7.84 ± 1.29 Ab 0.00 11.90 ± 2.42 Aa 0.00
LR 7.79 ± 1.01 Aa 0.64↓ 7.94 ± 1.88 Ba 33.28↓

NO3
−-N LA 15.23 ± 4.81 Aa 49.90↑ 19.08 ± 8.75 Aa 25.28↑

LC 10.16 ± 4.45 Bb 0.00 15.23 ± 6.79 Ba 0.00
LR 8.17 ± 3.19 Bb 19.59↓ 13.00 ± 6.48 Ba 14.64↓

Total inorganic N LA 24.89 ± 4.42 Ab 40.86↑ 33.15 ± 5.95 Aa 22.19↑
LC 17.67 ± 4.94 Bb 0.00 27.13 ± 4.64 Ba 0.00
LR 15.97 ± 3.08 Bb 9.62↓ 20.73 ± 5.22 Ca 23.59↓

*LA, litter addition; LC, litter control; LR, litter removal; MPPF, Masson pine pure forests; MCMF, Masson pine and Camphor tree mixed forests. Values are mean ± SD. Different 
capital letters indicate significant differences among the same forest type column treatments. In contrast, lower-case letters indicate significant differences between the forest types 
under the same treatment (p < 0.05). Upper ↑ indicates a positive change, and down ↓ indicates a negative change in LA and LR treatments compared to LC treatment.

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Yan et al. N Transformation Under Litterfall Manipulation

Frontiers in Plant Science | www.frontiersin.org 5 July 2022 | Volume 13 | Article 923410

stand, NO3
−N was significantly correlated to net ammonium rate 

and annual NH4
+-N production. Total inorganic N content was 

significantly correlated to net nitrification, mineralization rate, and 
annual NH4

+-N and NO3
−-N production (Figure  2). Moreover, 

the cluster grouping (correlation) of all the N variables under 
different litter treatments is shown in (Figure  3).

DISCUSSION

N transformation rates are considered a valuable index of plant 
N availability (Schimel and Weintraub, 2003; Colman and Schimel, 
2013), and litterfall plays a key role in the N transformation 
process. Litterfall input is generally an imperative way of nutrient 
transfer to forest soils (Vitousek et  al., 1995). The quantity of 
litterfall varies significantly over a range of spatial and temporal 
scales and is determined mainly by climate, seasonality, topography, 
soil parent materials, and species distribution (Sayer, 2006). Sayer 

et  al. (2007) mentioned that long-term litter addition increases 
soil bulk density, overland flow, erosion, and temperature fluctuations 
and upsets the soil water balance, causing lower water content 
during dry periods. Whereas, long-term litter removal severely 
depleted the forests of nutrients. The decline in soil N occurred 
over longer periods. Litter manipulation also increased or decreased 
large amounts of C, affecting microbial communities and altering 
soil respiration rates (Sayer et  al., 2007).

In this study, litterfall manipulation treatments significantly 
altered soil N mineralization and nitrification in both subtropical 
forest types. N transformation differs with change in vegetation 
type because stand structure influences different environmental 
variables that directly impacts. Soil NH4

+-N and NO3
−-N contents 

were increased by approximately 57 and 35% in LA plots compared 
to LC plots in MCMF and about 19 and 14% in MPPF. LA 
treatment also increased soil annual net N mineralization in MPPF 
and MCMF compared to LC treatments in both forest types. 
Moreover, a strong positive correlation was observed between net 
N mineralization and nitrification rates (p = 0.001). The average 
proportion of nitrification rate to the net N mineralization rate 
was more than 80%. These results suggest that the N demand 
for soil microbes was sufficient (Schimel and Weintraub, 2003); 
thus, nitrification was dominant in the studied forest soils, especially 
in soils with a high-N mineralization rate (Son and Lee, 1997; 
Urakawa et  al., 2016). A higher amount of soil N transformation 
in MCMF may contribute to the soil micro-environmental 
conditions, such as broadleaved camphor tree creating a shade 
condition to alter soil temperature and moisture than the MPPF. Soil 
moisture might also be  influenced by canopy cover and stand 
density, which is often affected by tree species composition 
(Nadelhoffer et  al., 2004; Aranda et  al., 2012). Litter addition in 
forest soils also directly increases soil available nutrients, especially 
N and P (Schimel and Weintraub, 2003; Wang et  al., 2013); 
therefore, another possible mechanism to explain this result was 
that added N can stimulate N processing when N availability is 
low but inhibit N processing when N availability is already high 
(Yoon et  al., 2015; Gilliam et  al., 2018).

LA treatment significantly increased soil NO3
−-N content, 

while LR suppressed NH4
+-N and NO3

−-N content. The different 
responses of NH4

+-N and NO3
−-N concentrations in different 

TABLE 3 | Variations in the soil nitrogen transformation processes under different litterfall manipulation treatments in two sub-tropical forest types.

N form Treatment

MPPF MCMF

Rate (mg‧kg−1‧d−1) Change (%) Rate (mg‧kg−1‧d−1) Change (%)

Net Ammonification rate LA* 0.30 8.54↑ 0.42 56.80↑
LC 0.26 0.00 0.27 0.00
LR 0.24 1.98↓ 0.18 33.58↓

Net Nitrification rate LA 0.99 13.66↑ 0.34 35.08↑
LC 0.75 0.00 0.25 0.00
LR 0.28 29.56↓ 0.15 34.06↓

Net N mineralization rate LA 1.29 14.29↑ 0.76 38.00↑
LC 1.01 0.00 0.52 0.00
LR 0.52 26.01↓ 0.33 33.99↓

*LA, litter addition; LC, litter control; LR, litter removal; MPPF, Masson pine pure forests; MCMF, Masson pine and Camphor tree mixed forests. Upper ↑ indicates a positive change, 
and down ↓ indicates a negative change in LA and LR treatments compared to LC treatment.

TABLE 4 | Annual production of different nitrogen forms under litterfall 
manipulation treatments in MPPF and MCMF stand.

N form Treatments

MPPF MCMF

Annual N 
production 

(mg‧kg−1‧yr.−1)

Annual N 
production 

(mg‧kg−1‧yr.−1)

Annual NH4
+-N LA* 35.99 ± 1.29 Ab 50.99 ± 1.29 Aa

LC 30.36 ± 1.29 Ba 32.52 ± 1.29 Ba
LR 29.76 ± 1.29 Ba 21.60 ± 1.29 Cb

Annual NO3
−-N LA 233.89 ± 1.29 Ab 283.68 ± 1.29 Aa

LC 205.78 ± 1.29 Ba 210.01 ± 1.29 Ba
LR 144.96 ± 1.29 Ca 138.48 ± 1.29 Ca

Annual total 
inorganic N

LA 269.88 ± 1.29 Ab 334.68 ± 1.29 Aa
LC 236.14 ± 1.29 Ba 242.52 ± 1.29 Ba
LR 174.72 ± 1.29 Ca 160.08 ± 1.29 Ca

*LA, litter addition; LC, litter control; LR, litter removal; MPPF, Masson pine pure forests; 
MCMF, Masson pine and Camphor tree mixed forests. Values are mean ± SD. Different 
capital letters indicate significant differences among the treatments in the same forest 
type column. In contrast, lower-case letters indicate significant differences between the 
forest types under the same treatment (p < 0.05).
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forests might be  attributed to the soil microbial communities’ 
composition, richness, species activities, and the C/N ratio of 
litter leaves in forests (Chen and Stark, 2000). Litter reduction 
was expected to reduce decomposition in mineral soil horizons 
due to the depression of microbial population and activities. 
LR treatment likewise decreased organic acid leaching from the 
litter layer. It reduced the substrate sources for microbial 
decomposition (Cullings et al., 2003) and changed soil temperature 
and soil moisture by increasing soil exposure (Fierer et al., 2005). 

In addition, the soil microflora and fauna complement each 
other in the comminution of litter, mineralization of essential 
plant nutrients, and conservation of these nutrients within the 
soil system (Marshall, 2000). LR treatment likely reduced microbial 
activity due to the removal of the substrate supply to the microbial 
community. Although complete removal of litter is unusual, 
substantial disruption of the litter layer is common in thinning 
operations, influencing water retention and flow, and reducing 
aeration and root penetration (Ballard, 2000).

A B

FIGURE 2 | Pearson correlation between the different nitrogen forms in (A) Masson pine pure forest (MPPF) and (B) Masson pine and camphor tree mixed forest 
(MCMF) stand across all litter treatments. Pearson correlation is significant at p < 0.05; all the non-significant values are shown with blank box. AmN: NH4

+-N, NN: 
NO3

−-N, TIN, total inorganic nitrogen; NAR, net ammonium rate; NNR, net nitrification rate; NMR, net mineralization rate; ANA, annual NH4
+-N production; ANN, 

annual NO3
−-N production; ANM, annual total inorganic nitrogen.

A B C

FIGURE 3 | Correlation analysis – dendrograms showing hierarchical clustering of N variables in (A) LA: litter addition, (B) LC, litter control, and (C) LC: litter 
removal treatments across both forest types [MPPF and (B) MCMF stand]. AmN: NH4

+-N, NN: NO3
−-N, TIN, total inorganic nitrogen; NAR, net ammonium rate; 

NNR, net nitrification rate; NMR, net mineralization rate; ANA, annual NH4
+-N production; ANN, annual NO3

−-N production; ANM, annual total inorganic nitrogen.
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A previous study found that soil N mineralization rate positively 
correlates with soil C/N ratio and SOM content (Yoon et  al., 
2015). Moreover, the litter addition increased soil mineralization, 
ammonification, and nitrification rates compared to the control 
plots because extra litter input in soils caused the decomposition 
of soil organic matter (SOM; Nadelhoffer et  al., 1984). Evidence 
was very common and essentially a fertilizer effect on soil microbial 
communities in low-N and high-N soils (Morrison et  al., 2016). 
These observations suggested that chronically elevated inputs of 
N over time can cause a convergence of rates and patterns of 
soil N processing on a landscape scale (Gilliam et  al., 2018). N 
mineralization would be restricted to particularly N-rich microsites, 
and the mineralized NH4

+-N would diffuse away from those 
microsites (Hart et al., 1994). If these N-rich sites last long enough, 
they might support the development of small nitrified populations, 
causing some limited nitrification to occur, though the overall 
soil condition would not appear conducive to nitrification.

The concentrations of NO3
−-N and the annual gross NO3

−-N 
accumulation in soil were much higher than NH4

+-N content 
in two types of forest soils. This phenomenon should contribute 
to N absorption by plant roots in the soil. Plant roots generally 
uptake the NH4

+-N easier than NO3
−-N in forest soils. Moreover, 

an increase in the SOM and litter quantity enhances the soil 
activity, and this increment has direct involvement in the 
improvement of nutrient cycling and canopy development 
(Rothstein et  al., 2004; Farooq et  al., 2018, 2020; Rashid et  al., 
2020), along with greenhouse emission (Shakoor et  al., 2020, 
2021a,b), which, in return, has a positive impact on the ecosystem, 
plant growth, and overall SOC. In addition, tree species might 
directly affect N transformations through fine roots turnover 
in soil ecosystems (Hobbie, 2015; Urakawa et  al., 2016; Wu 
et  al., 2017).

CONCLUDING REMARKS

Leaf litter quantity and quality influenced nutrient return to the 
soil. The current study found that NH4

+-N and NO3
−-N contents 

and annual net N mineralization in forest soils positively correlated 
with litter content proving litterfall as the major nutrient pathway 
and resource of forest soils. LA and LR treatments significantly 
affected N pools and N cycling in the mineral soil of the two 
types of forests. A large amount of soil N transformation in 
MCMF than in MPPF indicated that the optimal forest management 
in silviculture practices such as mixed forests should have higher 
nutrient return and accumulation into forest soils from the litterfall 

decomposition. The effects of different forest types with varying 
compositions of litter and chemical components on net N annual 
production in forest soils would provide a further understanding 
of N availability in forests. However, caution should be  taken 
while applying our results, as many external factors that might 
influence the studied parameters in the open field conditions. 
Urban, suburban, and rural gradients can also be  considered as 
these forests at different sites are influenced by the different 
intensities of anthropogenic activities, also include both lab-based 
and field-based experiments to complement the current results.
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