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Agricultural production is under threat due to climate change in food insecure
regions, especially in Asian countries. Various climate-driven extremes, i.e.,
drought, heat waves, erratic and intense rainfall patterns, storms, floods, and
emerging insect pests have adversely affected the livelihood of the farmers.
Future climatic predictions showed a significant increase in temperature, and
erratic rainfall with higher intensity while variability exists in climatic patterns
for climate extremes prediction. For mid-century (2040—-2069), it is projected
that there will be a rise of 2.8°C in maximum temperature and a 2.2°C in
minimum temperature in Pakistan. To respond to the adverse effects of climate
change scenarios, there is a need to optimize the climate-smart and resilient
agricultural practices and technology for sustainable productivity. Therefore, a
case study was carried out to quantify climate change effects on rice and wheat
crops and to develop adaptation strategies for the rice-wheat cropping system
during the mid-century (2040-2069) as these two crops have significant
contributions to food production. For the quantification of adverse impacts of
climate change in farmer fields, a multidisciplinary approach consisted of five
climate models (GCMs), two crop models (DSSAT and APSIM) and an economic
model [Trade-off Analysis, Minimum Data Model Approach (TOAMD)] was used
in this case study. DSSAT predicted that there would be a yield reduction of
15.2% in rice and 14.1% in wheat and APSIM showed that there would be a
yield reduction of 17.2% in rice and 12% in wheat. Adaptation technology, by
moadification in crop management like sowing time and density, nitrogen, and
irrigation application have the potential to enhance the overall productivity
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and profitability of the rice-wheat cropping system under climate change
scenarios. Moreover, this paper reviews current literature regarding adverse
climate change impacts on agricultural productivity, associated main issues,
challenges, and opportunities for sustainable productivity of agriculture to
ensure food security in Asia. Flowing opportunities such as altering sowing time
and planting density of crops, crop rotation with lequmes, agroforestry, mixed
livestock systems, climate resilient plants, livestock and fish breeds, farming of
monogastric livestock, early warning systems and decision support systems,
carbon sequestration, climate, water, energy, and soil smart technologies, and
promotion of biodiversity have the potential to reduce the negative effects of

climate change.

KEYWORDS

climate variability, yield reduction, livestock, elevated temperature, adaptation,
climate and crop modeling, decision support system, sustainable production

Introduction

Asia is the most populous subcontinent in the world (UNO,
2015), comprising 4.5 billion people—about 60% of the total
world population. Almost 70% of the total population lives in
rural areas and 75% of the rural population are poor and most
at risk due to climate change, particularly in arid and semi-arid
regions (Yadav and Lal, 2018; Population of Asia, 2019). The
population in Asia is projected to reach up to 5.2 billion by
2050, and it is, therefore, challenging to meet the food demands
and ensure food security in Asia (Rao et al, 2019). In this
context, Asia is the region most likely to attribute to population
growth rate, and more prone to higher temperatures, drought,
flooding, and rising sea level (Guo et al., 2018; Hasnat et al,,
2019). In Asia, diversification in income of small and poor
farmers and increasing urbanization is shocking for agricultural
productivity. Asia is the home of a third of the world’s population
and the majority of poor families, most of which are engaged in
agriculture (World Bank, 2018). We can expect diversification
of adverse climate change effects on the agriculture sector due
to diversity of farming and cropping systems with dependence
on climate. According to the sixth assessment report of IPCC,
higher risks of flood and drought make Asian agricultural
productivity highly susceptible to changing climate (IPCC,
2019). Climate change has already adversely affected economic
growth and development in Asia, although there is low emission
of greenhouse gasses (GHG) in this region (Gouldson et al,
2016; Ahmed et al.,, 2019a). Still, China and India are major
contributors to global carbon dioxide emission; the share of each
Asian country in cumulative global carbon dioxide emission
is presented in Figures 1, 2. Although GHGs emission from
the agriculture sector is lower than the others, it still has a
negative impact. Emission of GHGs from different agricultural
components and contribution to emissions can be found in
Figure 3. However, the contribution of Asian countries in
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GHGs including land use changes and forestry is described
in Figure 4.

Asia is facing alarming challenges due to climate change and
variability as illustrated by various climatic models predicting
the global mean temperature will increase by 1.5°C between
2030 and 2050 if it continues to increase at the current rate
(IPCC, 2019). In arid areas of the western part of China,
Pakistan, and India, it is also projected that there will be
a significant increase in temperature (IPCC, 2019). During
monsoon season, there would be an increase in erratic rainfall
of high intensity across the region. In South and Southeast
Asia, there would be an increase in aridity due to a reduction
in winter rainfall. Due to climatic abnormalities, there will be
a 0.1 m increase in sea level by 2,100 across the globe (IPCC,
2019). In Asia, an increase in heat waves, hot and dry days,
and erratic and unsure rainfall patterns is projected, while
dust storms and tropical cyclones are predicted to be worse
in the future (Gouldson et al., 2016). Natural disasters are the
main reason behind the agricultural productivity (crops and
livestock) losses in Asia, including extreme temperature, storms
and wildfires (23%), floods (37%), drought (19%), and pest and
animal diseases infestation (9%) which accounted for 10 USD
billions in amount (FAO, 2015). During the last few decades,
tropical cyclones in the Pacific have occurred with increased
frequency and intensity. South Asia consisted of 262 million
malnourished inhabitants, which made South Asia the most
food insecure region across the globe (FAO, 2015; Rasul et al.,
2019). In remote dry lands and deserts, the rural population
is more vulnerable to climate change due to the scarcity of
natural resources.

In Asia, climate variability (temperature and rainfall) and
climate-driven extremes (flood, drought, heat stress, cold waves,
and storms) have several negative impacts on the agriculture
sector (FAO, 2016), especially in the cropping system which
has a major role in food security, and thus created the food
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FIGURE 1
Share of each Asian country in cumulative global carbon dioxide emission (1751-2019; Source: OWID based on CDIAC and Global

Carbon Project).
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FIGURE 2

Carbon dioxide (CO;) emission from different Asian countries (source: International Energy Statistics https://cdiac.ess-dive.lbl.gov/home.html;
Carbon Dioxide Information Analysis Center, Environmental Sciences Division, Oak Ridge National Laboratory, Tennessee, United States).

security issues and challenges in Asia (Cai et al., 2016; Aryal decreased the crop-growing period, and crop evapotranspiration
et al,, 2019). The rice-wheat cropping system, a major cropping ultimately reduced wheat yield (Azad et al., 2018). Adverse
system which fills half of the food demand in Asia, is under impacts of climate change and variability on winter wheat yield
threat due to climate change (Ghaffar et al., 2022). Climate in China are attributed to increased average temperature during
change adversely affects both the quantity and quality of wheat the growing period (Geng et al., 2019). Climate change is also
and rice crops (Din et al,, 2022; Wasaya et al, 2022). For adversely affecting the quality traits especially protein content,
instance, the protein content and grain yield of wheat have and sugars and starch percentages in grains of wheat. Elevated
been reduced because of the negative impacts of increasing carbon dioxide and high temperatures increase the growth
temperature (Asseng et al., 2019). The temperature rise has traits while decreasing the protein content in wheat grains
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FIGURE 3

Sources of GHGs emission from Agriculture in Asian countries

Sources of greenhouse gasses (GHGs) emission from different Asian countries with respect to agricultural components (Source: CAIT climate
data explorer via. Climate Watch (https://www.climatewatchdata.org/data-explorer/historical-emissions).
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Total greenhouse gasses (GHGs) emission includes emissions from land use changes and forestry from Asian countries (measured in tons of
carbon dioxide equivalents [CO;-e] (Source: CAIT climate data explorer via Climate Watch).

(Asseng et al., 2019). Similarly, drought stress also reduces the
protein content and soluble sugars of the wheat crop (Rakszegi
et al,, 2019; Hussein et al., 2022). The decline in the starch
content in wheat grains has also been observed under drought
stress (Noori and Taliman, 2022). Similarly, heat stress also
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causes a decline in the protein content, soluble sugar, and starch
content in wheat grains (Zahra et al., 2021; Igbal et al., 2022;
Zhao et al,, 2022). Climate change also negatively affects the
quality of wheat products as the rise in temperature causes a
reduction in protein content, sugars, and starch. It is assessed
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that rise in temperature by 1-4°C could decrease the wheat
yield up to 17.6% in the Egyptian North Nile Delta (Kheir et al.,
2019). In China, crop phenology has changed because of both
climate variability and crop management practices (Liu et al.,
2018). Both climate change scenarios and human management
practices have adversely affected wheat phenology in India and
China (Lvetal., 2013; Ren et al., 2019). The elevated temperature
has increased the infestation of the aphid population on wheat
crops and ultimately reduced yield (Tian et al, 2019). There
is a direct and strong correlation between diseases attached to
climate change. For instance, the Fusarium head blight of wheat
crops is caused by the Fusarium species and its chances of an
attack were increased due to high humidity and hot environment
(Shah etal., 2018). A similar study has shown a direct interaction
between insect pests and diseases and higher temperature and
carbon dioxide levels in rice production (lannella et al., 2021;
Tan et al,, 2021; Tonnang et al., 2022).

Climate variability has marked several detriments to rice
production in Asia. Climate variability has induced flood and
drought, which have decreased the rice yield in South Asia and
several other parts of Asia (Mottaleb et al., 2017). Heat stress,
drought, flood, and cyclones have reduced the rice yield in South
Asia (Cai et al,, 2016; Quyen et al., 2018; Tariq et al., 2018). Thus,
climate change-driven extremes, particularly heat and drought
stress, have also become a serious threat for sustainable rice
production globally (Xu et al., 2021). Higher temperatures for a
longer period as well as water shortages reduce seed germination
which lead to poor stand establishment and seedling vigor
(Fahad et al.,, 2017; Liu et al., 2019). It has been reported that
the exposure of rice crops to high temperatures (38°C day/30°C
night) at the grain filling stage led to a reduction in grain weight
of rice (Shi et al., 2017). Moreover, heat stress also reduces the
panicle and spikelets initiation and ultimately the number of
spikelets and grains in the rice production system (Xu et al,
2020). Drought stress also adversely affects the reproductive
stages and reduces the yield components especially spikelets per
panicle, grain size, and grain weight of rice (Raman et al., 2012;
Kumar et al., 20205 Sohag et al., 2020). GLAM-Rice model has
projected rice yield will decrease ~45% in the 2080’ under RCP
8.5 as compared to 1991-2000 in Southeast Asia (Chun et al.,
2016). On the other hand, climate variability could reduce crop
water productivity by 32% under RCP 4.5, or 29% under RCP
8.5 by 2080’ in rice crops (Boonwichai et al., 2019). In China
and Pakistan, high temperature adversely affects the booting
and anthesis growth stages of rice ultimately resulting in yield
reduction (Zafar et al., 2018; Nasir et al., 2020). Crop models like
DSSAT and APSIM have projected a yield reduction of both rice
and wheat crops up to 19 and 12% respectively by 2069 due to a
rise of 2.8°C in maximum and 2.2°C in minimum temperature
in Pakistan (Ahmad et al., 2019).

About 35 million farmers having 3% landholding are
projected to convert their source of income (combined crop-
livestock production systems) to simply livestock because of
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the negative impacts of climate change on the quality and
quantity of pastures as predicted by future scenarios for 2050 in
Asia (Thornton and Herrero, 2010). The livestock production
sector also contributes 14.5% of global greenhouse emissions
and drives climate variability (Downing et al., 2017). Directly,
there would be higher disease infestation and reduced milk
production and fertility rates in livestock because of climate
extremes like heat waves (Das, 2018; Kumar et al., 2018).
Indirectly, heat stress will reduce both the quantity and quality of
available forage for livestock. Several studies have reported that
heat stress reduces the protein and starch content in the grains
of maize which is a widely used forage crop (Yang et al., 2018;
Bheemanahalli et al., 2022). Similarly, heat stress also reduces the
soluble sugar and protein content in the heat-sensitive cultivars
of alfalfa which is also a major forage crop (Wassie et al., 2019).
In this context, heat stress leads to a reduction in the quality
of forage. There would be an increase in demand for livestock
products, however, there would be a decrease in livestock heads
under future climate scenarios (Downing et al., 2017). In Asia, a
severe shortage of feed for livestock has imposed horrible effects
on the livestock population which has been attributed as the
result of extreme rainfall variability and drought conditions (Ma
etal., 2018).

Timber forests have several significances in Asia, and non-
timber forests are also significant sources of food, fiber, and
medicines (Chitale et al., 2018). Unfortunately, climate change
has imposed several negative impacts on forests at various levels
in the form of productive traits, depletion of soil resources,
carbon dynamics, and vegetation shifting in Asian countries. In
India, forests are providing various services in terms of meeting
the food demand of 300 million people, the energy demand
of people living in rural areas up to 40%, and shelter to one-
third of animals (Jhariya et al., 2019). In Bangladesh, forests
are also vulnerable to climate variability as they are facing the
increased risks of fires, rise in sea level, storm surges, coastal
erosion, and landslides (Chow et al., 2019). Increased extreme
drought events with higher frequency, intensity, and duration,
and human activities, i.e., afforestation and deforestation, have
adversely altered the forest structure (Xu et al., 2018). Hence,
there is a need to evaluate climate adaptation strategies to restore
forests in Asian countries in order to meet increased demands
of food, fiber, and medicines. Agroforestry production is also
under threat because of adverse climate change impacts such
as depletion of natural resources, predominance of insect pests,
diseases and unwanted species, increased damage on agriculture
and forests, and enhanced food insecurity (De Zoysa and Inoue,
2014; Lima et al., 2022).

Asia also consists of good quality aquaculture (80% of
aquaculture production worldwide) and fisheries (52% of wild
caught fish worldwide) which are 77% of the total value
addition (Nguyen, 2015; Suryadi, 2020). In Asia, various climatic
extremes such as erratic rainfall, drought, floods, heat stress,
salinity, cyclone, ocean acidification, and increased sea level
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have negatively affected aquaculture (Ahmad et al, 2019).
For instance, Hilsailisha constituted the largest fishery in
Bangladesh, India, and West Bengal and S. Yangi in China have
lost their habitat because of climate variability (Jahan et al., 2017;
Wang et al., 2019a). Ocean acidification and warming of 1.5°C
was closely associated with anthropogenic absorption of CO5.
Increasing levels of ocean acidity is the main threat to algae and
fish. Among various climate driven extremes like drought, flood,
and temperature rising, drought is more dangerous as there
is not sufficient rainfall especially for aquaculture (Adhikari
et al,, 2018). Similarly, erratic rainfall, irregular rainfall, storms,
and temperature variability have posed late maturity in fish for
breeding and other various problems (Islam and Hagq, 2018).

The above-mentioned facts have indicated that agriculture,
livestock, forestry, fishery, and aquaculture are under threat in
the future and can drastically affect food security in Asia. This
paper reviews the climate change and variability impacts on the
cropping system (rice and wheat), livestock, forestry, fishery,
and aquaculture and their issues, challenges, and opportunities.
The objectives of the study are to: (i) Review the climate
variability impacts on agriculture, livestock, forestry, fishery,
and aquaculture in Asia; (ii) summarize the opportunities
(adaptation and mitigation strategies) to minimize the drastic
effects of climate variability in Asia; and (iii) evaluate the impact
of climate change on rice-wheat farmer fields—A case study
of Pakistan.

Impact of climate change and variability
on agricultural productivity

Impact of climate change and variability on
rice-wheat crops

In many parts of Asia, a significant reduction in crop
productivity is associated with a reduction in timely water and
rainfall availability, and erratic and intense rainfall patterns
during the last decades (Hussain et al., 2018; Aryal et al,
2019). Despite the increased crop production owing to the
green revolution, there is a big challenge to sustain production
and improve food security for poor rural populations in Asia
under climate change scenarios (FAO, 2015; Ahmad et al., 2019).
In the least developed countries, damage because of climactic
changes may threaten food security and national economic
productivity (Myers et al., 2017). Yield reductions in different
crops (rice, wheat) varied within regions due to variations in
climate patterns (Yu et al., 2018). CO; fertilization can increase
crop productivity and balance the drastic effects of higher
temperature in C3 plants (Obermeier et al., 2017) but cannot
reduce the effect of elevated temperature (Arunrat et al., 2018).
Crop growth and development have been negatively influenced
because of rising temperatures and rainfall variability (Rezaei
etal, 2018; Asseng et al., 2019).
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TABLE 1 Productivity shock due to climate change and variability on
rice and wheat crop production by 2030.

Countries Rice Wheat

China —12to +12 —10to +14
Philippines —10to +4 —10 to +4
Thailand —10 to +4 —10to +4
Rest of SE Asia —10to +4 —10to +4
Bangladesh —10to +4 —10 to +4
India —15to +4 —10to +4
Pakistan —15to +4 —10to +4
Rest S Asia —15to +4 —10to +4
Source: Gouldson et al. (2016), Asseng et al. (2019), Chow et al. (2019), Degani et al.

(2019), Sanz-Cobena et al. (2019), and Suryadi (2020).
Minus sign (-) indicates the decrease in productivity while positive sign (4) indicates
increase in productivity.

Rice and wheat are major contributors to food security in
Asia. There is a big challenge to increase wheat production by
60% by 2050 to meet ever-enhancing food demands (Rezaei
et al, 2018). In arid to semi-arid regions, declined crop
productivity is attributed to an increase in temperature at lower
latitudes. In China, drought and flood have reduced the rice,
wheat, and maize yields and it is projected that these issues
will affect crop productivity more significantly in the future
(Chen et al.,, 2018). Rice is sensitive to a gradual rise in night
temperature causing yield and biomass to reduce by 16-52% if
the temperature increase is 2°C above the critical temperature
of 24°C (Yang et al., 2017). In Asia, semi-arid to arid regions are
under threat and are already facing the problem of drought stress
and low productivity. The quality of wheat produce (protein
content, sugars, and starch) and grain yield have reduced
because of the negative impacts of increasing temperature and
erratic rainfall with high intensity (Yang et al., 2017). In the
Egyptian North Nile Delta (up to 17.6%), India, and China,
the climate variability has decreased wheat yield significantly
which is attributed to a rise in temperature, erratic rainfall and
increasing insect pest infestation (Arunrat etal.,, 2018; Shah et al.,
2018; Aryal et al., 2019; Kheir et al., 2019). In South Asia, rice
yield in rain-fed areas has already decreased and it might reduce
by 14% under the RCP 4.5 scenario while 10% under the RCP
8.5 scenario by 2080 (Chun et al., 2016). High temperature and
drought have decreased the rice yield because of their adverse
impacts on the booting and anthesis stage in Asia, especially
in Pakistan and China (Zafar et al., 2018; Ahmad et al., 2019).
Similarly, heat stress is a major threat to rice as it decreases the
productive tillers, shrinkage of grains, and ultimately grain yield
of rice (Wang et al., 2019b). In Asia, climate change would affect
upland rice (10 m ha) and rain-fed lowland rice (>13 million
hectares). The projected production of rice and wheat crops by
2030 is presented in Table 1.
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Impact of climate change and variability on
livestock

In arid to semi-arid regions, the livestock sector is highly
susceptible to increased temperature and reduced precipitation
(Downing et al., 2017; Balamurugan et al., 2018). A temperature
range of 10-30°C is comfortable for domestic livestock with a
3-5% reduction in animal feed intake with each degree rise in
temperature. Similarly, the lower temperature would increase
the requirement feed up to 59%. Moreover, drought and heat
stress would drastically affect livestock production under climate
change scenarios (Habeeb et al., 2018). Climate variability affects
the occurrence and transmission of several diseases in livestock.
For instance, Rift Valley Fever (RVF) due to an increase in
precipitation, and tick-borne diseases (TBDs) due to a rise in
temperature, have become epidemics for sheep, goats, cattle,
buffalo, and camels (Bett et al., 2019). Different breeds of
livestock show different responses to higher temperature and
scarcity of water. In India, thermal stress has negative impacts on
the reproduction traits of animals and ultimately poor growth
and high mortality rates of poultry (Balamurugan et al., 2018;
Chen et al.,, 2021; van Wettere et al., 2021). In dry regions of
Asia, extreme variability in rainfall and drought stress would
cause severe feed scarcity (Arunrat et al, 2018). It has been
revealed that a high concentration of CO, reduces the quality
of fodder like the reduction in protein, iron, zinc, and vitamins
B1, B2, B5, and B9 (Ebi and Loladze, 2019). Future climate
scenarios show that the pastures, grasslands, feedstuff quality
and quantity, as well as biodiversity would be highly affected.
Livestock productivity under future climate scenarios would
affect the sustainability of rangelands, their carrying capacity and
ecosystem buffering capacity, and grazing management, as well
as the alteration in feed choice and emission of greenhouse gases
(Nguyen et al., 2019).

Impact of climate change on forest

Climate variability has posed several negative impacts
on forests including variations in productive traits, carbon
dynamics, and vegetation shift, as well as the exhaustion of soil
resources along with drought and heat stress in South Asian
countries (Jhariya et al., 2019; Zhu et al.,, 2021). In Bangladesh,
forests are vulnerable to climate variability due to increased
risks of fires, rise in sea level, storm surges, coastal erosion
and landslides, and ultimately reduction in forest area (Chow
etal,, 2019). Biodiversity protection, carbon sequestration, food,
fiber, improvement in water quality, and medicinal products are
considered major facilities provided by forests (Chitale et al.,
2018). In contrast, trait-climate relationships and environmental
conditions have drastically influenced structure, distribution,
and forest ecology (Keenan, 2015). Higher rates of tree mortality
and die-off have been induced in forest trees because of high
temperature and often-dry events (Allen et al., 2015; Greenwood
et al,, 2017; Zhu et al., 2021). For instance, trees Sal, pine trees,

Frontiersin Plant Science

07

10.3389/fpls.2022.925548

and Garjan have been threatened by climate-driven continuing
forest clearing, habitat alteration, and drought in South Asian
countries (Wang et al., 2019). An increase in temperature and
CO,, fertilization has increased insect pest infestation for forest
trees in North China (Bao et al., 2019). As rising temperature,
elevated carbon dioxide (CO3), and fluctuating precipitating
patterns lead to the rapid development of insect pests and
ultimately more progeny will attack forest trees (Raza et al,
2015). Hence, there is a need to develop adaptation strategies
to restore forests to meet the increasing demand for food, fiber,
and medicines in Asia.

Impact of climate change on aquaculture and
fisheries

There is a vast difference in response to climate change
scenarios of aquaculture in comparison to terrestrial agriculture
due to greater control levels over the production environment
under terrestrial agriculture (Ottaviani et al., 2017; Southgate
and Lucas, 2019). Climatic-driven extremes such as drought,
flood, cyclones, global warming, ocean acidification, irregular
and erratic rainfall, salinity, and sea level rise have negatively
affected aquaculture in South Asia (Islam and Hagq, 2018; Ahmad
etal, 2019). In Asia, various species such as Hilsa and algae have
lost their habitats due to ocean acidification and temperature
rise (Jahan et al, 2017). Increased water temperature and
acidification of terrestrial agriculture have become dangerous
for coral reefs and an increase in average temperature by 1°C
for four successive weeks can cause bleaching of coral reefs in
India and other parts of Asia (Hilmi et al., 2019; Lam et al.,
2019). Ocean warming has caused severe damage to China’s
marine fisheries (Liang et al., 2018). In Pakistan, aquaculture
and fisheries have lost their habitat quality, especially fish
breeding grounds because of high cyclonic activity, sea level rise,
temperature variability, and increased invasion of saline water
near Indus Delta (Ali et al., 2019). It is revealed that freshwater
and brackish aquaculture is susceptible to the negative effects of
climate variability in several countries of Asia (Handisyde et al.,
2017). Tt is also evaluated that extreme climate variability has
deep impacts on wetlands and ultimately aquaculture in India
(Sarkar and Borah, 2018).

Climate variability and change impact
assessment

Agriculture has a complex structure and interactions with
different components, which will make it uncertain in a future
climate that is a serious risk to food security in the region.
Consequently, it is essential to assess the negative impacts
of climate change on agricultural productivity and develop
adaptive strategies to combat climate change. Simulation models
such as General Circulation Models (GCMs) and Representative
Concentration Pathways (RCPs) are being used worldwide for
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the quantification of the negative effects of climate change on
agriculture and are supporting the generation of future weather
data (Rahman et al., 2018). Primary tools are also available that
can estimate the negative impacts of changing climate on crop
productivity, crucial for both availability and access to food.
Crop models have the potential to describe the inside processes
of crops by considering the temperature rise and elevated CO;
at critical crop growth stages (Challinor et al., 2018). There
are no advanced methods and technologies available to see the
impact of climate variability and change on the production of
livestock and crops other than the modeling approach (Asseng
et al., 2014). There are also modeling tools available, and being
used across the world, to quantify the impacts of climate change
and variability on crops and livestock production (Ewert et al.,
2015; Hoogenboom et al., 2015; Rahman et al., 2019). We
decided to quantify the impacts of future climate on farmer’s
livelihood to study the complete agricultural system by adopting
the comprehensive methodology of climate, crop, and economic
modeling (RAPs) approaches and found the agricultural model
inter-comparison and improvement project (AgMIP) as the
best approach.

A case study—Agricultural model
inter-comparison and improvement
project

Impact of climate change on the
productivity of rice and wheat crops

(DFID)
developed the Agricultural Model Inter-comparison and

Department for International Development
Improvement Project (Rosenzweig et al, 2013) which is
an international collaborative effort to deeply investigate
the influences of climate variability and change on crops
productivity in different cropping zones/systems across the
world and in Pakistan. The mission of AgMIP is to improve
the scientific capabilities for assessing the impact of climate
variability on the agricultural production system and develop
site-specific adaptation strategies to ensure food security at
local to global scales. The review discussed above indicated that
the agriculture sector is the most vulnerable due to climatic
variability and change. Crop production is under threat in
Asian countries—predominantly in developing countries.
For instance, Pakistan is also highly vulnerable due to its
geographical location with arid to semi-arid environmental
conditions (Nasi et al., 2018; Ullah et al., 2019; Ghaffar et al,,
2022). There would be impacts that are more adverse in
arid and semi-arid regions in comparison to humid regions
because of climate change and variability (Nasi et al.,, 2018;
Ali et al, 2019). Future climate scenarios have uncertainty
and the projected scenario of climate, especially precipitation,
did not coincide with the production technology of crops
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(Rahman et al, 2018). Floods and drought are anticipated
more due to variations in rainfall patterns, and dry seasons
are expected to get drier in future. Developing regions of the
globe are more sensitive to climate variability and change as
these regions implement old technologies whereas developed
regions can mediate climate-driven extremes through the
implementation of modern technologies (Lybbert and Sumner,
2012). The extent of climate change and variability hazards in
Pakistan is massive and may be further shocking in the future.
Therefore, it is a matter of time to compute climate variability,
impacts on crop production, and develop sustainable adaptation
strategies to cope with the negative impact of climate change
using AgMIP standards and protocols (AgMIP). The main
objective is to formulate adaptation strategies to contradict
potential climate change effects and support the livelihood of
smallholder farmers in the identified area and circulate this
particular information to farmers, extension workers, and
policy-makers. Sialkot, Sheikhupura, Nankana sahib, Hafizabad,
and Gujranwala are considered the hub of the rice-wheat
cropping system (Ghaffar et al, 2022), with an area of 1.1
million hectares. The rice-wheat cropping system is a food
basket and its sustainable productivity in future climates will
ensure food security in the country and generally overall in
the region.

Methodology of the case study

Field data collection

Field data included the experimental trials and socio-
economic data of 155 successive farmers farms collected
during an extensive survey of rice-wheat cropping zone from
five-selected districts (Figure 5). From each district, randomly
two villages were selected from each division, randomly 30
respondents and 15 farms of true representation of the farming
population from each village considered. Crop management
data included all agronomic practices from sowing to harvesting
such as planting time, planting density, fertilizers amount and
organic matter amendment, irrigation amount and intervals,
cultural operations, grain yield, and biomass production
collected for both crops, rice and wheat, and overall, for all
systems. Farm data for the rice-wheat cropping system were
analyzed with crop and economic models to see the impact of
climate variability on crop production.

Historic and future climatic data

Daily historic data was collected from the Pakistan
Meteorological Department (PMD) for all study locations.
The quality of observed weather data was checked following
the protocol of the Agricultural Model Inter-comparison
and Improvement Project (AgMIP) protocols (AgMIP, 2013).
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FIGURE 5
Map of study location/sites in rice-wheat cropping zone of Pakistan.

Station-based downscaling was performed with historic weather
data from all study sites/locations in the rice-wheat cropping
zone. For the zone/region, five GCMs (CCSM4, GFDL-
ESM2M, MIROC5, HadGEM2-ES, and MPI-ESM-MR) of the
latest CMIP5 family were engaged for the generation of
climate projections for the mid-century period using the
RCP 8.5 concentration scenario, and using the protocols and
methodology developed by AgMIP (Ruane et al., 2013, 2015;
Rahman et al, 2018). GCMs were selected on the basis of
different factors such as better performance in monsoon seasons,
the record of accomplishment of publications, and the status of
the model-developing institute. Under the RCP 8.5 scenario, an
indication of warming ranges 2-3°C might be expected in all
selected districts for the five CMIP5, GCMs in comparison to
the baseline between the periods of 2040-2069. However, there
is no uniform warming recorded under all 5 CMIP5 GCMs.
For instance, CCSM4 and GFDL-ESM-2M showed uniform
increased temperatures during April and September months.
The outputs of the GCMs indicated large variability in the
estimated values of precipitation. The HadGEM2-ES and GFDL-
ESM2M projected mean of 200 and 100 mm between times
2040-2069, respectively. On average, a minor rise in annual
rainfall (mm) is indicated by five GCMs in comparison to
the baseline.

Crop models (DSSAT and APSIM)

To understand the agronomic practices and the impact of
climate variability on the development and growth of plants,
crop simulation models like DSSATv4.6 (Hoogenboom et al,
2015, 2019) and APSIMv7.5 (Keating et al., 2003) were applied.
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Three field trials were conducted on rice and wheat crops during
two growing seasons, to collect the data like phenology, crop
growth (leaf area index, biomass accumulation), development,
yield, and agronomic management data by following the
standard procedure and protocols. Crop models are calibrated
with experimental field data (phenology, growth, and yield data)
under local environmental conditions by using soil and weather
data. Crop models were further validated with farmers’ field data
of rice and wheat crops. Climate variability impact on both crops
was assessed with historic data (baseline) and future climate data
of mid-century in this region.

Tradeoff analysis model for
multi-dimensional impact assessment

For the analysis of climate change impact socio-economic
indicators, version 6.0.1 of the Tradeoff Analysis Model
for Multi-Dimensional Impact Assessment (TOA-MD) Beta
was employed (Antle, 2011; Antle et al, 2014). It is an
economical and standard model employed for the analysis of
technology adoption impact assessment and ecosystem services.
Schematically illustrated, showing connections between the
different models and the points of contact between them
in terms of input-output in a different climate, crop and
economic models and climate analysis is shown in Figure 6.
Various factors that may affect the anticipated values of the
production system are technology, physical environment, social
environment, and representative agricultural pathways (RAPs),
hence it is necessary to distinguish these factors (Rosenzweig
et al, 2013). RAPs are the qualitative storylines that can be

frontiersin.org


https://doi.org/10.3389/fpls.2022.925548
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Habib-ur-Rahman et al.

10.3389/fpls.2022.925548

Climate Models

Historic climate

)

Future Climate Projections
GCMs (RCPs 8.5)
Mid Century (2040-2069)

With and without
adaptations

FIGURE 6

them in terms of input-output and climate analysis.
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Schematic illustration showing connections between the different models (climate, crop, and economic) and the points of contact between

\

translated into model parameters such as farm and household
size, practices, policy, and production costs. For climate impact
assessment, the dimensionality of the analysis is the main
threat in scenario design. Farmers employ different systems for
operating a base technology. For instance, system 1 included
base climate, in system 2, farmers use hybrid climate, and in
system 3, farmers use perturbed climate to cope with future
climate with adaptation technology. The analysis gave the
answer to three core questions (Rosenzweig et al., 2013). First,
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without the application RAPs of the core question, one-climate
change impact assessments (CC-IA) were formulated. Second,
analysis was again executed for examining the negative effects
of climate change on future production systems. Third, analysis
was executed for future adapted production systems through
RAPs and adaptations. Two crop models, i.e., DSSAT and
APSIM, outputs were used as the inputs of TOA-MD. Different
statistical analyses like root mean square error (RMSE), mean
percentage difference (MPD) d-stat, percent difference (PD),
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and coeflicient of determination (R2) were used to check the
accuracy of models.

Results

Farmers field data validation

Crop model simulation results regarding calibration and
validation of both crops (rice and wheat) were in good
agreement with the field experimental data. Both models were
further validated using farmers’ field data of rice and wheat
crops in rice-wheat cropping zone after getting robust genetic
coefficients. Model validation results of 155 farmers of rice
and wheat crops indicated the good accuracy of both models
(DSSAT, APSIM) and have a good range of statistical indices.
Both of these crop models showed an improved ratio between
projected and observed rice yield in farmers’ fields with RMSE
409 and 440kg ha=! and d-stat 0.80 and 0.78, respectively.
Similarly, the performance of models DSSAT and APSIM for a
yield of wheat was also predicted with RMSE of 436 and 592 kg
ha~—! and d-stat of 0.87, respectively.

Quantification of climate change impact
by crop models

Climate change impact assessment results in the rice-wheat
cropping zone of 155 farms indicated that yield reduction varied
due to differences in GCM’s behavior and variability in climatic
patterns. It is predicted that mean rice yield reduction would be
up to 15 and 17% for DSSAT and APSIM respectively during
mid-century while yield reduction variation among GCMs are
presented in Figure 7. Rice indicated a yield decline ranging
from 14.5 to 19.3% for the case of APSIM while mean yield
reduction of the rice crop was between 8 and 30% with DSSAT.
Reduction in production of wheat varied among GCM:s as well
as an overall reduction in yield in rice-wheat cropping systems.
For wheat, with DSSAT would be a 14% reduction whereas
for APSIM, the reduction would be 12%. GCMs reduction in
wheat yield for midcentury (2040-2069) is shown in Figure 8.
Reduction in wheat yield for all 5 GCMs was from 10.6 to
12.3% in the case of APSIM while mean reduction in wheat
yield was between 6.2 and 19%. As rice is a summer crop
where the temperature is already high and, according to climate
change scenarios, there is an increase in both maximum and
minimum temperature, an increase in minimum temperature
leads to more reduction in yield as compared to wheat being a
winter season crop. It was hypothesized that the increase in night
temperature (minimum temperature) leading to more losses in
the summer season may be due to high temperature, particularly
at anthesis and grain formation stages in rice crops, as it is
already an irrigated crop and rainfall variability (more rainfall)
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cannot reduce the effect of high temperature in the rice yield as
compared to the wheat crop.

Climate change economic impact
assessment and adaptations

Sensitivity of current agricultural production
systems to climate change

Climate change is damaging the present vulnerabilities
of poor small farmers as their livelihood depends directly
on agriculture. Noting various impacts of future climate
(2040-2069)
technologies), we examine the vulnerability of the current

on a current production system (current

production system used for the assessment of the adverse
impacts of climate change on crop productivity and other socio-
economic factors. Climate change impacts possible outcomes
for five GCMs based on the estimation of yield generated by
two crop models presented in Table 2. In Table 3, and the grain
losses and net impacts as a percentage of average net returns
for the first core question are given for each GCM. The analysis
clearly shows the observed values of the mean yield of wheat
and rice, which are estimated to be 18,915kg and 18,349 kg/
farm respectively in the projected area. For all GCMs, observed
average milk production was 3,267 liters per farm with a 12%
average decline in yield found under livestock production.
Losses were about 69-83% and from 72 to 76% for DSSAT
and APSIM respectively as predicted by TOA-MD analysis
because of the adverse effects of climate change situations. For
DSSAT, percentage losses and gains in average net farm returns
were from 13 to 15% and 23 to 30%, respectively. While gains
were 14-15% and losses were from 25 to 27%, respectively
for APSIM. Without adverse impacts of climate change, a net
income of Rs. 0.54 per farm pragmatic was predicted by DSSAT
and APSIM. However, DSSAT predicted Rs. 0.42-0.48 M per
farm and APSIM predicted Rs. 0.45-0.47 M net income per
farm under climate change for all GCMs. An increase in the
poverty rate in climate change situations would be 33-38% for
DSSAT and it would be 35-37% for APSIM, respectively while
the rate of poverty with no adverse impacts of climate change
would be 29%.

Impacts of climate change on future
agricultural production systems

In regard to the second core question, a comparison of
system 1 (current climate and future production system) with
system 2 (future climate and future production system in mid-
century) was analyzed with the aid of TOA-MD using 5 GCMs.
Mean wheat and rice yield reduction for DSSAT was from 6.2 to
19% and 8 to 30% respectively, and APSIM indicated a decline
ranging from 10.6 to 12.3% and 14 to 19%, respectively. For
all analyses of Q2, the projected mean yield was 25,073 kg per
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FIGURE 7

Reduction in rice yield of APSIM and DSSAT models for 155 farms; variation with 5-GCMs in rice-wheat cropping system of Punjab-Pakistan.
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Reduction in wheat yield of APSIM and DSSAT models for 155 farms; variation with 5-GCMs in rice-wheat cropping system of Punjab-Pakistan.

farm under rice production. While in the case of livestock for
all analyses, the mean projected milk production was 3,267
L/farm with its mean decline in yield estimated to be about
12%. Percentage losses for DSSAT and APSIM would fluctuate
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between 57 and 70% and from 61 to 71%, respectively for all
five GCMs.
Mean net farm returns for gains and losses, as a percentage

for DSSAT would be 11-13% and from —16 to —22%,
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TABLE 2 Relative yield summary of crop models.

10.3389/fpls.2022.925548

Time averaged relative yield (r) of GCM

Crop Crop Model CCSM4 GFDL-ESM2M HadGEM2-ES MIROC5 MPI-ESM-MR Mean
Rice DSSAT 0.90 0.72 0.95 0.87 0.79 0.85
APSIM 0.83 0.80 0.80 0.83 0.85 0.82
Wheat DSSAT 0.93 0.83 0.83 0.80 0.85 0.82
APSIM 0.90 0.90 0.90 0.91 0.91 0.90
r=) s2/) sl, ) s2, Time averaged mean of simulated future yield; ) s1, Time averaged mean of simulated past yield.

TABLE 3 Aggregated gains and losses with CCSM4 GCM (without adaptation and with trend) of DSSAT and APSIM.

Crop model Poverty rate Losses (%) Gains (% mean Losses (% Net impacts
(%) with net returns) mean net (% mean net
climate change returns) returns)

DSSAT 16.6 57.0 13.2 15.6 —2.4

APSIM 19.1 63.2 13.4 18.5 —5.1

TABLE 4 Adaptation technology related to crop management used for
crop models (DSSAT and PSIM) to cope with the negative impacts of
climate change during mid-century (2040—-2069).

TABLE 5 Adaptation technology related to socioeconomic used for
crop models (DSSAT and APSIM) to cope with the negative impacts of
climate change during mid-century (2040—2069).

Sr. # Variable Direction of change % change Sr. # Variable Direction of change % change
Rice Wheat Rice Wheat

1 Nitrogen/hectare (Kg) Increase 15 25 1 Average household persons Increase 40 40

2 Sowing density (Plant/m2) Increase 15 30 2 Non-agricultural income  Increase 40 40

3 Irrigation Decrease 15 25 3 Price of output Increase 65 70

4 Sowing dates Decrease 5days 15 days 4 Variable production cost ~ Increase 55 50

5 Overall productivity Increase 55 60

Percentage change (% change) shows the percentage of farmers using the crop
management practices related to crop models to reduce the adverse effects of
climate change.

respectively. While the percentage of gains and losses would
be between 10 and 15% and —17% and —19% in the case of
APSIM, respectively. DSSAT predicted Rs. 89-100 thousand per
person while APSIM predicted Rs. 93-97 thousand per person
per capita income in changing climatic scenarios. For both crop
models, the poverty rate will be 16% without climate change.
While poverty rates will be from 17 to 19% in the case of DSSAT
and ranging from 18 to 19% for APSIM with climate change
(Table 3).

Evaluation of potential adaptation strategies
and representative agricultural pathways
Adaptation technologies for rice and wheat crops (Table 4)
are used in crop growth models and economic TOA-MD
model analysis (Table 5) for simulating the sound effects of
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Percentage change (% change) shows the percentage of farmers using the socioeconomic
technology related to crop models to reduce the adverse effects of climate change.

prospective adaptation strategies on both adapters and non-
adapters distribution. This TOA-MD analysis compared “system
1”7 (incorporating RAPs) and “system 2” (incorporating RAPs
and adapted technology) for the rice-wheat system in the mid-
century based on crop models DSSAT and APSIM using 5
GCMs. The mean yield change of wheat and rice crops was from
60 to 72% for DSSAT and 70 to 80% for APSIM respectively,
wheat crop indicated a change that ranges from 80 to 89% and 62
to 84% for all five GCMs (Figure 9). Under livestock production,
the estimated average production of milk exclusive of adaptation
was 3,593 liters/farm for all analyses and for all cases indicates a
42% increase in average yield. The percentage of adopters due
to adaptation technologies for DSSAT and APSIM in rice-wheat
cropping systems would be between 92 and 93% and 93 and
94%, respectively. For DSSAT and APSIM estimated per head
income with adaptation cases will be from Rs. 89 to 100 and
93 to 97 thousand and from Rs. 156 to 174 and 166 to 181
thousand per head, respectively in a year. Without and with
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adaptation, poverty would range between 17 and 19% and 12 and
13% respectively, for DSSAT and from 18 to 19% and 12 to 13%,
respectively for APSIM (Table 6). Climatic changes in the rice-
wheat cropping areas of Punjab province will have less impact on
the future systems after implementing the adaptation strategies,
with a large and significant impact imposed by these adaptations.

Discussion

Opportunities in the era of climate
change for agriculture

Scope of adaptation and mitigation strategies
for sustainable agricultural production

It is essential to assess the impact of climate variability
on agricultural productivity and develop adaptation
strategies/technology to cope with the negative effects to
ensure sustainable production. The hazardous climate change
effects can be reduced by adapting climate-smart and resilient
agricultural practices, which will ensure food security and
sustainable agricultural production (Zafar et al., 2018; Ahmad
et al,, 2019; Ahmed et al., 2019b). Adaptation is the best way
to handle climate variability and change as it has the potential
to minimize hazardous climate change effects for sustainable
production (IPCC, 2019). Innovative technologies and defensive
adaptation can reduce the uncertain and harmful effects of
climate on agricultural productivity.

Therefore, to survive the harmful climate change effects, the

development and implementation of adaptation strategies are
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crucial. In developing countries, poverty, food insecurity and
declined agricultural productivity are common issues, which
indicate the need for mitigation and adaptation measures
to sustain productivity (Clair and Lynch, 2010; Lybbert and
Sumner, 2012; Mbow et al., 2014). At the national and regional
level, the insurance of food security is the major criterion
for the effectiveness of mitigation and adaptation. Integration
of adaptation and mitigation strategies is a great challenge
to promote sustainability and productivity. Climate resilient
agricultural production systems can be developed and diversified
with the integration of land, water, forest biodiversity, livestock,
and aquaculture (Hanjra and Qureshi, 2010; Meena et al,
2019). Summary and overview of all below discussed potential
opportunities are presented in Figure 10.

Reduction in GHGs emission

Reduction in GHGs emissions from agriculture under
marginal conditions and production of more food are the major
challenges for the development of adaptation and mitigation
measures (Smith and Olesen, 2010; Garnett, 2011; Fujimori
et al,, 2021). Similarly, it is an immediate need to control such
practices in agriculture which lead to GHGs emissions, i.e., NoO
emissions from the application of chemical fertilizers, and CHy
emissions from livestock and rice production systems (Herrero
et al,, 2016; Allen et al., 2020). Similarly, alternate wetting and
drying and rice intensification are important to reduce the
GHGs emission from rice crops (Nasir et al., 2020). Carbon
can be restored in soil by minimizing the tillage, reducing soil
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TABLE 6 Projected adoption of adaptation package used in crop models for CCSM4 GCM during mid-century.

Economic indicators DSSAT APSIM
Projected adoption rate = 69.3% Projected adoption rate = 70%
Without adaptation With adaptation Without adaptation With adaptation
Mean farm net returns (million Rs./farm/year) 1.1 1.29 1.06 1.29
Per capita income (thousand Rs./person/year) 100 117 95 115
Poverty rate (%) 16.6 16 19.1 16

FIGURE 10

Overview of opportunities including adaptations and mitigations strategies for sustainable agriculture production system in Asia.

erosions, managing the acidity of the soil, and implementing
crop rotation. By increasing grazing duration and rotational
grazing of pastureland, sequestration of carbon can be achieved
(Runkle et al., 2018). About 0.15 gigatonnes of CO; equal to the
amount of CO3 produced in 1 year globally, can be sequestered
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by adopting appropriate grazing measures (Henderson et al.,
2015). Development of climate-resilient breeds of animals and
plants with higher growth rates and lower GHGs emissions
should be developed to survive under harsh climatic conditions.
Focus further on innovative research and development for the
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development of climate-resilient breeds, especially for livestock
(Thornton and Herrero, 2010; Henry et al., 2012; Phand and
Pankaj, 2021).

Application of ICT and decision support
system

To mitigate and adapt to the drastic effects of climate
variability and change, information and communication
technologies (ICTs) can also play a significant role by promoting
green technologies and less energy-consuming technology
(Zanamwe and Okunoye, 2013; Shafiq et al., 2014; Nizam et al.,
2020). Timely provision of information from early warning
systems (EWS) and automatic weather stations (AWS) on
drought, floods, seasonal variability, and changing rainfall
patterns can provide early warning about natural disasters and
preventive measures (Meera et al,, 2012; Imam et al., 2017),
and it can also support farmers’ efforts to minimize harmful
effects on the ecosystems. Geographical information systems
(GIS), wireless sensor networks (WSN), mobile technology
(MT), web-based applications, satellite technology and UAV
can be used to mitigate and adapt to the adverse effects of
climate change (Kalas, 2009; Karanasios, 2011). Application of
different climate, crop, and economic models may also help
reduce the adverse effects of climate variability and change on
crop production (Hoogenboom et al., 2011, 2015, 2019; Ewert
et al., 2015).

Crop management and cropping system
adaptations

Adaptation strategies have the potential to minimize the
negative effect of climate variability by conserving water
through changes in irrigation amount, timely application of
irrigation water, and reliable water harvesting and conservation
techniques (Zanamwe and Okunoye, 2013; Paricha et al., 2017).
Crop-specific management practices like altering the sowing
times (Meena et al., 2019), crop rotation, intercropping (Hassen
et al., 2017; Moreira et al, 2018), and crop diversification
and intensification have a significant positive contribution as
adaptation strategies (Hisano et al., 2018; Degani et al., 2019).
Meanwhile, replacement of fossil fuels by introducing new
energy crops for sustainable production (Ruane et al., 2013) is
also crucial for the sustainability of the system. Different kinds
of adaptation actions (soil, water, and crop conservation, and
well farm management) should be adapted in case of long-
term increasing climate change and variability (Williams et al.,
2019). Similarly, alteration in input use, changing fertilizer
rates for increasing the quantity and quality of the produce,
and introduction of drought resistant cultivars are some of
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the crucial adaptation approaches for sustainable production.
Therefore, under uncertain environmental conditions, to ensure
sustainable productivity, crops having climatic resilient genetic
traits should also be introduced (Bailey-Serres et al., 2018;
Raman et al., 2019). Similarly, to ensure the sound livelihood of
farmers, it is important to develop resilient crop management as

well as risk mitigation strategies.

Opportunities for a sustainable livestock
production system

The integration of crop production, rearing of livestock
for both rice and fish
production lead to enhancing the farmers’ income through

and combined use of rice fields

diversified farming (Alexander et al, 2018; Poonam et al,
2019). Similarly, variations in pasture rates and their rotation,
alteration in grazing times, animal and forage species variation,
and combination production of both crops and livestock
are the activities related to livestock adaptation strategies
(Kurukulasuriya and Rosenthal, 2003; Havlik et al., 2013). Under
changing climate scenarios, sustainable production of livestock
should coincide with supplementary feeds, management of
livestock with a balanced diet, improved waste management
methods, and integration with agroforestry (Thornton and
Herrero, 2010; Renaudeau et al., 2012).

Carbon sequestration and soil
management

Selection of more drought-resilient genotypes and combined
plantation of hardwood and softwood species (Douglas-fir to
species) are considered adaptive changes in forest management
under future climate change scenarios (Kolstrom et al., 2011;
Hashida and Lewis, 2019). Similarly, timber growth and
harvesting patterns should be linked with rotation periods,
and plantation in landscape patterns to reduce shifting and
fire of forest tree species under climate-smart conditions
for forest management to increase rural families income
for a sustainable agricultural ecosystem (Scherr et al, 2012).
Although, conventional mitigation methods for the agriculture
sector have a pivotal role in forest related strategies, some
important measures are also included in which afforestation
and reforestation should be increased but degradation and
deforestation should be reduced and carbon sequestration can be
increased (Spittlehouse, 2005; Seddon et al., 2018; Arehart et al.,
2021). Carbon stock enhanced the carbon density of forest and
wood products through longer rotation lengths and sustainable
forest management (Rana et al, 2017; Sangareswari et al,
2018). Climate change impacts are reduced through adaptation
strategies in agroforestry including tree cover outside the
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forests, increasing forest carbon stocks, conserving biodiversity,
and reducing risks by maintaining soil health sustainability
(Mbow et al., 2014; Dubey et al., 2019). Similarly, climate-smart
soil management practices like reduction in grazing intensity,
rotation-wise grazing, the inclusion of cover and legumes crops,
agroforestry and conservation tillage, and organic amendments
should also be promoted to enhance the carbon and nitrogen
stocks in soil (Lal, 2007; Pineiro et al., 2010; Xiong et al., 2016;

Garcia-Franco et al., 2018).

Opportunities for fisheries and
aquaculture

Sustainable economic productivity of fisheries and
aquaculture requires the adaptation of specific strategies, which
leads to minimizing the risks at a small scale (Hanich et al,
2018). Therefore, to build up the adaptive capacity of poor
rural farmers, measures should be carried out by identifying
those areas where local production gets a positive response
from variations in climatic conditions (Dagar and Minhas,
2016; Karmakar et al.,, 2018). Meanwhile, the need to build the
climate-smart capacity of rural populations and other regions
to mitigate the harmful impacts of climate change should be
recognized. In areas which have flooded conditions and surplus
water, the integration of aquaculture with agriculture in these
areas provides greater advantages to saline soils through newly
adapted aquaculture strategies, i.e, agroforestry (Ahmed et al,
2014; Dagar and Yadav, 2017; Suryadi, 2020). To enhance
the food security and living standards of poor rural families,
aquaculture and artificial stocking engage the water storage
and irrigation structure (Prein, 2002; Ogello et al, 2013). In
Asia, rice productivity is increased by providing nutrients by
adapting rice-fish culture in which fish concertedly consume
the rice stem borer (Poonam et al., 2019). Food productivity
can be enhanced by the integration of pond fish culture with
crop-livestock systems because it includes the utilization of
residues from different systems (Prein, 2002; Ahmed et al,
2014; Dagar and Yadav, 2017; Garlock et al, 2022). It is
important to compete with future challenges in the system by
developing new strains which withstand high levels of salinity
and poorer quality of water (Kataria and Verma, 2018; Lam
etal., 2019).

Conclusion

Globally, and particularly in developing nations, variability
in climatic patterns due to increased anthropogenic activity
has become clear. Asia may face many problems because of
changing climate, particularly in South Asian countries due
to greater population, geographical location, and undeveloped
technologies. The increased seasonal temperature would affect
agricultural productivity adversely. Crop growth models with
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the assistance of climatic and economic models are helpful
tools to predict climate change impacts and to formulate
adaptation strategies. To respond to the adverse effects of
climate change, sustainable productivity under climate-smart
and resilient agriculture would be achieved by developing
adaptation and mitigation strategies. AgMIP-Pakistan is a good
specimen of climate-smart agriculture that would ensure crop
productivity in changing climate. It is a multi-disciplinary plan
of study for climate change impact assessment and development
of the site and crop-specific adaptation technology to ensure
food security. Adaptation technology, by modifications in crop
management like sowing time and density, and nitrogen and
irrigation application has the potential to enhance the overall
productivity and profitability under climate change scenarios.
The adaptive technology of the rice-wheat cropping system
can be implemented in other regions in Asia with similar
environmental conditions for sustainable crop production
to ensure food security. Early warning systems and trans-
disciplinary research across countries are needed to alleviate
the harmful effects of climate change in vulnerable regions of
Asia. Opportunities as discussed have the potential to minimize
the negative effect of climate variability and change. This may
include the promotion of agroforestry and mixed livestock and
cropping systems, climate-smart water, soil, and energy-related
technologies, climate resilient breeds for crops and livestock, and
carbon sequestration to help enhance production under climate
change. Similarly, the application of ICT-based technologies,
EWS, AWS, and decision support systems for decision-making,
precision water and nutrient management technologies, and
crop insurance may be helpful for sustainable production and
food security under climate change.
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