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Yield monitoring is an important parameter to evaluate cotton productivity during cotton 
harvest. Nondestructive and accurate yield monitoring is of great significance to cotton 
production. Unmanned aerial vehicle (UAV) remote sensing has fast and repetitive 
acquisition ability. The visible vegetation indices has the advantages of low cost, small 
amount of calculation and high resolution. The combination of the UAV and visible 
vegetation indices has been more and more applied to crop yield monitoring. However, 
there are some shortcomings in estimating cotton yield based on visible vegetation indices 
only as the similarity between cotton and mulch film makes it difficult to differentiate them 
and yields may be saturated based on vegetation index estimates near harvest. Texture 
feature is another important remote sensing information that can provide geometric 
information of ground objects and enlarge the spatial information identification based on 
original image brightness. In this study, RGB images of cotton canopy were acquired by 
UAV carrying RGB sensors before cotton harvest. The visible vegetation indices and 
texture features were extracted from RGB images for cotton yield monitoring. Feature 
parameters were selected in different methods after extracting the information. Linear and 
nonlinear methods were used to build cotton yield monitoring models based on visible 
vegetation indices, texture features and their combinations. The results show that (1) 
vegetation indices and texture features extracted from the ultra-high-resolution RGB 
images obtained by UAVs were significantly correlated with the cotton yield; (2) The best 
model was that combined with vegetation indices and texture characteristics RF_ELM 
model, verification set R2 was 0.9109, and RMSE was 0.91277 t.ha−1. rRMSE was 29.34%. 
In conclusion, the research results prove that UAV carrying RGB sensor has a certain 
potential in cotton yield monitoring, which can provide theoretical basis and technical 
support for field cotton production evaluation.
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INTRODUCTION

Cotton is an important cash crop, providing one of the world’s 
best high-quality fiber and natural crops, serving as one of 
the largest raw material supplies in the textile industry (Khan 
et  al., 2020). In order to reduce production costs, reduce 
farmers’ labor burden, and improve cotton harvest efficiency, 
cotton harvest efficiency, use of machine for cotton cultivation 
has expanded over large areas (Wu and Chen, 2015). Spraying 
defoliating agent is the key technology of mechanized cotton 
harvesting (Sun et  al., 2020), and the amount of defoliating 
agent and spraying time had significant effect on cotton yield 
(Xin et  al., 2021). Analysis of the yield variation of the cotton 
harvest period is very important to determine the harvest time 
and evaluate the productivity of cotton (Tedesco-Oliveira et al., 
2020). Therefore, it is of great significance to estimate cotton 
yield quickly and accurately before the cotton harvest.

The traditional yield survey method is based on the experience 
of farmers or professionals, which is time-consuming, laborious, 
and is mainly based on fixed point destructive sampling, which 
has a certain degree of uncertainty and cannot accurately 
evaluate the distribution of cotton yield in the region (Çopur 
et  al., 2010). In recent years, the combination of artificial 
intelligence and remote sensing technology has been widely 
applied in agriculture (Xu et  al., 2021). At present, relevant 
scholars have also proposed various methods for cotton yield 
prediction, such as the use of a yield detector mounted on 
the cotton picker (Pelletier et  al., 2019), yield estimation based 
on crop growth models (Masasi et al., 2020), and yield monitoring 
realized based on multi-source satellite data (Meng et al., 2019). 
Compared to traditional methods, remote sensing methods are 
more economical and effective when it comes to cotton yield 
monitoring. However, existing remote sensing for crop yield 
monitoring has shortcomings such as a large amount of data, 
difficulty in data processing, or limitations in terms of resolution. 
With the development of remote sensing technology, unmanned 
aerial vehicle (UAV) low-altitude remote sensing platforms have 
become increasingly popular in the development of precision 
agriculture (Tsouros et  al., 2019), At present, unmanned aerial 
vehicles can carry more sensors, such as hyperspectral, thermal 
image, RGB images, and LiDAR (Maddikunta et  al., 2021). 
Compared with satellite remote sensing, UAV remote sensing 
platforms have strong flexibility, low cost, small atmospheric 
impact, and relatively high spatial and temporal resolution. 
Relevant researchers have studied the relationship between 
remote sensing information obtained by drones and crop yields. 
Tao et al. (2020) showed that the partial least squares regression 
(PLSR) allows the accurate estimation of crop yield from 
hyperspectral remote sensing data, and the combination of the 
vegetation indices and plant height allows the most accurate 
yield estimation. Maimaitijiang et al. (2020) used a UAV equipped 
with three sensors (RGB, multispectral, and thermal) to obtain 
remote sensing data, and a deep neural network framework 
was used to achieve multi-modal data fusion, to forecast soybean 
yield and effectively improve the accuracy of the prediction model.

At present, digital imagery provides the easiest and most 
common image information. The cost of RGB information 

acquisition is also very low, and it has been widely used in crop 
monitoring (Yamaguchi et al., 2021). Among the sensors typically 
carried by UAVs, RGB cameras have the advantages of small 
size, high resolution, and simple operation. RGB imagery can 
record the brightness digital number (DN) value of red, green, 
and blue wave segments, and color space conversion can be carried 
out according to this, and vegetation indices can be  calculated. 
Compared with a spectral image or multi-source data fusion, 
RGB imagery is associated with a small amount of data and is 
easy to process. It is more beneficial to reduce the cost and 
complexity of monitoring, by obtaining RGB images with a UAV 
and fully mining the image information. Previous studies have 
extracted vegetation indices from RGB imagery to realize crop 
monitoring. For example, cotton yield monitoring research has 
been based on unmanned aerial vehicle multi-sensor realization 
(Feng et al., 2020)，extracting the boll number from RGB imagery 
(Yeom et  al., 2018); the cotton pixels were then separated using 
image processing technique and k-means with 5 class (Maja 
et  al., 2016), or base UAV visible light remote sensing images 
extracted boll opening pixel percentage, and vegetation indices 
during the blooming period were used for estimating single boll 
weight (Xu et  al., 2020). Most of the existing researches are 
based on image processing technology and need large amount 
of calculation and high hardware requirements. However, direct 
monitoring of cotton yield through the use of the visible vegetation 
indices combined with texture features has been studied less.

Vegetation indices, calculated based on visible and near infrared 
spectra, will appear to be  saturated when the vegetation coverage 
is high during the growth stage of crops (Yue et  al., 2019). 
Vegetation indices constructed based on RGB imagery also 
encounter the same problem, as they are calculated based on 
the brightness values of the R, G, and B bands only, less information, 
and small changes in vegetation indices. RGB images can 
be  subjected to color space conversion and texture feature 
calculation. In the current research, mostly in the ground scale 
are by converting the color space achieved background segmentation 
and classification (Mao et  al., 2020; Riehle et  al., 2020). But 
there is a lack of research on monitoring cotton yield with different 
color space models at the ground scale. In addition, considering 
the centimeter-level high-resolution RGB images obtained by 
UAVs, the fusion of texture features and color features can lead 
to information complementarity and extracting more meaningful 
information from the imagery. Previous studies have shown that 
image texture features extracted based on gray level co-occurrence 
matrix (GLMC) are effective in nitrogen content estimation (Zheng 
et al., 2020) and the classification of diseases (Kurale and Vaidya, 
2018), the results of which showed good performance.

There have been a lot of studies on cotton yield estimation 
using low-altitude UAV remote sensing, but few of them have 
utilized deep mining for RGB images. However, in terms of crop 
growth monitoring, (Yue et al., 2019) high-resolution RGB images 
and texture features obtained by UAV were used to monitor 
wheat biomass. Fernandez-Gallego (Fernandez-Gallego et al., 2019) 
estimated wheat yield using visible vegetation indices and color 
space. Therefore, in this study, UAV was used to obtain high-
resolution RGB images from which vegetation index, texture 
features were extracted and converted color space model, and 
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their combination were used to estimate cotton yield before harvest. 
Provide technical support for mechanical cotton harvesting and 
accurate management.

MATERIALS AND METHODS

Experimental Design and Yield 
Investigation
For this study, a field experiment was carried out at the Shihezi 
University Teaching and Testing Ground, Shihezi, Xinjiang, China 
(Figure  1; 44°19′N, 85°59′E; altitude, 443 m). The study area is 
characterized by a temperate continental climate, in an arid and 
semiarid region, with an average annual precipitation of 125.9–
207.7 mm, a large temperature difference between day and night, 
and a high soil nutrient content in the test area. Two local 
varieties of cotton (Xinluzao 50 and Xinluzao 33) were planted 
for two years (in 2019 and 2020). Six groups were planted per 
year, as shown in Figure 1D. Two cotton varieties, four defoliant 
concentrations, and six application time treatments were used 
to increase the yield differences. Taking Xinluzao 50 and Xinluzao 
33, the main cotton varieties in the Xinjiang region, as the 
research objects, the defoliant concentration treatment included 
C1: clear water (CK); C2: defoliant 150 ml∙hm−2 + special additives 
750 ml∙hm−2 + ethephon 1.2 l∙hm−2; C3: defoliant 
300 ml∙hm−2 + special additives 750 ml∙hm−2 + ethephon 1.2 l∙hm−2; 

and C4: defoliant 450 ml∙hm−2 + special additives 
750 ml∙hm−2 + ethephon 1.2 l∙hm−2. A defoliant (Total active 
ingredient content, 540 g∙L−1; diuron content, 180 g∙L−1; thidiazuron 
content, 360 g∙L−1, as a suspension agent) and special auxiliaries 
by the materials company Bayer AG production were used in 
this test. Defoliant was sprayed on August 20 (T1), August 23 
(T2), August 30 (T3), September 7 (T4), September 14 (T5), 
and September 21 (T6) as shown in Figure  1D. Cotton was
harvested after different defoliant spraying times and concentrations. 
Defoliant concentration tests (C1, C2, C3, and C4) of different 
varieties of cotton were carried out in the six experimental groups 
under the different spraying time treatments (T1, T2, T3, T4, 
T5, and T6). Theoretical yield investigation was carried out on 
the 3rd, 6th, 9th, 12th, and 15th days after the application of 
defoliant in the cotton opening period and before harvest. Yield 
per unit area was calculated by counting the number of bolls 
at the opening and the weight of a single boll in each plot. The 
single boll weight used in this study is the average weight calculated 
by selecting ten consecutive cotton plants in each plot (2.5 m*10 m), 
investigating their yield and boll number as given in equation (1).

 
single boll weight plants yield

plants boll number
  

 

  
=

10

10
 

(1)

A D

B C

FIGURE 1 | Study area and experimental design: cotton experiment at Shihezi University Teaching and Testing Ground, Shihezi, Xinjiang, China in 2019–2020. 
Experimental including two local varieties of cotton. C1, C2, C3, and C4 denote different defoliant concentrations. T1–T3 denote different sprayed times. 
(A) Geographical location of Xinjiang; (B) Geographical location of Shihezi; (C) Study area; (D) Experimental design.

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Ma et al. UAV Cotton Yield Monitoring

Frontiers in Plant Science | www.frontiersin.org 4 June 2022 | Volume 13 | Article 925986

 Theoretical yield sigle boll weight boll number    = ×  (2)

UAV Canopy RGB Image Data Collection 
and Processing
Before the cotton harvest, the Phantom 4 Advanced Aerial 
Photography UAV (Shenzhen, DJI, China) was used to capture 
high resolution color images of the entire experimental area. 
The drone image acquisition was done between 12:00 PM and 
1:00 PM. During image acquisition, the camera (sensor size 
5,472 × 3,648 pixels) was set to be  vertically downward and 
set to equal time intervals. The flight height was set as 10 m 
above ground, with forward and side overlap set to 80%, the 
camera shutter time was 1/240 s, and the ISO value was 100. 
A total of 387 images were obtained from the experimental 
area. These images were stitched into orthophotographs with 
the Pix4D Mapper software (Pix4D, Switzerland), and stored 
in a TIFF format. The orthomosaics retain the gray-scale 
information of red, green, and blue colors of the ground objects. 
Each color contained 8-bit information, with a numerical range 
from 0 to 255. According to the plots distribution, the stitched 
cotton field image was cut into 48 regions of interest.

Feature Extraction and Analysis of RGB 
Images
Extraction of Vegetation Indices
Some color space models and vegetation indices based on 
RGB were selected from previous studies (Table 1). The region 
of interest (ROI) is divided based on each test cell, and DN 
values of the three colors (red, green, and blue) were included 
for orthomosaics. We  used MATLAB 2019A to obtain the DN 
values of three color channels, calculate the average DN value 
of each color channel, and calculate the normalized value of 
the three colors (R, G, and B), to calculate the vegetation 
indices. The equations used to calculate normalized values and 
vegetation indices are shown in Table  1.

The color features of each divided ROI were converted from 
RGB color space model to HSV, and LA * B *, and YIQ were 
calculated based on corresponding functions in MATLAB. YCrCb 
model conversion formula are shown in Table  1.

Spatial Features: Texture Features Based on 
Gray-Scale Co-occurrence Matrix (GLMC)
Ultra-high-resolution images (ground resolution of 0.3 cm/pixel) 
were obtained from a UAV flying at an altitude of 10 meters 
above ground level. Four texture features were calculated from 
four different angles (0°, 45°, 90°, and 135°), based on the 
gray-level co-occurrence matrix (GLMC), and the average value 
of the four texture features was obtained. The three bands of 
the RGB image were calculated as gray values, and then, the 
texture features were calculated. The texture features were 
calculated using the following equations:

 
Asm P i j

i j
= ( )∑∑ ,

2

 
(3)

 
Ent P i j logP i j

i j
= ( ) ( )∑∑ , ,

 
(4)

 
Con i j P i j

i j
= ( ) ( )∑∑ , ,

2

 
(5)

 
Cor

i j P i ji j x y

x y
=

( ) ( ) −∑ ∑ , , µ µ

σ σ  
(6)

Construction and Evaluation of Cotton 
Yield Estimation Model
The flowchart shown in Figure  2 illustrates the experimental 
methods of this study, including field data collection, feature 
selection, model construction, and validation. In this study, 
vegetation indices and texture features, alone or combined, 
were used to estimate cotton yield. To further study the 
estimation accuracy of the yield estimation model, the cross-
validation method was used to divide the data into training 
and validation datasets, with 315 samples for the 199 training 
dataset and 116 samples for the validation dataset. The descriptive 
statistics are shown in Table 2. There are significant differences 
between the data of training set and validation set.

Optimal Feature Parameter Screening
The four methods of correlation, maximum information 
coefficient (MIC), random forest (RF), and recursive feature 
elimination (RFE) were adopted to select the optimal feature 
parameters for the model establishment, respectively, to eliminate 
the obvious collinearity among the parameters. The above 
methods are based on Python3.8 sklearn library. Parameter 
screening probability is to normalize the scores given by each 
method so that the values fall between 0 and 1.

Model
In the current research, the methods for establishing the 
relationship between remote sensing information and agricultural 
parameters mainly include three types: physical, statistical, and 
semiempirical models. In this study, a statistical model was 
established to achieve cotton yield monitoring. The statistical 
model mainly analyzed the correlation between the obtained 
UAV data and the measured output on the ground, and 
establishes regression models, including linear and nonlinear 
models. The linear regression model is fast and simple. Each 
characteristic variable can obtain a fixed weight, but the model 
structure is fixed and immutable. The nonlinear model is 
flexible, has a strong monitoring ability, and can eliminate 
certain collinearity; however, there is no fixed weight for each 
characteristic variable, it requires a large amount of data, takes 
a long time to calculate, and the output is a model framework, 
rather than a fixed formula. For this study, three linear regression 
methods were selected: partial least squares regression (PLSR), 
elastic neural network (Elastic Net), and kernel ridge regression 
(KRR). Three nonlinear regression methods were used to 
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TABLE 1 | Review of the color space and vegetation indices used in this study.

Data type Band and vegetation indices Equations References

Color space R DN value of the red band
G DN value of the green band
B DN value of the blue band

R ( )
Rr

R G B
=

+ +

G ( )
Gg

R G B
=

+ +

B ( )
Bb

R G B
=

+ +

Y 0.299 0.587 0.114Y R G B= + +

Cb
( )0.568 128Cb B Y= − +

Cr
( )0.713 128Cr R Y= − +

U
( )0.493 2 )U B Y= −

Vegetation indices NGRDI
( ) ( )NGRDI g r / g r= − +

Hamuda et al., 2016

MGRVI

( )
( )

2 2

2 2

g r
MGRVI

g r

−
=

+
Bendig et al., 2015

RGBVI

( )
( )

2

2

g br
RGBVI

g br

−
=

+
Bendig et al., 2015

NDI

( )
( )0.01

r g
NDI

r g
−

=
+ +

Hamuda et al., 2016

VARI

( )
( )

g r
VARI

g r b
−

=
+ −

Gitelson et al., 2002

WI

( )
( )
g b

WI
r g
−

=
−

Bendig et al., 2015

CIVE 0.441 0.881 0.385 18.78745CIVE r g b= − + + Kataoka et al., 2003

GLA

( )
( )
2
2

G B R
GLA

G B R
− −

=
+ +

Chianucci et al., 2016

ExG 2ExG g b r= − − Hamuda et al., 2016

ExR 1.4ExR r g= − Hamuda et al., 2016

ExGR 3 2.4ExGR g r b= − − Hamuda et al., 2016

GLI

( )
( )
2
2

g b r
GLI

g b r
− −

=
+ +

Louhaichi et al., 2001

NGBDI

( )
( )
g b

RGBVI
g b
−

=
+

Hunt et al., 2005
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establish the cotton yield monitoring model: support vector 
regression (SVR), multilayer perceptron (MLP), and extreme 
Learning Machine (ELM). The above methods are based on 
Python3.8 sklearn library, and GridSearchCV of sklearn library 
is used to optimize model parameters.

Precision Evaluation
In this study, the coefficient of determination (R2), root-
mean-square error (RMSE), and relative root-mean-square 
error (rRMSE) were used to evaluate the model performance. 
Higher R2 and smaller RMSE, rRMSE, denote higher model 
precision, accuracy, and stability. Those metrics were calculated 
as follows:

 

R
x x y y

n x x n y y
i
n

i i

i
n

i i
n

i

2 1

1 1

2 2

2 2

=
−( ) −( )

−( ) −( )
=

= =

∑
∑ ∑  

(7)

 
RMSE = −( )

=
∑1

2

1
n

y x
i

n
i i

 
(8)

 
rRMSE RMSE

x
=

 
(9)

where i  represents the data of the i th sample point; xi  is 
the measured value of the cotton yield for the i th sample 
point (in t.ha−1); yi is the predicted cotton yield value at 
sample point i,  estimated according to the model (in t.ha−1); 
x  is the average value of measured cotton yield (in t.ha−1); 

and y  is the average value of cotton yield estimated by the 
model (in t.ha−1).

RESULTS

Relationship Between Vegetation Indices, 
Texture Characteristics, and Yield
The red area represents a positive correlation, the blue area 
represents a negative correlation, and the lighter the color, 
the weaker the correlation. As shown in Figure  3, cotton 
yield was most correlated with NDI, NGRDI and MGRVI, 
with the correlation being 0.55, −0.55, and − 0.55, respectively. 

TABLE 2 | Cotton yield descriptive statistics.

Dataset Samples Min (t.ha−1) Mean (t.ha−1) Max (t.ha−1)
Standard deviation 

(t.ha−1)
Coefficient of 
variation(%)

Training set 199 0.00 3.00 11.58 2.91 97.08%
Validation dataset 116 0.00 3.08 9.83 2.75 89.25%

FIGURE 2 | This study involves the flowchart of data acquisition, data processing, and model construction.
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But there is serious collinearity among the three. As shown 
in Figure  4, cotton yield is positively correlated with ASM 
and COR at different angles, and negatively correlated with 
Ent and Con at different angles. The correlation with CON-SD 
was −0.51, indicating that with the increase in yield, the 
difference of Con in different directions became smaller and 
smaller. The distribution of image texture features is more 
and more uniform. Collinearity between texture features is 
also strong.

Feature Selection
To effectively eliminate the collinearity among variables and 
accurately estimate cotton yield, the optimal features were found 
from vegetation indices and texture features, based on the 
correlation coefficient, MIC, RF, and RFE. Then, different 
machine learning models were established, based on the six 

optimal features. Figure  5 shows the screening results of each 
method, in which the red bar indicates the optimal feature 
selected, and the feature parameters selected from each screening 
method are different. In combination with Figures  3, 4, it 
can be  seen that the correlation between the characteristic 
parameters selected by RF was the lowest.

Estimation of Cotton Yield Based on 
Vegetation Indices
Table 3 shows the results of linear regression (PLSR, Elastic-Net, 
and KRR) and nonlinear regression (SVR, MLP, and ELM) 
monitoring models based only on vegetation indices. Figure 6 
shows the fitting relationship between measured and predicted 
values of the model training and validation sets. The results 
showed that: (1) In the linear regression model, the RF_KRR 
model performed the best, the training set R2 was 0.6087, 

FIGURE 3 | Correlation between different vegetation indices and cotton yield.
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the RMSE was 1.7156 t.ha−1, and the rRMSE was 60.95%. 
But the verification set R2 only 0.3884, the RMSE was 2.4805 t.
ha−1, and the rRMSE was 71.46%, among which. In the 
nonlinear regression models, the RFE_ELM model had the 
best effect. Training set R2 = 0.7310, RMSE = 1.4285 t.ha−1, 
rRMSE = 47.57%. The verification set R2 = 0.7244, the 
RMSE = 1.4418 t.ha−1, and the rRMSE = 49.23%, where the 
nonlinear models were better than the linear models, and 
the best model was the RFE_ELM model (2) Figure  7 shows 
the yield estimation model based on vegetation indices 
underestimated the high yield samples; the higher the yield, 
the worse the estimation ability. RFE_ELM effectively improved 
the estimation accuracy of high yield samples and, thus, 
improved the accuracy of the model.

Cotton Yield Estimation Based on Texture 
Features
Table  4 shows the R2, RMSE, and rRMSE of the monitoring 
model using only texture features, based on linear regression 
(PLSR, Elastic-Net, KRR) and nonlinear regression (SVR, 
MLP, ELM) methods. Figure  8 shows the results indicated 
that: (1) The optimal linear regression model was the RF_ 
KRR model (training set R2 = 0.6004, RMSE = 1.7164 t.ha−1, 
rRMSE = 60.97%; verification set R2 = 0.5858, RMSE = 2.0112 t.
ha−1, rRMSE = 57.97%), while the optimal nonlinear 
regression model was the RFE_ELM model (training set 
R2 = 0.8619, RMSE = 1.0941 t.ha−1, rRMSE = 38.46%; verification 
set R2 = 0.8379, RMSE = 1.1705 t.ha−1, rRMSE = 34.54%). 
Furthermore, the best nonlinear model was better than the 

FIGURE 4 | Correlation between different texture characteristics and cotton yield.
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best linear model (2) Figure  9 shows fitting relationship 
between the predicted and measured values of the training 
set and the verification set of the monitoring model. The 
yield estimation model based on texture features 
underestimated the high yield samples, but the effect was 
better than that of the yield estimation model based on 
vegetation indices.

Cotton Yield Estimation Based on 
Vegetation Indices and Texture Features
Table 5 shows the results of establishing linear and nonlinear 
regression monitoring models by selecting the three vegetation 
indices and texture features with the highest selection 
probability as feature parameters. Figure 10 shows the results 
indicated that: (1) In the linear regression models, the 
training set R2 was 0.4306–0.7250, the RMSE was 2.0754–
1.4283 t.ha−1, and the rRMSE was 73.73–50.74%, while the 
verification set R2 was 0.3348–0.6184, the RMSE was 
2.5277–1.9348 t.ha−1, and the rRMSE was 72.82–55.74%, 
where the best model was RF_KRR. In the nonlinear 
regression models, the training set R2 was 0.3706–0.9316, 
the RMSE was 2.1631–0.7279 t.ha−1, and the rRMSE was 
76.84–25.88%, while the verification set R2 was 0.3947–0.9109, 
the RMSE was 2.4377–0.9127 t.ha−1, and the rRMSE was 
70.23–29.34%, among which the best model was the RFE_
ELM model (2) Figure  11 shows the fitting results of 
measured and predicted values on the training and validation 
sets for the monitoring model, the yield estimation model 
based on vegetation indices and texture features 
underestimated the high yield samples, but the effect was 
better than that based on vegetation indices.

Cotton Yield Inversion Map Based on UAV 
RGB Image
Based on the UAV RGB images covering 48 plots, vegetation 
indices and texture features were extracted, and the linear and 
nonlinear models with the best results (as described above) 
were selected for preharvest yield inversion. The results showed 
that the best linear model, RF_KRR, was able to monitoring 
the yields of <3.62 t.ha−1 accurately when estimating plots with 
low yield. However, as the yield increased gradually, the 
monitoring accuracy became lower and lower, and the yield 
of high-yielding plots was significantly underestimated such 
that yields greater than 8.33 t.ha−1 were not estimated. As for 
the RFE_ELM model, the estimation performance was better 
than that of the RF_KRR model, and its estimation results 
were similar to the measured values; however, yields <3.63 t.
ha−1 were overestimated (Supplementary Figure  1).

DISCUSSION

At present, crop yield estimation based on remote sensing 
means is mainly realized based on satellite remote sensing 
data or unmanned aerial vehicles carrying multiple sensors. 
However, these methods have some limitations, mainly regarding 
the following aspects: (1) the resolution of satellite imagery 
is too course for that kind of application; and (2) multiple 
sensors acquire more information and, therefore, capture a 
large amount of redundant data, might require both large 
volume of hard drive space for storage and large amount of 
computer power to process the data. Therefore, for this study, 
we  used an unmanned aerial vehicle carrying an RGB camera 

FIGURE 5 | Optimal feature selection based on different screening methods.
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to obtain digital images with a high ground resolution and 
extracted vegetation indices and texture features to estimate 
cotton yield.

Crop yield monitoring is very important in crop management. 
Many studies have been devoted to using different methods 
to improve the accuracy of yield estimation models. Commonly 
used methods include establishing the model through vegetation 
indices (Zhang et  al., 2020), multi-sensor monitoring (Feng 
et  al., 2020), or deep learning (Escalante et  al., 2019). RGB 
images are the most common type of image in daily life, 
which are characterized by simple acquisition and easy 
processing. More and more RGB images have been used for 
yield monitoring. Although these methods can effectively 
improve the accuracy of the yield estimation model, there is 
still room for improvement; for example, Liu et  al. (2019) 
used the vegetation indices extracted from RGB imagery of 
a rice canopy to estimate its yield. The accuracy R2 of the 
model was improved, but only reached 0.7074. Fathipoor et al. 
(2019) used UAV RGB imagery to estimate forage yield, and 
the verification accuracy of their estimation model was 0.74, 
with a relative RMSE of 12.39%. In this paper, the RFE_ELM 
model was found to be  the best model to estimate the yield 
through the use of vegetation indices, with R2 = 0.7310, 
RMSE = 1.4285, and rRMSE = 47.57% on the training set, and 
R2 = 0.7244, RMSE = 1.4418, and rRMSE = 49.23% on the 
verification set, similar to the results of (Huang et  al., 2016), 
who used UAV RGB imagery to extract plant height and 
count the number of cotton bolls to estimate cotton yield. 
However, the accuracy was significantly lower than that of 
the cotton yield monitoring model established by Feng et  al. 
(2020) using multi-sensor imagery. In this paper, the vegetation 
indices extracted from the UAV RGB imagery were significantly 
correlated with the cotton yield, such that it is feasible to 
select the optimal parameter features for cotton yield monitoring; 
however, this still needs to be  improved from the perspective 
of model accuracy. Therefore, more texture feature information 
or other color information should be mined from RGB imagery, 
to improve model accuracy.

Texture features are an important parameter of RGB imagery, 
for which there exist many extraction methods. GLCM is the 
most commonly used and effective extraction method. In this 
paper, GLCM was used to obtain four texture features at 
different angles (0°, 45°, 90°, and 135°). Figure  2 shows that 
different cotton canopy grey values in the RGB imagery were 
used to extract texture features, some of which had significant 
correlations with cotton yield, where the difference had a 
significant correlation between different perspectives on the 
same parameters, namely according to different cotton canopy 
RGB image texture feature dependencies. This differed from 
the results of Zhang et  al. (2017), in their study on satellite 
remote sensing texture feature extraction, and those of Zheng 
et  al. (2020), who estimated nitrogen content in rice leaves 
by using an unmanned aerial vehicle to obtain multispectral 
images. As shown in Supplementary Figure  2, as we  used a 
UAV with a flying height of 10 meters to capture high-resolution 
RGB images, no significant difference was found between each 
pixel, and we  could select the ROI in an image, under the TA
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same processing. This was because where cotton planting density 
was higher, the canopy distribution was relatively uniform. 
However, in the study by Zhang et  al. (2017), the satellite 
image separation rate was high, the difference between each 

pixel was obvious, and the distribution of image feature 
information was uneven. In the study of Zheng et  al. (2020), 
the UAV flew at a height of 100 m and the selected area was 
multi-row, such that there was a difference in crop distribution 

A B

FIGURE 6 | Monitoring model result of cotton yield based on the visible vegetation indices (Note: P denotes feature parameters screened out based on Pearson’s correlation 
coefficient, cal denotes training set; val denotes validation set. (A) Modeling results based on linear regression, (B) modeling results based on nonlinear regression).

A B C D

E F G H

FIGURE 7 | Cotton yield estimation models established by best performing based on the visible vegetation indices by using the linear and nonlinear models (Note: 
(A) P_KRR model; (B) MIC_KRR model; (C) RF_KRR model; (D) RFE_KRR model; (E) P_ELM model; (F) MIC_ELM model; (G) MIC_ELM model; (H) RFE_ELM 
model).
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due to the planting mode and, so, there was an obvious 
correlation in a certain direction.

Compared with the three estimation models based on 
vegetation indices, texture features, and their fusion, as used 
in this paper, texture features showed better performance 
than vegetation indices in cotton yield estimation, where the 
best model was the ELM model. The R2 increased by 17.91%, 
the RMSE decreased by 23.41%, and the rRMSE decreased 
by 19.15%, while for the verification dataset, the R2 increased 
by 15.67%, the RMSE decreased by 18.82%, and the rRMSE 
decreased by 29.84%. However, the performance of the 
monitoring model based on vegetation indices and texture 
features was better than that based on either vegetation indices 
or texture features alone, and the ELM model still performed 
the best. Compared with the model based on vegetation 
indices, the modeling results for the combined model, in 
terms of the R2, RMSE, and rRMSE, were increased by 27.44, 
49.04, and 45.60%, respectively. For the verification dataset, 
the R2 increased by 25.75%, the RMSE decreased by 40.93%, 
and the rRMSE decreased by 35.73%. In conclusion, using 
both vegetation indices and texture feature information for 
cotton yield estimation can improve the accuracy of the 
model. This was similar to the results of Guo et  al. (2021a), 
who monitored wheat yellow rust by using vegetation indices 
and texture features, and Yue et  al. (2019), who estimated 
winter wheat biomass by using texture features and vegetation 
indices derived from the gray-scale correlation matrix of 
canopy imagery. However, in these two studies, the estimation 
performance when using the vegetation indices was better 
than that with the texture features. The analysis of vegetation 
indices and texture characteristics can be  sensitive to the 
growth period, as the cotton leaves fall off gradually, and a 
more prominent G component (green) change is observed 
in the image but, in the later growth stage, when the dry 
leaves fall off, the G component decreases to a constant, 
while the yield is still changing. Therefore, vegetation indices 
are insensitive to yield changes associated with such gradual 
changes. Therefore, models based on vegetation indices tend 
to underestimate high yield plots, while texture features are 
calculated based on image gray values, which can effectively 
reflect the changes in the image feature; however, the 
dependence on the G component is weak, and the sensitivity 
to the changes of yield in the later growth period is reduced 
(but is still better than when using vegetation indices). In 
this study, the vegetation indices and texture features were 
combined to compensate for the saturation of vegetation 
index when the yield was high by virtue of the accuracy of 
vegetation index texture features in color, so as to improve 
the accuracy of the model to a certain extent. In previous 
studies, Zhang et  al. (2021) used texture features, color and 
vegetation index to estimate wheat growth parameters, and 
also used texture features to compensate for index saturation 
and effectively improve the accuracy of the model. Zhou 
et  al. (2021) used drones to diagnose water stress in winter 
wheat. Zhang et  al. (2022) also introduced the combination 
of texture features and vegetation index to improve the model 
accuracy in the study of maize leaf area index estimation TA
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by UAV. Combined with the results of this study, it is feasible 
to improve the accuracy of cotton yield monitoring model 
by combining vegetation index and texture feature. Combined 
with the results of this study, it is feasible to improve the 
accuracy of cotton yield monitoring model by combining 
vegetation index and texture feature. As shown in 
Supplementary Figure  3, among the models established by 

integrating different pre-treatment methods, the best linear 
model was the model established by the KRR method, while 
the best nonlinear model was the ELM model; among these 
two, the ELM model had the best performance. This was 
similar to the results of Guo et al. (2021b), who used machine 
learning methods to predict rice yield by integrating 
phenological and meteorological data.

A B

FIGURE 8 | Cotton yield monitoring model based on texture features. (A) Modeling results based on linear regression, (B) modeling results based on nonlinear regression.

A B C D

E F G H

FIGURE 9 | Cotton yield estimation models established by best performing based on the texture features by using the linear and nonlinear models. (A) Modeling 
results based on linear regression, (B) modeling results based on nonlinear regression.
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In this study, cotton yield monitoring based on simple RGB 
image provides technical support for cotton production and 
harvest. However, the model constructed in this study still 
lacks universality in different regions, different years, and 
different data acquisition conditions. In the future, more data 
set optimization models will be  added, while image processing 
technology will eliminate the environmental impact of data 
acquisition to improve the model accuracy.

CONCLUSION

In this study, ultra-high-resolution UAV RGB images were used 
to monitor the cotton yield before harvest. Vegetation indices, 
color spaces, texture features, and their combination were used 
to estimate the cotton yield before harvest from the RGB 
imagery. The results indicated the following:

 1. The vegetation indices and texture features extracted from 
the ultra-high-resolution RGB images obtained by UAVs 
were significantly correlated with the cotton yield and, as 
such, can feasibly be  used in cotton yield monitoring.

 2. Comparing the modeling methods of linear and nonlinear 
regression, the cotton yield estimation model established 
by the nonlinear regression method had higher accuracy 
and stronger stability.

 3. Comparing the cotton yield monitoring models based on 
vegetation indices or texture features, their fusion can further 
improve the monitoring ability of the cotton yield estimation 
model. The best model was the RFE_ELM model, the verification 
dataset R2 = 0.9109, RMSE = 0.91277 t.ha−1, and rRMSE = 29.34%.
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