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Lignocellulose is amajor component of plant litter and plays a dominant role in

regulating the process of litter decomposition, but we lack a global perspective

on plant litter initial lignocellulose concentration. Here, we quantitatively

assessed the global patterns and drivers of litter initial concentrations of

lignin, cellulose, and hemicellulose using a dataset consisting of 6,021

observations collected from 795 independent publications. We found that

(1) globally, the median concentrations of leaf litter lignin, cellulose, and

hemicellulose were 20.3, 22.4, and 15.0% of litter mass, respectively; and

(2) litter initial concentrations of lignin, cellulose, and hemicellulose were

regulated by phylogeny, plant functional type, climate, and soil properties, with

mycorrhizal association and lifeform the dominant predictors. These results

clearly highlighted the importance of mycorrhizal association and lifeform in

controlling litter initial lignocellulose concentration at the global scale, which

will help us to better understand and predict the role of lignocellulose in global

litter decomposition models.

KEYWORDS

lignin, cellulose, hemicellulose, mycorrhizal association, lifeform, climate, soil

properties

Introduction

Litter decomposition is one of the most important processes of carbon (C) and
nutrient cycling in terrestrial ecosystems, contributing to the formation of soil organic
matter and providing necessary nutrients for plant growth (Berg and McClaugherty,
2020). Litter initial quality is a major factor in controlling plant litter decomposition,
and thus affects the availability of soil nutrients, plant nutrient uptake strategies, and
nutrient cycling processes across the ecosystem (McClaugherty et al., 1985; Soong et al.,
2016). Lignin, cellulose, and hemicellulose, collectively called lignocellulose, are the
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main abundant components affecting plant litter quality
(Sanderson, 2011; Wang et al., 2020). Cellulose and
hemicellulose are the main structural components of plant
cells and provide vital C sources for fungi (Schwarz, 2001;
He et al., 2015), while lignin is one of the most abundant
components in plant litter, and can accounts for as much as 30%
of the C sequestered in plant litter (Boerjan et al., 2003; He et al.,
2021). The dominant role of lignocellulose, especially lignin,
in controlling litter decomposition has been widely recognized
(Berg and McClaugherty, 2020), and a clear perspective on the
global spectrums of plant litter initial concentrations of lignin,
cellulose, and hemicellulose will help us to better understand
and predict litter decomposition process. However, till now, the
global patterns and drivers of plant litter initial lignocellulose
concentration still remain elusive.

Lignocellulose is an important source of soil organic C
(SOC) and a major component of plant litter (Berg and
McClaugherty, 2020). Among the components of lignocellulose,
lignin protects cellulose and hemicellulose from enzymatic
hydrolysis due to its high resistance to degradation, so
cellulose and hemicellulose do not degrade independently
of lignin (Kögel-Knabner, 2017; Berg and McClaugherty,
2020). Litter lignocellulose concentration can be affected by
a variety of factors, such as phylogeny (e.g., gymnosperm vs.

angiosperm), plant functional type (PFT, e.g., leaf type, lifeform,
and mycorrhizal association), climate, and soil properties
(McClaugherty et al., 1985; Aerts, 1997; Cornwell et al., 2008).
It is usually acknowledged that litter from tree and shrub
species have higher lignocellulose concentration than from
herbaceous species, and broadleaved species litter have lower
lignocellulose concentration than coniferous species litter (Berg
and McClaugherty, 2020). However, it is not clear if litter
lignocellulose concentration varied among gymnosperm and
angiosperm species. Climate is commonly a determinant factor
for plant growth, and it is directly related to plant phenology
including the senescence of organs that affect the quantity of
litterfall and quality of plant litter (Estiarte and Peñuelas, 2015;
Shen et al., 2019). Soil properties can be also important driving
factors of litter lignocellulose concentration, among which SOC
concentration, moisture, and pH would be the most important
ones because they are closely related to the availability of water
and essential plant nutrients.

Recently, an increasing number of studies have found
that mycorrhizal association is an important factor controlling
the absorption and utilization of soil nutrients (Chen et al.,
2019; Frey, 2019; Tedersoo and Bahram, 2019), and it may
thus also affect the initial concentration of litter lignocellulose.
More than 80% of terrestrial vascular plants are associated
with mycorrhizas, with arbuscular mycorrhiza (AM) and
ectomycorrhiza (ECM) the two dominant types (Tedersoo
et al., 2020). AM plants have an advantage in accessing
inorganic nutrients, while ECM plants are more capable of
mineralizing nutrients directly from organic matter (Liu et al.,

2018; Gibert et al., 2019). Also, AM plants prefer moist and
warm conditions, but ECMplants prefer dry and cold conditions
(Zhong et al., 2021). These differences result in a general
pattern of ECM plants being predominant in ecosystems at
high latitudes where nutrient cycling is slow, while AM plants
are predominant in ecosystems at low latitudes where nutrient
cycling is rapid (Zhang et al., 2018). Although studies have found
that litter from AM species usually have higher litter quality
(Lin et al., 2017), i.e., lower lignocellulose concentration, we
still lack a quantitative assessment on the effects of mycorrhizal
association, and even know less about the relative importance
of mycorrhizal association compared with other factors such as
climate and soil properties.

In this study, we quantitatively assessed the initial
lignocellulose concentration at the global scale with 6,021
observations collected from 795 peer-reviewed publications.
The objectives of this study were to (1) calculate the mean initial
concentrations of plant litter lignin, cellulose, and hemicellulose
at the global scale; and (2) evaluate the effects and relative
importance of multiple driving factors including phylogeny,
PFT, climate, and soil properties.

Materials and methods

Data collection

Peer-reviewed articles and academic dissertations were
searched on Google Scholar and China National Knowledge

Infrastructure (CNKI) at the end of November 2021. The terms
used for search were (litter OR leaf OR bark OR branch OR
wood) AND (decay OR decompositionOR processing) and their
equivalents in Chinese. To collect appropriate data, only primary
studies that satisfied the following criteria were included in our
database: (1) litter lignocellulose data were obtained through
field experiments or observational studies rather than being
estimated or remote sensing data; (2) at least one response
variable of interest, i.e., initial concentrations of litter lignin,
cellulose, or hemicellulose, was reported; and (3) the Latin
names and plant litter types (i.e., bark, branch, leaf, root, stem,
and wood) associated with litter lignocellulose data were clearly
reported. After extraction, a total of 6,021 observations (3,526
for lignin, 1,796 for cellulose, and 699 for hemicellulose) from
795 publications that represented 1,196 species met the criteria
(Figure 1, Appendix 1), and were thus included in our database
for analyses.

We used a currently published peer-reviewed database
named FungalRoot (Soudzilovskaia et al., 2020) to determine the
mycorrhizal association of the species included in our database
into AM, ECM, and both (i.e., species associated with both
AM and ECM fungi) based on the standardized Latin names
according to the World Flora Online (www.worldfloraonline.
org). Soil property data including SOC concentration, moisture,
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FIGURE 1

Global map showing the distribution of study sites included in the dataset (A), mean annual temperature and precipitation of study sites by
biome (B), and phylogenetic tree of plant species included in the study (C).

and pH of the topsoil (0–30 cm) were obtained from the
SoilGrids 2.0 database (Poggio et al., 2021) at a 250m
spatial resolution based on the geographic coordinates of
the study sites included in our database (Appendix 1). As
to climate data, we considered 6 climatic variables, i.e.,
mean annual temperature (MAT), maximum temperature of
the warmest month (TWM), minimum temperature of the
coldest month (TCM), mean annual precipitation (MAP),
precipitation of the wettest month (PWM), and precipitation
of the driest month (PDM), and download these data from
the WorldClim v.2 database (Fick and Hijmans, 2017). The
aridity index and potential evapotranspiration were obtained
from the CGIAR-CSI v.2 database (Trabucco and Zomer,
2019), and both databases provide climate data with a
resolution of 1 km2. In addition, we determined lifeform
following a previous review (Richardson and Rejmánek, 2011),
and classified phylogeny and leaf type according to online
botanical databases of Missouri Botanical Garden (http://www.
missouribotanicalgarden.org), eFloras (http://www.efloras.org),
and Identification guide for the wild trees of the Canary

Archipelago (https://www.arbolappcanarias.es) in case that such
information was not directly reported in the primary studies.

Data analyses

To assess the effects of litter type, phylogeny, lifeform, leaf
type, mycorrhizal association, climate, and soil properties on
litter lignocellulose concentrations, we first ran linear mixed-
effects models with the lme4 package (Bates et al., 2015) by
fitting each predictor variable as a fixed-effect factor and the
identity of primary studies from which data were collected as a
random effect factor, which explicitly accounted for the potential
dependence of data points collected from a single primary study.
To further evaluate the relative importance of variables that
showed significant effects on litter lignocellulose concentration,
we used linear mixed-effects model selection approach with the
glmulti package (Calcagno and de Mazancourt, 2010). A cutoff
of 0.8 for the Akaike weights was set to differentiate the essential
and non-essential predictor variables (Yue et al., 2021). Because

Frontiers in Plant Science 03 frontiersin.org

https://doi.org/10.3389/fpls.2022.926941
http://www.missouribotanicalgarden.org
http://www.missouribotanicalgarden.org
http://www.efloras.org
https://www.arbolappcanarias.es
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Peng et al. 10.3389/fpls.2022.926941

of the limited data points for bark, branch, root, stem, and
wood litter, analyses for assessing the effects of driving factors
were only conducted for leaf litter. All statistical analyses were
performed using R version 4.1.2 (R Core Team, 2021).

Results

Patterns of litter lignocellulose
concentration

Averaged across all the observations, global leaf litter lignin
concentration ranged from 0.2 to 65.7% of litter mass (median:
20.3%), cellulose concentrations from 0.8 to 73.2% (median:
22.4%), and hemicellulose concentrations from 0.1 to 47.6%
(median: 15.0%) (Figure 2). Litter lignocellulose concentrations
varied among litter types, with highest lignin concentrations in
branch, stem, and root litter but lowest in leaf litter. Cellulose
concentrations in branch and root litter were similar to those in
bark and wood litter, but higher than in leaf litter and lower than
in stem litter. Root litter hemicellulose concentration was similar
to stem litter, but was lower than bark, leaf, and wood litter and
higher than branch litter.

Taxonomic division, leaf type, lifeform, and mycorrhizal
association significantly affected leaf litter lignocellulose
concentration (Figure 3). The concentrations of leaf litter
lignin and cellulose from gymnosperm species were
significantly higher than from angiosperm species, while
leaf litter hemicellulose concentration showed an opposite
trend. Leaf litter lignin, cellulose, and hemicellulose
concentrations were all significantly higher in coniferous
species than in broadleaved species, and varied significantly
among trees, shrubs, and herbs, with higher cellulose and
hemicellulose but lower lignin concentrations in herbs
compared with trees. Mycorrhizal association significantly
affected leaf litter lignocellulose concentration, with lower
hemicellulose concentration of AM plants comparted
with ECM plants and plants associated with both AM
and ECM fungi. However, leaf litter lignin and cellulose
concentrations of ECM plants was significantly higher than
that of AM plants and plants associated both AM and
ECM fungi.

Factors explaining variations in leaf litter
lignocellulose concentration

Leaf litter lignin concentration was negatively affected by
annual evapotranspiration (AET), daily mean solar radiation
(DSR), and soil pH, but positively affected by MAT, TCM,
MAP, PWM, PDM, aridity index (ADI), and soil moisture
(Table 1). Leaf litter cellulose concentration was positively
affected by AET, DSR, soil moisture and latitude, but negatively

influenced by altitude. Leaf litter hemicellulose concentration
was positively related to latitude and soil pH. As to the relative
importance of the factors that showed significant effects,
mycorrhizal association, lifeform, and taxonomic division
were the essential predictors of leaf litter lignin concentration,
while leaf litter cellulose and hemicellulose concentrations
were best predicted by mycorrhizal association and
lifeform (Figure 4).

Discussion

Our results showed that litter lignin concentration was
higher in woody plants (i.e., trees and shrubs) than in herbaceous
plants, but cellulose and hemicellulose concentrations showed
a opposite trend, which may be mainly attributable to the
presence of ligneous tissue in woody plant litter (Lorenz and
Lal, 2005). Both litter cellulose and hemicellulose concentrations
were higher in herbaceous plants than in woody plants,
which was consistent with the results of previous studies
(Ma et al., 2018). In general, woody plants have high lignin
concentration because they typically require a proportional
increase in C investment at the cellular level to synthesize
lignin to support structures with relatively low growth rates.
In contrast, the relatively high growth rates of herbaceous
plants are associated with the low lignin and C concentrations
(Ma et al., 2018).

Our results suggested that litter lignin and cellulose
concentrations were higher in gymnosperms and conifers than
in angiosperms and broadleaved trees, respectively, which
may be partly attributed to their differences in functional
traits such as leaf structure, photosynthetic capacity, and
litter chemistry (Augusto et al., 2015). Conifers are generally
characterized by lower litter quality (e.g., high lignin/N
ratio) than broadleaved trees, and are generally recognized as
undesirable substrates for decomposer communities (Binkley
and Giardina, 1998; Prescott et al., 2004; Hobbie et al., 2006).
Compared to conifers, broadleaved trees have a higher nutrient
uptake capacity and higher litter quality (Wright et al., 2004;
Freschet et al., 2012). Litter hemicellulose concentration was
greater in angiosperms than in gymnosperms, while those
in broadleaved trees were lower than those in conifers.
Two plausible mechanisms may explain this result: (1) the
unbalanced data points between the two levels of taxonomic
division (490 for angiosperms and 92 for gymnosperms) or
leaf type (280 for broadleaved trees and 91 conifers) may
resulted in biased results; and (2) hemicellulose is present in
all living plant tissues because it is an essential compound
for primary and secondary plant cell walls (Schädel et al.,
2010). Our findings that herbaceous plants and angiosperms had
higher litter hemicellulose concentration than woody plants and
gymnosperms, respectively, were in consistent with previous
research (Hoch, 2007).
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FIGURE 2

Violin plots of the concentrations of plant litter lignin (A), cellulose (B), and hemicellulose (C) grouped by litter types. Asterisks indicate
significant e�ects of litter type, and di�erent letters indicate significant di�erences among di�erent litter types at α = 0.05. ***p < 0.001.

Recently, mycorrhizal association been has recognized as an
important driver of ecosystem functions (Phillips et al., 2013;
Peng et al., 2022). Our results from quantitative analyses at

the global scale showed that litter lignin concentration of ECM
plants were higher than AM plants, which was in accord with
previous results (Lin et al., 2017; Sun et al., 2018. AM plants
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FIGURE 3

type, lifeform, or mycorrhizal association, and di�erent letters indicate significant di�erences at α = 0.05. ***p < 0.001. AM, arbuscular
mycorrhiza; ECM, ectomycorrhiza; Both, plants associated with both AM and ECM fungi.

TABLE 1 E�ects of climate and soil properties on the initial concentrations of leaf litter lignin, cellulose, and hemicellulose as assessed by linear

mixed-e�ects models.

Predictor Lignin Cellulose Hemicellulose

Estimate p n Estimate p n Estimate p n

MAT 0.106 0.014 3024 0.065 0.271 1529 −0.011 0.897 580

TWM 0.013 0.834 3024 0.120 0.126 1529 0.164 0.166 580

TCM 0.087 0.001 3024 0.033 0.383 1529 −0.034 0.514 580

MAP 0.003 <0.001 3024 0.000 0.975 1529 −0.001 0.141 580

PWM 0.015 <0.001 3024 0.006 0.188 1529 −0.004 0.445 580

PDM 0.024 0.021 3024 0.008 0.625 1529 −0.029 0.201 580

ADI 0.000 <0.001 3024 −0.000 0.174 1529 −0.000 0.052 580

AET −0.002 0.006 3024 0.002 0.046 1529 0.000 0.754 580

DSR −0.000 0.018 3024 0.000 0.032 1529 0.000 0.835 580

SOC −0.005 0.071 3021 −0.004 0.368 1526 0.004 0.441 582

pH −1.697 <0.001 3021 0.340 0.513 1526 2.593 <0.001 582

Moisture 0.136 <0.001 3021 0.141 0.009 1526 0.066 0.326 582

Altitude −0.000 0.718 3024 −0.001 0.024 1529 −0.001 0.282 580

Latitude 0.005 0.732 3026 0.062 0.018 1531 0.083 0.008 580

Estimate (i.e., slope of the model), p-value, and number of observations were reported. Bold indicate statistical significant effects.
MAT, mean annual temperature; TWM, maximum temperature of the warmest month; TCM, minimum temperature of the coldest month; MAP, mean annual precipitation; PWM,
precipitation of the wettest month; PDM, precipitation of the driest month; ADI, aridity index; AET, annual evapotranspiration; DSR, daily mean solar radiation; SOC, soil organic carbon;
pH, soil pH; moisture, soil moisture.

SRAD

AI

PDM

MAT

TCM

MAP

AE

SPH

SWC

PWM

Division

Lifeform

Myc

0.0 0.2 0.4 0.6 0.8 1.0

 Lignin (%)

Altitude

SWC

Latitude

Division

AET

SRAD

Lifeform

Myc

0.0 0.2 0.4 0.6 0.8 1.0

 Cellulose (%)

Latitude

SPH

Division

Lifeform

Myc

0.0 0.2 0.4 0.6 0.8 1.0

 Hemicellulose (%)

Importance of predictors (sum of Akaike weights)

A B C

FIGURE 4
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solar radiation.
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generally produce degradable litter with low lignin and cellulose
concentrations, while slowly decomposing litter from ECM
plants usually has higher lignin and cellulose concentrations
(Ma et al., 2018). Also, the different litter decomposition rates
of AM and ECM plants lead to distinctness in soil microbial
community activities and soil properties (Brzostek et al., 2015;
Cheeke et al., 2017), and in turn regulate litter quality including
lignocellulose concentration. For example, although AM fungi
do not directly participate in litter decomposition processes,
they can indirectly influence litter decomposition through
changing soil microbial activity and thus soil nutrient profiles
(Paterson et al., 2016; Bunn et al., 2019). While ECM fungi
can hydrolyze plant litter to obtain nutrients for growth and
metabolic functions (Bödeker et al., 2016; Cheeke et al., 2017).
Therefore, mycorrhizal association can affect litter lignin and
cellulose concentrations by influencing soil nutrient profiles
and plant nutrient uptake strategies (Cornelissen et al., 1999).
In addition, we found that MAT, TCM, MAP, PWM, PDM,
ADI, AET, and DSR had significant effects on litter lignin
concentration, which may be attributed to that these factors are
directly related to plant growth and nutrient uptake strategies.
However, our findings showed no effect of climate factors on
litter cellulose or hemicellulose concentration, indicating the
independence of litter cellulose and hemicellulose concentration
on climate.

In summary, our quantitative assessment on global
plant litter lignocellulose concentration showed that the
median of leaf litter lignin, cellulose, and hemicellulose
concentrations were 20.3, 22.4, and 15.0%, respectively.
Litter lignin concentration was affected by phylogeny,
leaf type, lifeform, mycorrhizal association, climate, and
soil properties, while litter cellulose and hemicellulose
concentrations were affected by phylogeny, leaf type, lifeform,
mycorrhizal association, and soil properties. Mycorrhizal
association, lifeform, and phylogeny were the most important
factors controlling litter initial lignocellulose concentration.
Overall, our results clearly showed the global spectrums and
underlying driving factors of the initial concentrations of
litter lignin, cellulose, and hemicellulose, which highlighted
the importance of mycorrhizal association and lifeform
in controlling litter initial lignocellulose concentration.
Our results will help us to better understand the role of
lignocellulose in litter decomposition process and the related
biogeochemical cycles.
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