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Plant production systems such as plant factories and greenhouses can help promote
resilience in food production. These systems could be used for plant protection and
aid in controlling the micro- and macro- environments needed for optimal plant growth
irrespective of natural disasters and changing climate conditions. However, to ensure
optimal environmental controls and efficient production, several technologies such as
sensors and robots have been developed and are at different stages of implementation.
New and improved systems are continuously being investigated and developed with
technological advances such as robotics, sensing, and artificial intelligence to mitigate
hazards to humans working in these systems from poor ventilation and harsh weather
while improving productivity. These technological advances necessitate frequent retrofits
considering local contexts such as present and projected labor costs. The type of
agricultural products also affects measures to be implemented to maximize returns on
investment. Consequently, we formulated the retrofitting problem for plant production
systems considering two objectives; minimizing the total cost for retrofitting and
maximizing the yearly net profit. Additionally, we considered the following: (a) cost of
new technologies; (b) present and projected cost for human labor and robotics; (c) size
and service life of the plant production system; (d) productivity before and after retrofit,
(e) interest on loans for retrofitting, (f) energy consumption before and after retrofit and,
(g) replacement and maintenance cost of systems. We solved this problem using a
multi-objective evolutionary algorithm that results in a set of compromised solutions and
performed several simulations to demonstrate the applicability and robustness of the
method. Results showed up to a 250% increase in annual net profits in an investigated
case, indicating that the availability of all the possible retrofitting combinations would
improve decision making. A user-friendly system was developed to provide all the
feasible retrofitting combinations and total costs with the yearly return on investment
in agricultural production systems in a single run.

Keywords: decision making, greenhouse, non-dominated sorting genetic algorithm, plant factory, return on
investment, resilient food systems
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INTRODUCTION

Plant production systems offer numerous opportunities and
benefits for growers, such as year-round cultivation, improved
growing conditions for ornamental crops and vegetables, and
control of micro- and macro- environments (Gerson and
Weintraub, 2007; Van Straten et al., 2010; Nordey et al., 2017).
These systems have been serving communities for decades. They
have transformed from simple structures to grow vegetables in
temperate regions during the cold winter months to advanced
facilities currently used to grow in tropics, including deserts
(Wittwer and Castilla, 1995; Gullino et al., 1999; Shamshiri et al.,
2018).

The advancement in these protected cultivation structures is
still ongoing, with the world incessantly requiring improvements
to cater to the fast-growing populace demanding healthier food.
Top on this list is the diminishing skilled farm labor, rapidly
changing climate, and disasters such as the COVID 19 outbreak
caused by the SARS-CoV-2 virus (Wang et al., 2020) that became
widespread at the beginning of 2020, leading to difficulties in
international travels for migrant workers (Lima et al., 2020). Most
countries were forced to close their borders or place stringent
entry procedures (Barua, 2020; Wells et al., 2020). This has led to
various farm losses (Galanakis, 2020; Helm, 2020; Nicola et al.,
2020; Sahoo and Rath, 2020). Autonomous growing has been
under investigation to resolve labor accessibility and precision
issues. Also, the environment in plant production systems is
toxic to humans because of the poor ventilation and high
temperature and humidity content. Advanced plant production
systems are complex multi-input structures that come at a high
cost (Stanghellini and Montero, 2010; Baeza et al., 2011; Reddy,
2016). This necessitates the proper implementation of new and/or
existing technologies.

Plant production systems existed for centuries (42 BC–37 AC),
but the major advancement occurred in the early 1950s and has
continuously improved to the current phase (Jensen and Malter,
1995; Paul and Gwynn-Jones, 2003; Raviv and Antignus, 2004;
Nordey et al., 2017). Most plant production systems, such as plant
factories and greenhouses, were not designed to adopt the new
technologies. Furthermore, building new structures also needs
proper planning and implementation. This contrasts with the
open field cultivation system that requires less planning. Plant
production systems could be catastrophic if proper planning and
implementation are neglected despite having positive returns.
With the current evolution in technologies, the grower should
have an appropriate decision-making system that considers
investment capital, interest on loans, market opportunities, and
profit, which are critical to sustainability.

Structural upgrades are often required for implementing
new technologies. Retrofitting is usually adopted as the choice
approach. This has been applied majorly to residential buildings
to save energy and limit greenhouse gas emissions (Dixon et al.,
2008), simultaneously considering several environmental and
economic criteria (Antipova et al., 2014), comparing internal
and external thermal insulation systems for residential buildings
(Kolaitis et al., 2013), and several other retrofitted buildings with
focus on energy saving (Xu et al., 2011, 2015; Xu and Chan, 2013;

Wu et al., 2016; El-Darwish and Gomaa, 2017; Fan and Xia,
2017, 2018; Liu et al., 2018). In this scenario, the combination of
retrofitting measures and strategies has proven to be complex and
requires tradeoffs. In residential buildings, the measures adopted
to retrofit the buildings for energy efficiency are categorized
into the following groups: (a) measures to reduce load; (b)
measures to control and monitor loads; (c) enveloping measures
such as insulation and sealing roofs or ceilings; (d) alter energy
consumption patterns of the occupants; and (e) adoption of
renewable energy sources (Diakaki et al., 2008; Marszal et al.,
2011; Ma et al., 2012; Malatji et al., 2013).

Retrofitting plant production systems to cover the progress
in efficient growing technologies is much more complex than
residential buildings that focus primarily on energy. The energy
retrofitting benefits could be social, which has to do with
enhancing the health and comfort of the occupants, reducing air
emissions hurting the environment, and economic perspective in
reduction of operation costs (Jafari et al., 2016). The dynamics
in plant production systems are numerous, requiring multi-
objective optimization approach, and the strategy to adopt
and/or retrofit the existing system is much more challenging
and delicate. These include (a) plant production systems are
far more extensive than regular residential houses reaching
215 square feet (Robinson, 2018); (b) the advancement in
technologies used in growing are occurring simultaneously in
different aspects of protected cultivation and at a much faster
rate than residential houses (Uyeh et al., 2019b; Raviteja and
Supriya, 2020; Rayhana et al., 2020); (c) unlike in residential
buildings where the primary concern is energy consumption for
heating and cooling (Jafari and Valentin, 2017), plant production
systems require energy for similar purposes in addition to
other technological advancements such as autonomous growing
that needs to be retrofitted (Bogue, 2020; Kurtser and Edan,
2020); and (d) wrong retrofitting strategy would not result
in discomfort as in residential buildings but an irreversible
loss of the plants accompanied with substantial economic
losses. These make the retrofitting problem in protected
cultivation non-deterministic polynomial-time hard (NP-hard)
(Bagnall et al., 2001).

Multi-objective optimization requires maximizing or
minimizing multiple objective functions that are constrained.
These include analyzing design, selecting process designs or
optimal products, tradeoffs, or applications where optimal
solutions are needed with tradeoffs between two or more
conflicting objectives. The conventional approaches for this
type of optimization include the Pareto front, goal attainment,
and minimax. In Pareto fronts, noninferior solutions are found.
These are solutions in which an improvement in one objective
requires a degradation in another.

On the other hand, goal attainment reduces the values of a
linear or nonlinear vector function to attain the goal values given
in a goal vector. The comparative significance of the goals is
shown by applying a weight vector, and goal fulfillment problems
may also be subject to linear and nonlinear constraints. Finally,
minimax, minimizes the worst-case values of a set of multivariate
functions, probably subject to linear and nonlinear constraints
(MathWorks, 2021).
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Multi-objective techniques are popular due to their
capabilities in solving a wide range of real-world problems
(Saini and Saha, 2021). For example, Fonseca and Fleming (1993)
Multiple Objective Genetic Algorithm enables decision-makers
to progressively articulate their preferences while learning
about the problem under consideration. Srinivas and Deb’s
(1994) Nondominated Sorting in Genetic Algorithms adopted
Goldberg’s notion of nondominated sorting in genetic algorithms
and a niche and speciation method to find multiple Pareto-
optimal points simultaneously. Horn et al.’s (1993) Niched Pareto
genetic algorithm, a multi-objective optimization algorithm, is
adopted to find the Pareto optimal set. The previously discussed
algorithms are some of the elitist multi-objective methods that
non-dominated sorting genetic algorithm II (NSGA II) used
in this study have been proven to be better (Deb et al., 2002).
These methods are limited in their computational complexity
(the number of objectives and population size), non-elitism
approach; and the need for specifying a sharing parameter that
alleviates all the above three difficulties.

In summary, Pareto optimality which is the backdrop on
which NSGA II is built, has been reported to be the best
approach to describe multi-objective optimization since there
is no single global solution. It is often necessary to determine
a set of points that all fit a predetermined definition for an
optimum (Marler and Arora, 2004). NSGA II is undoubtedly
the elitist method (Deb et al., 2000; Kannan et al., 2008; Li and
Zhang, 2008; Yusoff et al., 2011). NSGA-II, a multi-objective
evolutionary algorithm, improves the difficulties of using multi-
objective optimization. These include the need to specify a
sharing parameter, computational complexity, and a non-elitism
approach. It possesses a selection operator that generates a
mating pool by merging the parent and offspring populations and
selecting the best N solutions (Deb et al., 2002).

Consequently, in this study, we formulated the protected
cultivation retrofitting problem considering; (a) cost of
retrofitting items such as sensors and robots; (b) cost of labor
and cost-benefits obtainable from replacing human labor with
robots; (c) size and service life of the plant production system; (d)
impact of retrofitting on productivity and consequently profit;
and (e) category of retrofitting to be implemented which delivers
tradeoff solutions that represent the possible retrofits associated
with expenditure and benefits. This problem was then solved
using NSGA-II. Parameters such as present and projected cost
of labor and agricultural products can be set to the user’s local
context. Due to the conflicting nature of the objectives, NSGA-II
can provide a tradeoff solution that can enable better decision-
making when selecting retrofit measures. We demonstrated
the applicability of this method by carrying out experimental
simulations on different plant production system sizes.

RETROFITTING IN PLANT PRODUCTION
SYSTEMS

Figure 1 shows the factors and options available for retrofitting
a plant production system. In this study, a prospective retrofit
is represented as “RM”. Furthermore, some options are limited

by constraints, as shown in Figure 2. Two options are available
in retrofitting the plant production system to include a network
controller (Figure 2). If an analogous network controller is
selected, all sensors to be selected must be analog. A similar
procedure would occur if a digital network controller were
selected and with the type of layout and robots, respectively.
Retrofit number 23 (Transportation robot) was considered nil
only in Option 2 because a transport robot is not required in
this situation. Figure 3 shows the benefits derived from the
combination of different retrofit measures.

The factors are represented with vector “X” as shown below:

X =
[
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 15, 16, 17, 18, 19, 20, 21, 22, 23
]

X= 1 2 3 4 5 6 7 8 9 10 11 12

RM1= [R R R R R
RM2= [ R R R R R R

.

.

X= 13 14 15 16 17 18 19 20 21 22 23

RM1= R R R ]

RM2= R R R ]

.

.

The prospective retrofit represented with vectors RM1,
RM2,. . . above presents the feasible retrofit measures that could
be implemented. The selected retrofit measure denoted with
“R” corresponds to the factor number (X) for a given feasible
retrofit vector “RM”.

The retrofitting problem in a plant production system differs
from conventional residential buildings. In this study and
referring to the scenario in the Republic of Korea, the following
variables were considered:

(a) Size of the plant production system.
(b) The service life of the plant production system (m).
(c) Cost of the items for retrofitting (Ci).
(d) Cost of electricity per unit (UCE).
(e) Impact of retrofitting on electricity consumption
(ECC).
(f) The initial estimated cost of energy consumption.
(g) Interest paid on loans for retrofitting items.
(h) The annual rate of increase in energy cost (e).
(i) Maintenance and replacement period for each
retrofitted item (tRMi).
(j) Number of maintenance and replacements needed to be
done during the service life of the system (nRMi).
(k) Production before and after retrofitting was done
(PBR).
(l) Price per unit of production.
(m) Projections in the price of the product.
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FIGURE 1 | Retrofit factors and options used in the experimental simulation.

(n) Labor cost before and after retrofit.
(o) Projections in the cost of labor.
(p) Profit (P).

PROBLEM FORMULATION

Expenditures in Retrofitting a Plant
Production System
Initial Cost of Investment
To calculate the initial cost of investment (ICI) to retrofit
in a plant production system, the cost of purchasing sensors
(digital or analog) for precision and improved decision making,
retrofitting the navigation system for the robots (mobile rail or
hanging system), and purchase cost of robots were considered
and computed in Eq. 1.

ICI =
n∑

i=1

Ciyi (1)

Where Ci is the cost of implementing the ith retrofitting
measure, which is the cost of the items for retrofitting, and yi is an
indication variable demonstrating if the ith retrofitting measure
is selected in the automation strategy. Furthermore, n is the total
number of potential retrofitting measures.

Energy Consumption Cost
To compute the current energy consumption cost from
retrofitting (ECC) the protected cultivation system, Eqs 2, 3 were
used (Fan and Xia, 2018).

ECC = YEC ×


(

1+
(

Ir−e
1+e

))m
− 1(

Ir−e
1+e

)
×

(
1+

(
Ir−e
1+e

))m

 (2)

Where YEC is the estimated yearly energy consumption cost
of the plant production system in the first year, Ir is the interest
rate, e is the annual rate of energy cost increase (a rate of
5% was considered), and m is the service life of the plant
production system.

The yearly energy consumption of the plant production
system in the first year can be calculated as the sum of the
estimated electricity per year as follow:

AEC =

( n∑
i = 1

ECi

)
× UCE (3)

Where AEC is the annual energy consumption of the plant
production system before implementing the energy retrofit, EC
is the energy consumption of the items in retrofitting the plant
production system, and UCE is the unit cost of electricity.
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FIGURE 2 | Tree showing constraints for implementing retrofits.

Replacement and Maintenance Cost
To estimate the replacement and maintenance cost because
of retrofitting the plant production system, the number of
replacements during the service life of the system is calculated
using Eqs 4, 5 (Fan and Xia, 2018):

nRMi = Round_Down
[

(t)
tRMi

]
(4)

Where nRMi is the number of times replacements and
maintenance are required for the ith measure during the service
life of the plant production system, and tRMi is the replacement
and maintenance period for the ith measure.

Furthermore, to compute the current replacement and
maintenance cost from the retrofits, the equation below was used.

ECCRc =

n∑
i =1

nRMi∑
j=1

EMRi(
1+ p

)j
× tRMi

 × xi (5)

Where EMRi is the expenditure estimated from replacement
and maintenance to implement the ith activity after its
replacement and maintenance period.

Total Expenditure in Retrofitting a Plant Production
System
The total expenditure is computed using Eq. 6:

Expenditure = CR+ ECC + ECC RC (6)

Where CR is the cost of the systems used in the retrofits,
ECC is the current energy consumption cost from retrofitting the
system and ECCRC is the replacement and maintenance cost for
the retrofitted items.

The Net Profit Derived From Retrofitting
a Plant Production System
The profit gotten from the retrofit is assumed from two
perspectives in this study. These were computed using Eqs 7–10.
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FIGURE 3 | Retrofitting procedures, their interactions, and potential benefits.

Net Profit From Improved Productivity
This was calculated as follows:

ProfitP = YEC − P ×


(

I +
(

Ir−e
1+e

))m
− 1(

Ir−e
1+e

)
×

(
1+

(
Ir−e
1+e

))m

 (7)

Where YEC is the estimated yearly energy consumption cost
of the plant production system in the first year, P is profit from
the retrofit, Ir is the interest rate, e is the annual rate of energy
cost increase (a rate of 5%), and m is the service life of the plant
production system.

YECP = ELP × UELP (8)

Where YECP is the estimated yearly energy cost of production
in the plant production system for the first year, ELP is estimated
annual production in the first year due to retrofit, and UELP is the
price per unit productivity.

Net Profit From Savings in the Cost of Labor

ProfitL = YEC − L ×


(

I +
(

Ir−e
1+e

))m
− 1(

Ir−e
1+e

)
×

(
1+

(
Ir−e
1+e

))m

 (9)

Where YEC is the estimated yearly energy consumption cost
of the plant production system in the first year, L is the Labor
cost, Ir is the interest rate, e is the annual rate of energy cost
increase (a rate of 5%), and m is the service life of the plant
production system.

Consequently, the total net profit, which is the increased
income from added productivity due to the new items used in
retrofitting the plant production system and the money saved
from labor spending because of the new systems that were
retrofitted and replaced labor cost was calculated as:

Profit = ProfitP + ProfitL (10)

Optimization Model
The optimization problem was formulated with two objectives:
to minimize the total expenditure to retrofit for the lifespan of the
plant production system (Eq. 11) while maximizing the yearly net
profit derived from retrofitting the system (Eq. 12). This is shown
below as objectives 1 and 2.

Objective 1: Expenditure for Retrofitting a Plant
Production System

Minimize Expenditure = CR+ ECC + ECC RC (11)
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Where CR is the cost of the systems used in the retrofits,
ECC is the energy consumption cost because of retrofitting new
systems and ECCRC is the replacement and maintenance cost for
the retrofitted items.

Objective 2: Net Profit From Retrofitting a Plant
Production System

Maximize Profit = ProfitP + ProfitL (12)

The profit from the retrofit is the summation of the increased
income from added productivity due to the new items used in
retrofitting the plant production system and the money saved
from labor spending because of the new systems that were
retrofitted and replaced labor costs.

Constraints in Carrying Out Retrofits
In addition to the two objectives, the following constraints
were implemented in this study, as shown earlier in Figure 2.
The problem formulation could be tuned to incorporate other
constraints depending on the system.

Selection of Sensors and Network Controller for Retrofitting
Since digital network controllers are meant to transmit data
remotely, the type of sensors that could synchronize with it
must have certain features. We formulated a constraint that only
sensors with this capacity should be picked if a digital network
controller is selected. This was also extended to the on-site
network controller (Eq. 13).

x(2 (i− 1) x (2 (i− 1) + 2) = 0 (13)

Given that, i = 1. . .. . ...11 (retrofitting number).

Selection of Layouts for Retrofitting
With the current advances in plant production systems, two types
of robotic navigation systems have been studied. These are mobile
robots that navigate on the floor of the plant production system
(Uyeh et al., 2019b) and hanging types of robots suspended above
the plants and hung to the roof of the plant production system.
In this constraint, the problem is formulated that if the hanging
type of layout is picked for retrofit, then the selected harvesting
and spraying robots should be robot arms, and no transportation
robot should be chosen. If otherwise, then all types of robots
could be selected (Eqs 14, 15).

max (x [19] , x [21] , x [23]) × x[17]1
= 0 (14)

max (x [20] , x [22]) × x[18]1
= 0 (15)

Where x is the number of item for retrofit.

The Search Algorithm Used in This Study
The two objectives considered in the study – (a) minimization of
investment cost and (b) maximizing the profit, are conflicting.
In other words, minimizing investment costs results in lesser
profits while maximization of profits demands more investments.
Therefore, the optimization of multi-objective optimization
problems does not provide a single optimal solution but a set

FIGURE 4 | Flowchart of non-dominated sorting genetic algorithm.

TABLE 1 | Cases used in the experimental simulations.

Case Production before retrofits (kg) Labor cost (USD)

1 1,000 1,000

2 2,000 1,000

3 1,000 2,000

of tradeoff solutions referred to as Pareto-optimal solutions.
Population-based evolutionary algorithms are considered to
solve the multi-objective problem due to their effectiveness and
ability to provide the entire tradeoff solutions in a single run.
Specifically, NSGA-II (Deb et al., 2002) is a more popular multi-
objective evolutionary algorithm and has been widely adopted
for real-world optimization problems. The general flowchart of
NSGA-II is shown in Figure 4. NSGA-II starts with a randomly
generated population of size (N), whose objective values are
evaluated. The initialized population evolves over the generations
through variation operators such as mutation, crossover, and
environmental selection. The variation operators aim to produce
effective solutions (referred to as offspring members) by using the
information present in the solutions of the current population
(referred to as the parent population).
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On the other hand, environmental selection aims to select
effective solutions from the combination of parent and offspring
populations (P). In other words, environmental choice drives
the entire population toward convergence to the Pareto-optimal
solutions. The process of producing offspring members and
environmental selection is repeated until the termination criteria
are met. The variation operators considered in the current
study are polynomial mutation and binomial crossover. Multi-
objective optimization aims to obtain a set of converged well-
spread diverse Pareto-optimal solutions. Thus, in NSGA-II, the
environmental selection is made using non-dominated sorting
followed by crowding distance, which is supposed to provide
convergence and diversity. Non-dominated sorting and crowding
distance are used in NSGA II to obtain the Pareto dominance of
final tradeoff solutions (Uyeh et al., 2019a). The parameters of the
optimization algorithm were set as follows:

Maximum number of generations (termination criteria): 500.
Population size (N): 500.
Crossover: Simulated binary crossover.
Constraint bond: 0–20.
Distribution indices for mutation (nm): 20.
Distribution indices for crossover (nc): 20.
Probability of crossover (Pc): 1.0.
Probability of mutation (Pm): 1/10.
Mutation: Polynomial mutation.
The average run time for the proposed algorithm was 180 s.

The simulations were done on a 3.59 GHz AMD Ryzen 5
3500X 6-Core processor, 16 GB random access memory, and
256 GB solid-state drive with Windows 10 operating system
in MATLAB (Matlab and Simulink, 2012). We conducted
several simulations using guidelines from a previous manuscript
(Deb et al., 2002) that proposed the algorithm and our
experience working with this algorithm (Uyeh et al., 2018,
2019a,b). We finetuned and gradually increased the generations

(iteration) until we got no further improvements. The number of
generations that converged served as a termination value.

Experimental Design and Data Used in
the Simulation
To evaluate the robustness of the proposed method, two sub-
factors of the investigated factors were considered (Table 1) with
three Cases and five sizes of a plant production system. The plant
production system used for this study had five compartments of
similar sizes. Size one represented one compartment, size two
represented two compartments, and up to size five represented
all compartments. The schematic is shown in Figure 5. Usually,
growers have their systems divided into compartments of similar
sizes for different reasons, such as ease of management. Protected
cultivation systems are typically single large structures divided
into smaller simple compartments. Depending on the local
situation and resources of the grower, the system could be divided
into various compartments (Research Wua, 2021). For example,
The Radix Serre Plant production system in the Netherlands has
9,000 m2 glass and comprises over 100 compartments (Research
Wua, 2021). Each is considered and treated as an individual
system. This study selected a plant production system with one to
five compartments. Depending on the factor (type of equipment)
and the number of compartments, the relationship between the
variables at different sizes (compartments) would be linear as
the compartments would require the same number of equipment
such as the sensors (temperature and humidity). Since the
compartments in the protected cultivation system have similar
sizes, cost, impact on electricity consumption, production, and
labor cost had a linear relationship. When it comes to the cost of
maintenance and replacement, it can be linear in some situations
and not linear in others, as there are ranges that these are
priced. For example, only a single network controller is required

FIGURE 5 | Schematic of the experimental plant production system with one to three compartments (X1–X2: Size 1, X2–X3: Size 2, X3–X4: Size 3) (A), and external
view of the system (B).
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TABLE 2 | Data used in the experimental simulation.

Factor Category Size 1 Size 2 Size 3 Size 4 Size 5

Cost
(USD)

IOEC CMR Ip IL Cost
(USD)

IOEC CMR Ip IL Cost
(USD)

IOEC CMR Ip IL Cost
(USD)

IOEC CMR Ip IL Cost
(USD)

IOEC CMR Ip IL

Network
controller

A 1800 200 100 2 0.9 3600 200 100 4 1.8 5400 210 100 6 2.7 7200 220 100 8 3.6 9000 230 100 10 4.5

AN 1260 140 60 1 0.5 2520 280 90 2 1 3780 420 120 3 1.5 5040 560 120 4 2 6300 700 150 5 2.5

Temperature/
humidity

A 300 20 100 2 0.001 600 40 150 4 0.002 900 60 200 6 0.003 1200 80 200 8 0.004 1500 100 250 10 0.005

AN 210 14 60 1 0.001 420 28 90 2 0.002 630 42 120 3 0.003 840 56 120 4 0.004 1050 70 150 5 0.005

CO2 A 345 20 100 2 0.001 690 40 150 4 0.002 1035 60 200 6 0.003 1380 80 200 8 0.004 1725 100 250 10 0.005

AN 241.5 14 60 1 0.001 483 28 90 2 0.002 724.5 42 120 3 0.003 966 56 120 4 0.004 1207.5 70 150 5 0.005

EC A 320 20 100 1 0.001 640 40 150 2 0.002 960 60 200 3 0.003 1280 80 200 4 0.004 1600 100 250 5 0.005

AN 224 14 60 0.5 0.001 448 28 90 1 0.002 672 42 120 1.5 0.003 896 56 120 2 0.004 1120 70 150 2.5 0.005

Solar radiation A 420 20 100 2 0.001 840 40 150 4 0.002 1260 60 200 6 0.003 1680 80 200 8 0.004 2100 100 250 10 0.005

AN 294 14 60 1 0.001 588 28 90 2 0.002 882 42 120 3 0.003 1176 56 120 4 0.004 1470 70 150 5 0.005

Air pressure A 62 20 100 1 0.001 124 40 150 2 0.002 186 60 200 3 0.003 248 80 200 4 0.004 310 100 250 5 0.005

AN 43.4 14 60 0.5 0.001 86.8 28 90 1 0.002 130.2 42 120 1.5 0.003 173.6 56 120 2 0.004 217 70 150 2.5 0.005

Plant weight A 50 20 100 1 0.001 100 40 150 2 0.002 150 60 200 3 0.003 200 80 200 4 0.004 250 100 250 5 0.005

AN 35 14 60 0.5 0.001 70 28 90 1 0.002 105 42 120 1.5 0.003 140 56 120 2 0.004 175 70 150 2.5 0.005

External
weather station

A 2000 200 100 1 0.001 4000 400 150 2 0.002 6000 600 200 3 0.003 8000 800 200 4 0.004 10000 1000 250 5 0.005

AN 1400 140 60 0.5 0.001 2800 280 90 1 0.002 4200 420 120 1.5 0.003 5600 560 120 2 0.004 7000 700 150 2.5 0.005

Layout F 50000 0 10000 0 0.5 100000 0 15000 0 1 150000 0 20000 0 1.5 200000 0 20000 0 2 250000 0 25000 0 2.5

H 25000 0 600 0 0.1 50000 0 900 0 0.2 75000 0 1200 0 0.3 100000 0 1200 0 0.4 125000 0 1500 0 0.5

Spraying robot M 30000 1200 6000 1 0.95 60000 2400 9000 2 1.9 90000 3600 12000 3 2.85 120000 4800 12000 4 3.8 150000 6000 15000 5 4.75

R 10000 840 3600 0.5 0.95 20000 1680 5400 1 1.9 30000 2520 7200 1.5 2.85 40000 3360 7200 2 3.8 50000 4200 9000 2.5 4.75

Harvesting
robot

M 30000 1200 6000 0.01 0.95 60000 2400 9000 0.02 1.9 90000 3600 12000 0.03 2.85 120000 4800 12000 0.04 3.8 150000 6000 15000 0.05 4.75

R 10000 840 3600 0.005 0.95 20000 1680 5400 0.01 1.9 30000 2520 7200 0.015 2.85 40000 3360 7200 0.02 3.8 50000 4200 9000 0.025 4.75

Transportation
robot

M 15000 1200 3000 0.01 0.95 30000 2400 4500 0.02 1.9 45000 3600 6000 0.03 2.85 60000 4800 6000 0.04 3.8 75000 6000 7500 0.05 4.75

A, digital; AN, analogue; F, floor; H, hanging; M, mobile; R, rail; IOEC, impact on electricity consumption; CMR, cost of maintenance and replacement; IP, impact on production; IL, impact on labor. Source: Ubn (2021).
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in a plant production system irrespective of the number of
compartments; the cost of maintenance and replacement of the
network controller would not be linear compared to temperature
and relative humidity sensors. The number of sensors and other
retrofitting measures in one compartment (Size 1) of the plant
production system was selected based on Korean industrial
standards (UBN, 2021; Table 2). A compartment of the system
had a height of 6,700 mm, a width of 8,000 mm, and a length
of 16,700 mm. This formed the basis for selecting the number of
retrofitting measures required for the other system sizes (Sizes 2–
5).

The yield data (Table 1) used was guided by visits to plant
production system growers in the Republic of Korea to validate
the optimization model. Strawberry yields are dependent on the
environmental conditions, systems, techniques of production,
and type of plant production system, which includes plant
factories and greenhouses, as also reported by Kubota (2015).

Computation of Impact of Automation on
Labor
Data were acquired using structured questionnaires from
growers adopting plant production systems to demonstrate the
importance of retrofitting robotics in a plant production system.
The human category was divided into three groups based on
their expertise. Finally, we considered a real-world scenario
of the first-of-its-kind strawberry harvesting robot (Table 3)
as a comparison.

TABLE 3 | Comparison between humans and robots in strawberry harvesting.

Factors Category (s)

Robot Human

Beginner Average Experienced

Platform
movement/
Movement to fruit
location

4.7 2 2 2

Fruit localization/
identification

3.7 10 10 10

Obstacle
localization

3.0 1 1 1

Visual
servoing/harvesting
decision making

4.0 10 7.5 5

Detach fruit 2.2 2 1.5 1

Put fruit in the
container

7.8 5 4 3

Working time (per
h/day)

20 4 6 8

Success rate (%) 95 Uncertain Uncertain Uncertain

Cost of purchase
(USD)

110,000 Not applicable Not applicable Not applicable

Lifespan (years) 7 Not applicable Not applicable Not applicable

Salvage cost
(Purchase cost/
lifespan), USD

15,714 Not applicable Not applicable Not applicable

The factors (Sweeper, 2020) given in Table 3 were
considered in deciding the impact of operating a robot on
labor cost and yield.

Additionally, there are numerous benefits of using robotics in
a plant production system that is near impossible to quantify in
terms of monetary benefits but rather impact. These include:

(i) Safety of products.
(ii) Availability of skilled workers.
(iii) Incessant increase in wages of skilled workers as seen in

the context of the Republic of Korea and other OECD countries.
Also, the data for the sensors were collected from the UBN

sensors company (UBN, 2021) and used in the simulation.
Overall, the developed system provides the user with the

possibilities of specifying their local context (Size and service
life of the plant production system, cost of the items for
retrofitting, cost of electricity per unit and impact of retrofitting
on electricity consumption, interest paid on loans for retrofitting
items, the annual rate of increase in energy cost, maintenance,
and replacement period for each retrofitted item, projected
production before and after retrofitting, projections in the price
of the product, labor cost before and after retrofit, projections in
the cost of labor and profit).

SIMULATION RESULTS AND
DISCUSSION

Measures, Cost of Expenditure, and
Profit for Retrofitting Case 1 Plant
Production Systems
The simulation results show feasible combinations at different
sizes for Case 1, represented with different colors for the
selected measures (Figure 6). Each combination shows the total
expenditure required to carry out the retrofit for the lifespan of
the plant production system and the projected net profit per year
(Figure 7). The feasible retrofits and tradeoff total expenditure
versus the net profit per year are presented for all sizes. In Case
1, in size 1 of the retrofitting combinations, multiple feasible
combinations were obtained compared to sizes 2–5 (Figure 6).
However, the few possible retrofit combinations in sizes 2–5 show
more return on investments (ROI) than the multiple feasible
combinations in size 1. This demonstrates that despite the grower
with size 1 having numerous possible combinations, the size
of a system is more critical for profitability (Figure 7). The
results also indicate that introducing new technologies might
not necessarily mean a return on investment in an optimum
way without analyzing all possible factors, such as current and
projected labor costs and electricity consumption. The results in
Figure 6 also show that despite a similar amount of money being
spent to carry out the retrofit at a point across the different sizes
of the plant production system, the net profit increased with the
size of the system.

Further analyses of the return on investment in the size 1
(Figure 7A) in Case 1 showed a similar cost. Subsequently,
retrofit combinations were available to be implemented that
significantly increased the net profits. For example, there was
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FIGURE 6 | Generated retrofitting measures from the available factors for Case 1.

a 4.03% increase in yearly net profit between two retrofit
combinations with an investment cost of 4,990 and 5,700 USD
(Figure 7A). An increase of 700 USD investment would result
in about 280,000 USD or 4.03% in yearly net profit in this
situation. In these combinations, the combination at the cost of
4,990 USD had selected retrofit measures 2 and 12 (Figure 6),
which are analog network controller and temperature/humidity
sensors (Figure 1). However, in the combination of 5,700 USD,
the selected retrofit measures were 2, 4, 6, 8, 12, and 14 (Figure 6).
This combination picked additional measures in addition to the
two chosen at the cost of 4,990 USD. These were sensors for CO2,
solar radiation, air pressure, and plant weight (Figure 6). Both
combinations picked only analog measures. The sensors picked
at the cost of 5,700 USD facilitated improved decision-making,
thus increasing yearly productivity and extension profit.

Further analysis showed that all cost combinations except
one selected the analog category instead of the digital. However,
despite the investment cost of about 133,984 USD compared to
the closest cost combination of about 52,394 USD which is less
than half, the return on investments is approximately 7,675,358
USD and 7,599,365 USD, respectively (Figure 7A). This was a
1% increase compared to the 155% increase in investment cost.

This analysis shows the importance of this system and the need
to consider various factors when carrying out retrofits.

Measures, Cost of Expenditure, and
Profit for Retrofitting Case 2 Plant
Production Systems
In Case 2 retrofitting measures for a plant production system
(Figure 8), an increase in productivity at a similar labor cost in
Case 1 was investigated. These analyses were done to ascertain the
impact of production on retrofit. Despite the cost of investment
was similar, there was a significant increase in the return on
investment when the productivity was doubled. This was around
a 100% increase in the return on investment in size 1 of the
system (Figure 8A). However, as the size of the system increased
(Figures 8B–E), despite the similarity in the investment cost
for retrofitting between Case 1 and 2, and the doubling of
the productivity, a different trend was seen with the return on
investment of around 132% for sizes 2 (Figures 7B, 8B), 121%
for sizes 3 (Figures 7C, 8C), 136% for sizes 4 (Figures 7C, 8D),
and 155% for size 5 (Figure 8E). This demonstrates that the size
of the system and productivity are essential factors to consider in
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FIGURE 7 | Different combinations of cost of retrofitting and yearly profit derived at different sizes of a plant production system for Case 1; size 1 (A), size 2 (B), size
3 (C), size 4 (D), and size 5 (E).

retrofitting. A similar trend in combinations of retrofit measures
to be implemented was seen between Case 1 and Case 2.

Measures, Cost of Expenditure, and
Profit for Retrofitting Case 3 Plant
Production Systems
Case 3 was designed to investigate the impact of labor cost
on the retrofit measures, cost of investment, and return on
investment. This case was investigated because of the similarities
in productivity that are sometimes found in plant production
systems from the optimal control of the micro- and macro-
environments but the difference in the local contexts with
labor cost because of the disparity in standard of living and
development. In this Case, the productivity was kept like in Case
1, but the labor cost was doubled in Case 3. Size 1 (Figure 9A)
showed no difference between Case 1 and Case 3 at comparable
investment costs, even though the labor cost in Case 3 doubled
that in Case 1. However, in the size 2 (Figure 9B) of Case
3, a different trend was seen compared to Case 1. The results
show that the least amount of money for retrofit (around 9,000
USD) had a better return on investment than the most expensive
combination (about 26,000 USD) for retrofits in Cases 1 and 3.
These were a 29% increase in return on investment in Case 1
compared to Case 3 at the least combination of retrofit factors and
around a 2% increase in return on investment in Case 1 compared
to Case 3 for the maximum combination of retrofit factors. This
was even more with the comparisons in investment cost and the
cost of labor in Case 3 being a 100% increase from Case 1. To
validate our method, we analyzed the components selected in
both situations (least and highest cost of investment). Only two

retrofit measures were selected at the least cost of investment: a
digital network controller and an air pressure sensor for Case 1.
In Case 2, only the digital network controller was selected. The
selected retrofit measures in both Case 1 and Case 3 have minimal
impact on productivity and cost of labor. This verifies the increase
in return on investment of around 29% in Case 1, size 2 from
that of Case 3. The increase was because of the savings from labor
costs in Case 1. However, with the maximum investment cost,
all the automated measures were selected in Case 1 and Case 3.
With this, the labor cost did not significantly impact the return
on investment, thus leading to only a 2% increase in return on
investment of Case 1 compared to Case 3.

Impact of Labor Cost and Productivity on Return in
Investment in Retrofitting
Figures 7–9 shows the combination of the total expenditure
required to carry out the retrofit for the lifespan of the plant
production system and the projected net profit per year for three
investigated cases. These cases varied in the production quantity
before retrofits and local labor costs. These were done to explore
what would impact the retrofitting expenditure and profits as
different yields are gotten across different systems depending on
the cultivated variety and other inputs. The labor cost also varies
with the local situation as systems closer to the urban centers
would have more expenditure on labor costs than those located
farther from the cities. Analyses of the results showed that despite
having similar spending for the three investigated scenarios of
labor cost and yields, the total maximum yearly profit was similar
for Cases 1 and 3 but was double for Case 2 from what was
recorded in Cases 1 and 3 for size 1. A similar scenario was
recorded in Size 2. In sizes 3–5, a similar maximum profit was
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FIGURE 8 | Different combinations of cost of retrofitting and yearly profit derived at different sizes of a plant production system for Case 2; size 1 (A), size 2 (B), size
3 (C), size 4 (D), and size 5 (E).

FIGURE 9 | Different combinations of cost of retrofitting and yearly profit derived at different sizes of a plant production system for Case 3; size 1 (A), size 2 (B), size
3 (C), size 4 (D), and size 5 (E).

recorded in all the investigated cases. This points out that despite
the labor cost being double in Case 3, the similar productivity
in Cases 1 and 3 would result in similar profits at a smaller
production capacity, but this would change as the size of the
production system increases. Also, our analyses show that at a
smaller production capacity, the grower needs to pay attention to
the best variety for productivity when retrofitting. This becomes
less important when the size of the system increases. These

analyses point to the importance of this decision-making tool
when deciding to retrofit.

CONCLUSION

A user-friendly system to generate all the feasible tradeoff
retrofit combinations for agricultural production systems such as
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plant factories and greenhouses was developed in this study.
Cost of new technologies, interest on loans for retrofitting,
size and service life of the production system, the present and
projected cost for human labor and robotics, productivity, energy
consumption, and replacement and maintenance costs were
considered in the developed system. The presentation of tradeoff
solutions of possible retrofit combinations, total expenditure, and
net profit per year that is made possible by the developed system
would improve decision-making. For example, an investigated
case showed an increase of up to 250% in net profits. We propose
a multi-objective retrofitting method for agricultural production
systems to minimize the total cost of investment and maximize
the yearly net profit.
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