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Quinoa has attracted considerable attention owing to its unique nutritional,

economic, and medicinal values. The damage intensity of Spodoptera

exigua at the seedling stage of quinoa fluctuates with the crop’s biological

cycle and the environmental changes throughout the growing season. In

this study, we used independently selected quinoa seedling resistant and

susceptible cultivars to investigate the difference between insect resistance

and insect susceptibility of quinoa at the seedling stage. Samples were

collected when Spodoptera exigua 45 days after planting the seedlings,

and broad targeted metabolomics studies were conducted using liquid

chromatography-mass spectrophotometry combined with transcriptomic

co-analysis. The metabolomic and genomic analyses of the insect-resistant

and insect-susceptible quinoa groups revealed a total of 159 differential

metabolites and were functionally annotated to 2334 differential genes

involved in 128 pathways using the Kyoto Encyclopedia of Genes and

Genomes analysis. In total, 14 metabolites and 22 genes were identified as

key factors for the differential accumulation of insect-resistant metabolites in

quinoa seedlings. Among them, gene-LOC110694254, gene-LOC110682669,

and gene-LOC110732988 were positively correlated with choline. The

expression of gene-LOC110729518 and gene-LOC110723164, which were

notably higher in the resistant cultivars than in the susceptible cultivars, and

the accumulations of the corresponding metabolites were also significantly

higher in insect-resistant cultivars. These results elucidate the regulatory

mechanism between insect resistance genes and metabolite accumulation in

quinoa seedlings, and can provide a basis for the breeding and identification

of new insect-resistant quinoa cultivars as well as for screening potential

regulatory metabolites of quinoa insect-resistant target genes.
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Introduction

Quinoa (Chenopodium quinoa Willd.) is an annual
dicotyledonous self-pollinating herb in the quinoa subfamily of
Amaranthaceae. Originating in the Andes of South America, it
has a planting history of more than 5000−7000 years and has a
reputation of being a “super grain” (Bhargava et al., 2006; Vega-
Gálvez et al., 2010; Hariadi et al., 2011; Adolf et al., 2012; Roman
et al., 2020). Quinoa is highly adaptable, and has high resistance
to cold, drought, saline-alkali, and barren conditions as well
as plant pathogens. It is a C3 crop that prefers cold and high
altitudes (Jacobsen, 2003). Quinoa has attracted considerable
attention owing to its comprehensive nutritional value, high
functional value, and strong ecological adaptability and stability.
The Food and Agriculture Organization of the United Nations
has identified it as a non-genetically modified nutritional food
and the only single crop that can completely meet human
nutritional requirements (FAO, 1985; Repo-Carrasco et al.,
2003; Escuredo et al., 2014). Quinoa also has bacteriostatic
properties and can be used for the treatment of inflammation,
high blood pressure and as a source of antioxidants (Jin and
Wei, 2011; Zhang et al., 2011; Karki et al., 2013; Dong et al.,
2020; Guo et al., 2020). In recent years, the nutritional and
functional value of quinoa has become apparent, and its
planting area has been expanding.

The number and species of phytophagous insects have also
increased, harming plants. That is to say that phytophagous
insects themselves harm crops, they can also attract other insects
to gnaw on large areas and even enter the soil, harming the
inter-root area and causing crop yield reduction and economic
losses (Campos et al., 2013). S. exigua is an omnivorous pest,
which mainly endangers the new leaves and stems of the host
crop. The plant leaves are eaten, leaving notches, holes, or
networks, and sometimes only leaf veins. In serious cases, it
can result in the death of the seedlings and affect crop quality
and yield (Chen and Ruberson, 2008; Chen et al., 2010). Studies
have shown that plants can rapidly recognize and use their
own defense mechanisms in response to phytophagous insect
infestation, by activating the expression of defense genes and
activating resistance-inducing signaling defense pathways and
prompting the production of relevant defense compounds, thus
exhibiting insect resistance (Howe and Jander, 2008; Wu and
Baldwin, 2010; Erb et al., 2012; Aljbory and Chen, 2018), but
to the detriment of plant growth and yield, leading plants to
make a trade-off between growth and resistance (Ode, 2006;

Abbreviations: BHLH, basic helix-loop-helix; bZIP, basic region-leucine
zipper; DEG, differentially expressed gene; FDR, false discovery
rate; FPKM, fragments per kilobase per million mapped reads; GO,
Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes;
MYB, myeloblastosis; CCA, canonical correlation analysis; OPLS-DA,
orthogonal partial least squares discriminant analysis; PCA, principal
component analysis; QC, quality control; RT-qPCR, real time quantitative
PCR; TF, transcription factor; TIC, total ion current; UPLC-MS/MS,
ultraperformance liquid chromatography-tandem mass spectrometry;
O2PLS,two-way orthogonal partial least squares.

Rowen and Kaplan, 2016). That is, when plants are attacked by
diseases and insect pests, plants can activate a variety of signal
pathways, such as the regulation of plant hormones, the increase
of cytosolic Ca2+ concentration, the increase of cellular reactive
oxygen species, etc., through pattern recognition receptors on
their cell surfaces and specific elicitor or effector of insect saliva,
thus regulating the activities of defense-related genes (Wu and
Baldwin, 2010). At the same time the plant’s own metabolism is
altered, and the most obvious secondary substance that changes
is the content of phenolic toxic compounds; the accumulation
of total phenols is positively correlated to the resistance of
the variety, the higher the phenolic accumulation, the more
resistant the variety (Singleton and Kratzer, 1969; Leszczyński
et al., 1985; Lattanzio et al., 2009); also flavonoids and alkaloids
have been shown to be closely related to plant resistance to
insects (Pimenta et al., 2014). In the case of serious insect
damage, some quinoa cultivars can avoid or reduce damage and
have the ability to compensate after damage by phytophagous
insect (Turlings and Tumlinson, 1992). In addition, in the
study of crop response to stress, there are four main types
related to plant resistance to stress: WRKY (Chen et al., 2012),
AP2/erebp (Tang et al., 2011), MYB (Pitzschke, 2012), and bZIP
(Hossain et al., 2010, Zhang et al., 2011), which can mediate crop
response to various stresses by regulating plant hormone signal
transduction, phenylpropane biosynthesis and other pathways.
Relative gene expression is induced by transcription factors that
are stimulated by external factors through protein interactions
and signal transduction pathways (Liu et al., 2001). Further
studies have found that many insects can interfere with or even
adapt to the induced plant defense response (Kant et al., 2015),
which leads to the production of defensive plant secondary
metabolites. Therefore, it is important to study the defense
mechanisms of plants and effectively examine and utilize
defense substances.

Biological processes are complex and integrated, and
data from a single omics cannot analyze the macroscopic
developmental process of biological systems; multi-omics
techniques are used to identify and analyze the interactions of
single and multiple genes in metabolic pathways. Metabolomics
is used to study the metabolic basis of phenotypic phenomena
in organisms and to resolve metabolic pathways (Patti et al.,
2012; Putri et al., 2013; Rai et al., 2017). The metabolome is the
downstream result of gene expression, while the transcriptome
is the medium of gene expression. Along with studying
the transcriptome and metabolome, analyzing and identifying
the positive and negative relationships between genes and
metabolites can more directly reflect the changes of the material
itself (Shen et al., 2016; Hirasawa et al., 2018). Therefore, the
multi-omics technique provides a good visualization of the
relationship between insect resistance metabolites and genes in
quinoa seedlings.

At present, research on quinoa insect resistance at
the seedling stage mainly focuses on the identification of
insect resistant cultivar, and there is a lack of research
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on its mechanism, which limits the mining and utilization
of the insect resistance genes of quinoa. Breeding and
utilizing insect-resistant cultivar is the most fundamental,
economical, and effective method with the least impact
on the environment. In this study, the insect-resistant and
susceptible cultivars of quinoa at the seedling stage were
subjected to ultra-high performance liquid chromatography-
tandem mass spectrometry to study quinoa metabolomics.
We aimed to accurately and quantitatively identify the insect-
resistant metabolites of quinoa at the seedling stage using a
combination of metabolomic and transcriptomic analyses to
examine differences in metabolites and the role of related genes
between insect-resistant and insect-susceptible quinoa cultivars
at the seedling stage and to provide a theoretical basis for further
mining and utilization of insect-resistant genes of quinoa plants.

Materials and methods

Materials

In this experiment, eight quinoa cultivars independently
selected by Yunnan Agricultural University were divided
into two groups, four seedlings of insect-resistant quinoa
cultivars (Dian Quinoa-52-3, Dian Quinoa-2019130, Dian
Quinoa-QA13-8, and Dian Quinoa-Qinghai Black) and four
insect-susceptible quinoa cultivars (Dian Quinoa-14-1-3, Dian
Quinoa-93-2, Dian Quinoa-Yellow 3-4, and Dian Quinoa-Black
Quinoa Purple), each cultivar had 3 biological repetitions, and
each group of samples had 12 biological repetitions, a total of
24 samples, for the experimental samples. Which were planted
in a greenhouse at the modern agricultural education base of
Yunnan Agricultural University, Xundian County, Kunming
City, Yunnan Province (E 102◦ 41′, N 25◦ 20′) in early June 2020.
The plots were arranged in randomized groups with an area of
20 m2 (10 m × 2 m), sown at a depth of 2−3 cm, quinoa row
spacing 80 cm, plant spacing 40cm, one plot was one replication
for each cultivar, 60 plants per replication, 3 replications, 180
plants in total. Insect-resistant and insect-susceptible quinoa
cultivars were planted at the same time interval to determine
the resistance of the plants. Average temperature of greenhouse:
25.6◦C; average humidity: 48%; sunshine duration: about 10 h;
sowing depth: 2∼3 cm; substrate: soil texture was loamy,
soil type was red soil, and ground strength was medium.
The quinoa was managed with regular water management
and under the same management conditions. Also according
to the actual fertilizer requirements of quinoa, 15 t/hm2 of
organic fertilizer and 0.75 t/hm2 of compound fertilizer [urea
(containing N 46%); diammonium phosphate (containing P2O5

46%): potassium sulfate (containing K2O 40%) = 1:1:0.2]
were applied to the quinoa cultivars. Four insect-susceptible
quinoa cultivars were observed daily for the presence of insect
pests, and four seedlings of insect-resistant quinoa cultivars
resistance was recorded.

Four insect-resistant cultivars (R) and four insect-
susceptible cultivars (N) of quinoa at the seedling stage,
when the emergence of Spodoptera exigua larvae became
apparent in quinoa seedlings (45 days after planting), which
were single marked on the same day and three independent
plant leaves with the same growth stage were selected from each
of the eight cultivars in R and N. In R, taking 10 g from each of
the three different quinoa plants, for a total of 30 g of complete
leaves from each cultivar. In N, taking 10 g from each of the
three different quinoa plants, for a total of 30 g of S. exigua
bitten leaves from each cultivar. The samples were immediately
frozen in liquid nitrogen and stored at−80◦C for transcriptome
sequencing, metabolite determination and RT-qPCR analysis
(Figures 1A–E).

Metabolite extraction and detection

Sample preparation and metabolite extraction
The 24 samples (leaves) of insect-resistant and insect-

susceptible quinoa seedling cultivars were freeze-dried in a
vacuum and subsequently ground (30 Hz, 1.5 min) to powder
using a grinder (MM 400, Retsch) respectively. Subsequently,
100 mg of powdered leaves was dissolved in 1.2 mL of 70%
methanol extract and vortexed six times every 30 min for 30 s,
respectively. After mixing separately, the samples were placed in
a 4◦C refrigerator overnight. After centrifugation at 12,000 rpm
for 10 min, the supernatant was recovered, and the 24 samples
were filtered respectively through a microporous membrane
(0.22 µm pore size), and the supernatant were stored in an
injection bottle for analysis via ultra-high performance liquid
chromatography-mass spectrometry.

Qualitative and quantitative analysis of
metabolites

The sample preparation, extraction analysis, and qualitative
and quantitative analysis of metabolites of insect-resistant and
insect-susceptible quinoa cultivars were performed according
to the procedures described (Wang et al., 2019) of Wuhan
Metware Biotechnology Co., Ltd.1 Based on the self-built
database MWDB (metware database), Ultra Performance
Liquid Chromatography, UPLC (SHIMADZU Nexera X22) and
Tandem mass spectrometry, MS/MS (Applied Biosystems 4500
QTRAP3) can accurately analyze the metabolites of samples
qualitatively and quantitatively (Supplementary Material 1
and Supplementary Table 1). Quality control (QC) samples
were prepared by mixing sample extracts. The repeatability of
metabolite extraction and detection was judged by analyzing
repeatability of samples under the same treatment. The results
show high curve overlap of total ion flow for metabolite

1 www.metware.cn

2 https://www.shimadzu.com.cn/

3 http://www.appliedbiosystems.com.cn/
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FIGURE 1

(A) Insect-resistant quinoa cultivars (R). (B–D) Insect-susceptible quinoa cultivars (N). (E) Map of cultivars planting plots.

detection, i.e., consistent retention time and peak intensity,
indicating good signal stability of mass spectrometry for the
same sample detected at different times. The high stability
of the instrument provides an important guarantee for
the reproducibility and reliability of the data (TIC plots)
(Supplementary Figure 1). Multivariate statistical analysis can
be used to “simplify and downscale” the high-dimensional and
complex data on the basis of the maximum retention of the
original information, and to establish a reliable mathematical
model to generalize and summarize the metabolic profile
characteristics of quinoa (Eriksson et al., 2006). Principal
component analysis (PCA) of the samples was conducted to
preliminarily grasp the overall metabolic difference between the
samples in each group and the degree of variation between
the samples per group. The metabolite content data were
normalized via unit variance scaling. Through correlation
analysis between samples, the biological duplication between
samples in the group was observed. The higher the correlation
coefficient among samples in the group and between groups,
the more reliable the differential metabolites are. We thus
analyzed the metabolome data according to the orthogonal
partial least squares discriminant analysis (OPLS-DA) model
(Supplementary Figure 1) and drew the score and arrangement
diagrams and further revealed the differences between each

group (Thévenot et al., 2015). The Significantly different
metabolites were screened based on VIP ≥1, fold change ≥2,
and fold change≤0.5 among the groups for further analysis. The
identified differential metabolites were annotated through the
Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa
and Goto, 2000) database.4 The significance was determined
using the p-value of the hypergeometric test.

Transcriptome sequencing and data
analysis

RNA extraction, quantification, sequencing,
and data analysis

Transcriptome sequencing, RNA extraction, RNA detection,
library construction, online sequencing (Supplementary
Material 2), and bioinformatics analysis were conducted by
the Beijing Novogene Technology, Co., Ltd. (5CN), which
was further optimized based on the previous research and
description (Zhu et al., 2018). Total RNA was extracted from

4 http://www.kegg.jp/kegg/compound/

5 www.novogene.com
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insect-resistant and insect-susceptible cultivars of quinoa
at the seedling stage. After RNA quality inspection and the
library construction were completed, the sequencing was
performed only after the test results met the requirements
using Qubit 2.0 for preliminary quantification. Agilent 2100
was used to detect the insert size of the library. After the
library was qualified, different libraries were pooled according
to the target amount of the offline data and sequenced on
the Illumina HiSeq platform (double terminal sequencing,
and the length of each read was 150 bp). Using HISAT2,
Clean Reads were compared with the reference genome to
obtain Mapped Data. Fragments per kilobase of transcript
per million fragments mapped (FPKM) was used as an index
to measure the level of transcription or gene expression. The
FPKM value of gene expression level ranged from 10−2 to
104, and the screening condition of differential genes was
| log2fold change| ≥ 1, and FDR < 0.05. Subsequently,
DESeq2 (Robinson et al., 2010) was used to complete the
analysis of differentially expressed genes, after which the
total number of differentially expressed genes, the number of
upregulated genes, and downregulated genes in each group
were counted. In addition, hierarchical cluster analysis was
performed, clustering heat map of each differential group
was drawn, genes in the KEGG (Kanehisa et al., 2002, 2004)
database were annotated, and the number of differential genes
contained in each KEGG pathway was counted. Pathway
significant enrichment analysis was performed using pathways
in the KEGG database as units and applying hypergeometric
tests to identify pathways that were significantly enriched
in differentially expressed genes compared to the whole
genomic background.

Real-time fluorescence quantitative PCR
validation

To verify the reliability of the transcriptome sequencing
results, all samples of all samples of genes with high expression
on pathways related to insect resistance (three biological
replicates) were selected for RT-qPCR experiments. The TUB-
6 gene was selected as the internal reference gene, and the
primers for the related genes used for RT-qPCR analysis were
designed in Beacon Designer7.9. The PerfectStart SYBR qPCR
Supermix (TransGen Biotech, Beijing, China) was used for
RT-qPCR according to the manufacturer’s instructions. The
reaction volume was 20 µL, including 2 × Perfectstarttm
SYBR qPCR Supermix 10 µL, calibration solution 0.4 µL,
nuclease free water (RNase free water) 6.8 µL, forward
primer and reverse primer each primer (10 mm) 0.4 µL,
cDNA 2 µL (200 µg/µL). The thermal cycle was as follows:
the thermal cycle was as follows: 94◦C (30 s), 94◦C (5 s),
60◦C (30 s), 40 cycles. And the relative gene expression
level was calculated using the 2−11CT method (Livak and
Schmittgen, 2001). The specific methods were as follows:
The CT value of the validated gene (CT,Target) and the

CT value of the internal reference gene (CT,TUB−6) were
calculated:

1CT = CT,Target − CT,TUB−6, 11CT

=
(
CT,Target − CT,TUB−6

)
Time x

−
(
CT,Target − CT,TUB−6

)
Time 0.

Note: Time x was any time point and Time 0 represents the
1 × expression of the target gene normalized to TUB-6. The
mean CT values for both the target and internal control genes
were determined at time zero.

We used SPSS 22.0 software for statistical analysis of
differences between RT-qPCR and RNA sequencing results, with
p-Values less than 0.05 being considered statistically significant
and GraphPad Prism 8.0 software for visualization.

New transcripts analysis

Cufflinks (v2.1.1) (Trapnell et al., 2010) can assemble the
results of Tophat2 (v2.1.0) comparisons, and using Cuffcompare
and known gene sequences, new unannotated genes or new
exons of known genes can be identified, and the start and stop
positions of known genes can also be optimized.

Combined transcriptome and
metabolome analysis

Principal component analysis of transcriptome and
metabolome was performed to visualize whether differences
existed between sample groups. Based on the results of
differential metabolite and transcriptome differential gene
analysis, differential genes and differential metabolites of
the same grouping were mapped to the KEGG pathway
map simultaneously to enable a better understanding of the
relationship between genes and metabolites. Bar graphs were
also plotted to show the enrichment level of the pathways
with both differential metabolites and differential genes.
Further correlation analysis of genes and metabolites
detected in each differential grouping was performed, and
Pearson correlation coefficients of genes and metabolites
were calculated using the corr package in R. Significant
differences in metabolites of genes with Pearson correlation
coefficients greater than 0.8 in each difference grouping are
shown by nine-quadrant plots. The O2PLS (Bouhaddani
et al., 2016) model was used to integrate the analysis between
the two data sets, reflecting the overall impact between
different data sets, and additionally reflecting the weights
of different variables in the model, so as to more precisely
identify key regulatory phenomena. And multivariate statistical
analysis method that reflects the overall correlation between
the two sets of indicators using the correlation between
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integrated pairs of variables was used to perform (canonical
correlation analysis, CCA) (González et al., 2008) analysis
of the differential genes and differential metabolites in each
pathway. Multiple biofunctional analysis identifies potential
metabolites and corresponding differentially expressed genes at
the molecular and biochemical levels by interactively comparing
metabolomics and transcriptomics data.

Results

Qualitative and quantitative analysis of
metabolites related to insect resistance
cultivars in quinoa seedlings

Quantitative analysis of samples from R and N. A total of
724 metabolites were detected and quantified for the analysis
of samples from R and N. The total ion flow plots (TIC plots)
of the mass spectrometry detection analysis of different QC
samples (Supplementary Figure 2) were analyzed via overlap
display, and the results showed that the overlap of the curves
of the total ion flow for metabolite detection was high, i.e., the
retention time and peak intensity were consistent, indicating
the high reliability of metabolite extraction and detection
and good reproducibility of the data. From PCA score map
(Figure 2A) and cluster analysis heat map (Figure 2C), the
biological repeatability within the sample group was good,
and the related metabolites between the groups had significant
differences between the insect-resistant and susceptible cultivars
of quinoa at the seedling stage. The correlation analysis
between samples also showed good repeatability within the
sample group (Supplementary Figure 3). The qualitative and
quantitative detection of metabolites related to insect-resistant
and insect-susceptible quinoa cultivars showed that 24 samples
were selected for this project and divided into two groups
for metabolomic studies, each group having 12 biological
replicates. A total of 724 metabolites were detected, including
132 lipids, 121 phenolic acids, 119 flavonoids, 76 organic acids,
51 nucleotides and their derivatives, 80 amino acids and their
derivatives, 47 alkaloids, 19 lignans and coumarin terpenoids,
and 7 tannins (Table 1).

Analysis of relevant metabolite
differences between insect-resistant
and insect-susceptible quinoa cultivars
at the seedling stage

Before the differential analysis, PCA (Figure 2A) and OPLS-
DA (Figure 2B) were first performed on the grouped samples
of the difference comparison. The distribution of each point
shows that the separation trend between the groups was obvious,

there were differences between the sample groups, and the
sample repeatability within the group was good. From the
OPLS-DA verification diagram, Q2 = 0.837 and the p-values of
the models built in the group were less than 0.05, indicating
that the prediction ability of the model was excellent, and
that the model was the best fit. Based on the OPLS-DA
results, the metabolites with different resistance or difference
between groups can be preliminarily screened from the obtained
variable importance in projection (VIP) of the OPLS-DA
model for multivariate analysis. It can also be combined with
the p-value or fold change of univariate analysis to further
screen the differential metabolites. The combination of the
fold change and VIP value of the OPLS-DA model was thus
adopted to screen for differentially accumulated metabolites.
Significantly different metabolites with fold change ≥2 and
fold change ≤0.5 were selected. The differential metabolite
clustering heat map (Figure 2C) clearly shows metabolite
differences between insect-resistant and susceptible quinoa
seedling cultivars. Each point in the differential metabolite
volcano plot in N (Figure 2D) represents a metabolite, and a
total of 724 metabolites were detected in R and N. A total of 159
(106 upregulated and 53 downregulated in R) metabolites were
significantly different (Supplementary Table 2). We speculate
that these 159 differential metabolites are main influencing
metabolites between insect resistant and insect susceptible
cultivars at seedling stage.

Bar plot representing the differential expression analysis
and KEGG enrichment graph of differential metabolites in
each group (Figures 3A,B). Upregulation of the metabolite
with the largest |log2FC| value among the differentially
accumulated metabolites, there was a significant accumulation
of metabolite differences between the two groups, and most
of the metabolites in the top row of changes were alkaloids,
phenolic acids and flavonoids; and downregulated differentially
accumulated metabolites of organic acids, phenolic acids and
terpenoids (Table 1). The metabolites with the largest |log2FC|
values among the differentially accumulated metabolites
were taraxerol, N-feruloyltyramine, p-coumaroyltyramine,
scopoletin-7-o-glucoside (scopolin), 4-hydroxy-2-oxopentanoic
acid and hydroxy-2-methyl-3-oxobutanoic acid (Figure 3A).

The average value of the relative content of differential
metabolites in each group was standardized by z-score
(Supplementary Figure 4), and the differential metabolites
in different samples were normalized, and k-means clustering
analysis was carried out. The k-means diagram of differential
metabolites divided differential metabolites into two categories,
and the changing trend of the relative content of standardized
metabolites was obvious (Figure 3C). In sub class 2, 106
metabolites, R accounted for a larger proportion than N, we
speculated that R contains some metabolites that make it
insect-resistant, alkaloids, lipids, organic acids, phenolic acids,
flavonoids, amino acids and their derivatives occupy a larger
proportion. Typical stress-induced metabolic pathways were
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FIGURE 2

(A) Principal component analysis (PCA) score plot. (B) Orthogonal partial least squares discriminant analysis (OPLS-DA) score plot. (C) Heat map
of the differential metabolite clustering. (D) Volcano plot of differential metabolites. The percentage of the PCA score plot indicates the
explanation rate of this principal component to the data set. The horizontal and vertical coordinates in the OPLS-DA score plot show the gap
between and within groups. The left side of the heat map of the differential metabolite clustering represents the differential metabolite
clustering tree. The larger the abscissa and ordinate values in the volcano plot, the greater the difference of expression multiples between the
two samples, and the more reliable the differentially expressed metabolites are.

present, such as biosynthesis of amino acids, biosynthesis of
secondary metabolites, phenylalanine, tyrosine and tryptophan
biosynthesis, phenylpropanoid biosynthesis, glycospholipid
metabolism, carbon fixation in photosynthetic organisms and
plant hormone signal transmission (Figure 3B). Of the 106
constitutively upregulated metabolites in R (Figure 3C), only
41 differentially accumulated metabolites were annotated into

the pathway. Among them, anthranilic acid was enriched in
phenylalanine, tyrosine and tryptophan biosynthesis; caffeic
acid and ferulic acid were enriched in phenylpropanoid
biosynthesis; choline, o-phosphorylethanolamine and choline
alfoscerate were enriched in glycospholipid metabolism;
indole 3-acetic acid (IAA) was enriched in plant hormone
signal transmission; dihydroxyacetone phosphate enriched in
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TABLE 1 Statistical classification of the number of differentially accumulated metabolites and differential genes.

Group Number of
differentially
accumulated
metabolites

Down regulated
differentially
accumulated
metabolites

Up regulated
differentially
accumulated
metabolites

Number of
DEGs

Up
regulated

DEGs

Down
regulated

DEGs

R and N 159 53 106 2,334 758 1,576

In R, the number of differentially accumulated metabolites and DEGs were displayed. DEGs indicates differentially expressed genes.

FIGURE 3

(A) Histogram of differential metabolite abundance. (B) Differential metabolite Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
graph. (C) Differential metabolite k-means graph. Log2FC and differential metabolites in the abscissa and ordinate in the histogram of
differential metabolite abundance are shown. The color bar in (B) shows the range of p-value. The ordinate in the differential metabolite
k-means graph represents the normalized relative content of metabolites.

glycospholipid metabolism; 3-phospho-D-glyceric acid was
enriched in biosynthesis of amino acids and carbon fixation
in photosynthetic organisms; d-erythrose-4-phosphate was
enriched in biosynthesis of amino acids (Supplementary

Tables 3, 4). It was worth noting that methyl ferulate, ethyl
caffeate, these 2 metabolites were not annotated into the
pathway, but they were also important for insect resistance.
These metabolites were accumulated in R compared to N.
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Among these, flavonoids and alkaloids are closely related to
insect resistance, while amino acids and their derivatives are
important precursors in the metabolic pathways that confer
insect resistance.

Transcriptome analysis of
insect-resistant quinoa cultivars at the
seedling stage

The transcriptional analysis of Quinoa seedlings in R and
N were divided into two groups for transcriptional studies
after raw data filtering, sequencing error rate checking, and
GC content distribution checking. A total of 156.02 Gb filtered
sequencing data were obtained, with each sample reaching
6 Gb filtered sequencing data. The percentage of Q20 bases
was 97% and above; the percentage of Q30 bases was 92%
and above, and the GC content was higher than 43.0%. The
proportion of sequenced reads that successfully matched the
genome was higher than 70%, and the matching efficiency
was higher than 90%. The efficiency of comparison between
transcriptome data and reference genome was high (higher
than 70%), which indicated that the reference genome was
well assembled and that the transcriptome data measured in
quinoa leaves were consistent with the reference genome, also
indicating that the sequencing results were accurate and could
be analyzed in the subsequent steps. The PCA plot (Figure 4A)
and correlation heat map (Supplementary Figure 5A) of
the three replicates of each group of samples were clustered
together, indicating good stability of the method and high
data quality. Pearson’s correlation coefficient r was used as
the evaluation index of the repeated biological correlation.
The closer the |r| value is to 1, the stronger the correlation

between the two repeated samples. In this experiment, |r|
was greater than 0.8 between biological replicate samples in
both R and N. A clear separation was observed between the
samples of the R and N. The quinoa samples of the R and
N were biologically reproducible and distinct. The expression
density distribution map (Supplementary Figure 5B) showed
the trend and amounts of gene abundance in R and N, reflecting
that the FPKM value of gene expression level is between
log10−2 to log104. The expression of FPKM was extracted
after the centralization and standardization of differential genes;
subsequently, hierarchical cluster analysis was performed, and
a cluster heat map of each differential group (Figure 4B) was
drawn to check the gene expression differences between R and
N. The results showed that the differential genes between R and
N were distinguished, indicating that our sequencing data were
highly reliable.

Analysis of transcriptome differences
of insect-resistant quinoa seedling
cultivars

The detected genes were annotated in KEGG, Gene
Ontology (GO), Non-Redundant Protein Sequence Database
(NR), Swiss-Prot, KOG, Pfam, Tremble, and other databases.
The results showed that KEGG was functionally annotated
to 38,122 genes; GO to 38,862 genes; NR to 49,088 genes;
Swiss-Prot to 32,844 genes; KOG to 46,755 genes; Pfam to
42,765 genes; and Tremble to 47,789 genes, involving 128
pathways. The analysis of differentially expressed genes was
completed using DESeq2, and the differential gene filtering
conditions were |log2Fold Change| ≥ 1 and FDR < 0.05.
The total number of differential genes in R and N were 2,334,

FIGURE 4

(A) Gene principal component analysis (PCA) map. (B) Differential gene clustering heat map. The abscissa and ordinate of differential gene
clustering heat map represent the sample name, differential gene, and hierarchical clustering results.
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with 1,576 downregulated genes and 758 upregulated genes
in R (Table 1 and Supplementary Table 5). Volcano plot to
visualize the overall distribution of differential genes in the
two sets of samples (Supplementary Figure 6). KEGG and
GO enrichment analyses of differential genes were performed
to help further understand the genetic differences in R and
N. The degree of KEGG enrichment was measured using the
rich factor, q-value, and the number of genes enriched to this
pathway. Typical stress-induced significantly enriched pathway
were present, such as starch and sucrose metabolism, plant
hormone signal transduction, phenylpropanoid biosynthesis,
MAPK signaling pathway plant and flavone and flavonol
biosynthesis (Figure 5A). After screening differential genes,
enrichment analysis was conducted to study the distribution of
differential genes in Gene Ontology to clarify the embodiment
of sample differences in gene function in the experiment.
In GO enrichment analysis of differentially expressed genes,
the 50 GO-Term with the lowest q-Value in the enrichment
analysis results were selected and the bar graph of enrichment
entries was plotted, and it was found that biological process
43%, cellular component 3.1%, molecular function 24.01% in
R and N (Figure 5B), and 24, 16, 10 functional categories
respectively (Supplementary Table 6). Through analysis, it
was found that differentially expressed genes were enriched in
the biological process of insect resistance in quinoa seedlings,
indicating that the biological process played an important role
in the mechanism of insect resistance. Further discovery in
these significantly enriched pathways, the metabolites closely
related to quinoa seedling insect resistance and the related
genes were key genes to regulate insect resistance. Gene-
LOC110722068 and IAA, gene-LOC110727583 and ferulic acid,
and gene-LOC110704808 and choline had important effects on
the expression of insect metabolites.

Genes with high expression in pathways related to insect
resistance were selected for real-time fluorescence quantitative
PCR with three replicates of each reaction, and 2−11CT was
used to analyze the normalized expression of each sample. In
this way, we can calculate the 2−11CT and SD, and at the same
time calculate the FPKM and SD of the validated genes. Based
on the 2−11CT of the validated genes and the FPKM of the
sequenced genes, the results showed that the expression trends
detected by RT-qPCR were in good agreement with the RNA-
seq data, which proved the reliability of the transcriptome data
in this study (Figures 6A–G and Table 2).

Analysis of insect resistance
transcription factors in quinoa
seedlings

Transcriptional genes were classified into 46 families, and
the main transcription factors in this study included MYB,
BHLH, WRKY, Hsf, and bZIP (Supplementary Table 7).

Among the transcription factors, bZIP or gene-LOC110729518
was regulated by the plant G-box-binding factor and positively
correlated with choline; gene-LOC110723164 was regulated
by transcription factor HY5 and positively correlated with
d-erythrose-4-phosphate (Table 3), indicating that these two
genes played a key role in the regulation of metabolites in R and
N at the quinoa seedling stage.

Analysis of insect resistance new
transcripts in quinoa seedlings

In this study we also did a de novo gene analysis, using
StringTie to assemble the reads into transcripts based on
the location of the reads on the matched genomes. The
spliced transcripts were then compared with the annotation
information of the genome using GffCompare to identify new
transcripts or new genes. In this study, 4368 new genes were
identified (Supplementary Table 8).

Combined transcriptome and
metabolome analysis of insect
resistance mechanisms in quinoa
seedlings

To understand the differences in quinoa seedling synthesis
in R and N, we integrated transcriptomic data and metabolomic
data for analysis and mapped both differential genes and
differential metabolites to the KEGG pathway map. The KEGG
pathway map revealed the pathways closely associated with
insect resistance and the significantly different associated
genes and metabolites in R and N of insect-resistant quinoa
cultivars. Gene and metabolite correlation clustering heat
map has more than 0.8 correlation of differential metabolites
and differential genes for mapping, it can be clearly seen that
the gene and metabolite positive and negative correlation
was strong. Quadrant 3, 7 refers to genes and metabolites
with a consistent pattern of differential expression and a
consistent trend of regulation, with changes in metabolites
likely to be positively regulated by genes, such as indole
3-acetic acid (IAA), dihydroxyacetone phosphate, d-erythrose-
4-phosphate, scopoletin-7-o-glucoside(scopolin), choline,
o-phosphorylethanolamine, choline alfoscerate, anthranilic
acid; quadrants 1, 2, 4 refer to genes and metabolites with
higher metabolite accumulation than genes and non-consistent
regulatory trends, where metabolites are upregulated and
genes are unchanged or down-regulated, such as scopoletin-
7-o-glucoside (scopolin); quadrants 6, 8, 9 refer to genes and
metabolites with a non-consistent regulatory trend, where
the gene is upregulated and the metabolite is unchanged or
downregulated, such as glucose-1-phosphate, dihydroxyacetone
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FIGURE 5

(A) Enrichment scatter plot. (B) Differential gene GO enrichment bar graph. The vertical coordinate represents the KEGG pathway. The
horizontal coordinate indicates the rich factor, the larger the rich factor, the greater the enrichment. The larger the dot, the greater the number
of differential genes enriched in the pathway. The redder the color of the dot, the more significant the enrichment. The abscissa of the column
diagram of differential gene GO enrichment bar graph represents the proportion of the genes in the total number of genes annotated, and the
ordinate represents the name of the go entry.
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FIGURE 6

(A–F) Validation of the transcription levels for selected DEGs via RT-qPCR. (G) Verification of the expression patterns of RNA-seq results using
RT-qPCR.
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TABLE 2 Primer sequences to validate genes.

Quantity gene-ID NCBI-gene ID Primer 5′ to 3′

1 gene-LOC110682534 110682534 Forward Primer GTTCCTTCCAGTTCTATC

Reverse Primer CTCTCCATCCTTATGTATC

2 gene-LOC110684308 110684308 Forward Primer CGATTGTGTATGGAGAATA

Reverse Primer GGCTTGCTTAGTTGATTA

3 gene-LOC110717180 110717180 Forward Primer GAGACAACTTACCATCAC

Reverse Primer GAACCTACCAACTGAATG

4 gene-LOC110721030 110721030 Forward Primer CTATTCACTTCCACCATC

Reverse Primer TTAGCCTCCATAACATTC

5 gene-LOC110724732 110724732 Forward Primer TCATCTCAGGAAGAACAT

Reverse Primer TTATTCGCATCAGAAGGA

6 gene-LOC110733044 110733044 Forward Primer AGTATGAGTGTTTCTATGAG

Reverse Primer CTCTTCTCCACATTATCC

Internal reference gene TUB-6 831100 Forward Primer TGAGAACGCAGATGAGTGTATG

Reverse Primer GAAACGAAGACAGCAAGTGACA

TABLE 3 Correlation analysis of differential metabolites and transcription factors.

Transcription
factors

gene_ID EC Meta Name Compounds PCC PCCP

bZIP gene-LOC110729518 plant G-box-binding factor pmb0484 Choline 0.841 2.638E−07

bZIP gene-LOC110723164 transcription factor HY5 Zmzn000079 D-erythrose-4-phosphate 0.811 1.5092E−06

EC indicates enzyme digestion sites in related pathways, PCC indicates Pearson’s correlation coefficient.

phosphate, 3-phospho-D-glyceric acid, d-erythrose-4-
phosphate, caffeic acid, ferulic acid, o-phosphorylethanolamine,
choline alfoscerate (Figure 7A and Supplementary Tables 9–
11). The associated genes and metabolites were mainly
enriched in plant hormone signal transduction, starch and
sucrose metabolism, carbon fixation in photosynthetic
organisms, phenylpropanoid biosynthesis, glycerophospholipid
metabolism, phenylalanine, and tyrosine and tryptophan
biosynthesis, and there were 71, 57, 7, 54, 17, and 2 significantly
different genes, respectively (Supplementary Figure 7A).

Among them, in the KEGG enrichment analysis, we
could see the synthetic differences between the two groups
of the insect-resistant and insect-susceptible cultivars by
comparing the two groups of quinoa cultivars (Figure 7B
and Table 4). In the plant hormone signal transduction
pathway, indole-3-acetic acid (IAA) was significantly high
accumulation in insect-resistant cultivars (R) of quinoa
at seedling stage than insect-susceptible quinoa cultivars
(N), and IAA was upregulated expression in R. Meanwhile,
corresponding gene-LOC110695735 of IAA was upregulated
expression in R. While the two corresponding genes of
IAA, the expression of gene-LOC110725292 and gene-
LOC110683095 were R lower than N, the two genes were
downregulated expression in R. And by correlation analysis
ribonuclease T2 [EC:3.1.27.1] (gene-LOC110695735) was
positively correlated with IAA (PCC = 0.804), indicating

that this gene positively affected the accumulation of IAA,
which belongs to the indole alkaloids and plays an important
role in insect-resistant quinoa cultivars. Brassinosteroid
insensitive 1-associated receptor kinase 1 [EC:2.7.10.12.7.11.1]
(gene-LOC110725292, BAK1) and 3-o-methyltransferase
[EC:2.1.1.68] (gene-LOC110683095, COMT) were negatively
correlated with IAA (PCC = −0.834, −0.83), indicating that
these two genes affected the accumulation of IAA.

In carbon fixation in photosynthetic organisms, the
accumulation of d-erythrose-4-phosphate was R higher
than N in Rvs.N, d-erythrose-4-phosphate was upregulated
expression in R. The gene corresponding to d-erythrose-
4-phosphate, the expression of gene-LOC110721904 was
R higher than N, this gene was upregulated expression
in R. While gene-LOC110699613 was R lower than N
in Rvs.N, this gene was downregulated expression in R.
Correlation analysis revealed that s-adenosylmethionine
decarboxylase [EC:4.1.1.50] (gene-LOC110721904) was
positively correlated with d-erythrose-4-phosphate
(PCC = 0.828), indicating that expression of this gene
promotes the formation of d-erythrose-4-phosphate.
While galacturan 1,4-alpha-galacturonidase [EC:3.2.1.67]
(gene-LOC110699613) was negatively correlated with
d-erythrose-4-phosphate (PCC = −0.826), indicating that
weak expression of this gene affects the accumulation of
d-erythrose-4-phosphate.
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FIGURE 7

(A) Correlation analysis nine quadrant diagram. (B) Correlation coefficient clustering heat map. In the KEGG enrichment analysis, the p-Value
histogram shows the enrichment degree of pathways with both differential metabolites and genes. In the correlation analysis, nine-quadrant
plot analysis shows the difference multiple of gene metabolites with Pearson correlation coefficient greater than 0.8 in each difference group,
which is divided into 9 quadrants from left to right and top to bottom, using black dashed lines. Each dot represents a gene/metabolite, black
dots indicate non-differential metabolites and genes, blue dots indicate genes and metabolites that are both significantly different (up or
downregulated), red dots indicate genes whose transcriptomes are significantly different but whose metabolomes are not, and green dots
indicate metabolites whose metabolomes are significantly different but whose transcriptomes are not. For differential metabolites with
correlation coefficient above 0.8, select all the correlation calculation results and draw the correlation coefficient cluster heat map.

TABLE 4 Metabolite expression and its correlation.

Meta name Compounds R N log2FC gene_ID R N log2FC

pme1651 Indole 3-acetic acid (IAA) 23793.25 9408.71 −1.3385 gene-LOC110725292
gene-LOC110683095
gene-LOC110695735

0.73
6.77

54.26

2.22
29.57
23.49

1.5640
2.1300
−1.1980

mws1090 Glucose-1-phosphate 3138466.67 1536465.83 −1.0304 gene-LOC110682146
gene-LOC110737753

2.43
4.39

7.52
10.99

1.6830
1.3360

pme3313 D-fructose6-phosphate 558772.50 212063.58 −1.3978 gene-LOC110682146 2.43 7.52 1.6830

Zmzn000078 Dihydroxyacetone phosphate 119184.00 26406.86 −2.1742 gene-LOC110735748 2.99 14.55 2.2730

Zmgn000447 3-phospho-D-glyceric acid 780377.50 264345.67 −1.5617 gene-LOC110682146 2.43 7.52 1.6830

Zmzn000079 D-erythrose-4-phosphate 108879.92 52589.33 −1.0499 gene-LOC110721904
gene-LOC110699613

0.81
11.64

0.26
26.51

−1.6040
1.2150

mws2212 Caffeic acid 1044960.00 232799.83 −2.1663 gene-LOC110734008 0.37 2.66 2.7070

mws0014 Ferulic acid 4903901.67 1367665.00 −1.8422 gene-LOC110727583 1.84 7.63 2.0230

mws1077 Scopoletin-7-o-glucoside
(scopolin)

33149.19 176816.17 2.4152 gene-LOC110718932
gene-LOC110735213
gene-LOC110724454

0.00
2.84
7.09

0.31
22.77
17.25

4.8300
3.0210
1.2860

pmb0484 Choline 18269975.00 8388466.67 −1.1230 gene-LOC110694254
gene-LOC110682669
gene-LOC110732988

52.56
3.20
5.79

10.57
0.55
0.95

−2.3260
−2.3530
−2.4800

mws0704 O-phosphorylethanolamine 45876.42 19604.53 −1.2266 gene-LOC110729416 19.00 8.64 −1.1080

mws0120 Choline alfoscerate 142287.50 32442.83 −2.1328 gene-LOC110725292 0.73 2.22 1.5640

mws1078 Anthranilic Acid 421410.00 185970.83 −1.1801 gene-LOC110729895
gene-LOC110725292

0.71
0.73

1.85
2.22

1.3380
1.5640

Lmbn002862 3-hydroxybenzoic acid 2806134.17 1372185.83 −1.0321 gene-LOC110729180 5.60 21.75 1.9960

Log2FC that is the logarithm base 2 of fold change (FC) of the differential metabolite; positive log2FC indicates up-regulation, while negative indicates down-regulation. R and N in
metabolites indicate differentially accumulated metabolites; R and N in genes indicate differentially expressed genes.

The accumulation of 3-phospho-D-glyceric acid was
R higher than N in Rvs.N, 3-phospho-D-glyceric acid
was upregulated expression in R. The gene corresponding

to 3-phospho-D-glyceric acid, the expression of gene-
LOC110682146 was R lower than N, this gene was
downregulated expression in R. Correlation analysis revealed
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that ATP-dependent RNAhelicaseDDX41 [EC:3.6.4.13]
(gene-LOC110682146) was negatively correlated with 3-
phospho-D-glyceric acid (PCC = –0.817), indicating that
weak expression of this gene affects the accumulation of
3-phospho-D-glyceric acid.

In the phenylpropanoid biosynthesis pathway
(Supplementary Figure 7B), the accumulation of caffeic
acid was R higher than N in Rvs.N, caffeic acid was upregulated
expression in R. The corresponding gene-LOC110734008
of caffeic acid was R lower than N, and this gene was
downregulated expression in R. Correlation analysis revealed
that thioredoxin reductase (NADPH) [EC:1.8.1.9] (gene-
LOC110734008) was negatively correlated with caffeic
acid (PCC = –0.815), indicating that weak expression of
this gene affected the accumulation of caffeic acid. The
accumulation of scopoletin-7-o-glucoside (scopolin) was
R lower than N in Rvs.N and scopoletin-7-o-glucoside
(scopolin) was downregulated expression in R. The expression
of gene-LOC110718932, gene-LOC110735213 and gene-
LOC110724454 were R lower than N and these three genes were
downregulated expression in R. Correlation analysis revealed
galactan beta-1,4-galactosyltransferase[EC:2.4.1.-] (gene-
LOC110718932), inositol-hexakisphosphate/diphosphoinositol
- pentakisphosphate 1-kinase [EC:2.7.4.24] (gene-
LOC110735213) and maleylacetoacetate isomerase [EC:5.2.1.2]
(gene-LOC110724454) with scopoletin-7-o-glucoside
(scopolin) were positively correlated with caffeic acid
(PCC = 0.826, 0.816, 0.81), indicating that weak expression
of these three genes affected the accumulation of scopoletin-
7-o-glucoside (scopolin). The accumulation of ferulic acid
was R higher than N in Rvs.N, ferulic acid was upregulated
expression in R. The expression of gene-LOC110727583 was
R lower than N, this gene was downregulated expression
in R. Correlation analysis revealed that ferredoxin-chelate
reductase [EC:1.16.1.7] (gene-LOC110727583) was negatively
correlated with ferulic acid (PCC = −0.8), indicating that
weak expression of this gene affected the accumulation
of ferulic acid.

In the glycerophospholipid metabolic pathway, the
accumulation of choline was R higher than N in Rvs.N, and
choline was upregulated expression in R. The expression
of gene-LOC110694254, gene-LOC110682669 and gene-
LOC110732988 were R higher than N, these three genes were
upregulated expression in R. Correlation analysis revealed that
beta-amylase [EC:3.2.1.2] (gene-LOC110694254), cytosolic
prostaglandin-E synthase [EC:5.3.99.3] (gene-LOC110682669)
and inositol 3-alpha-galactosyltransferase [EC:2.4.1.123]
(gene-LOC110732988) were positively correlated with choline
(PCC = 0.83, 0.819, 0.805), indicating that the upregulation
of these three genes promotes choline accumulation. In
phenylalanine, tyrosine and tryptophan biosynthetic pathways,
the accumulation of anthranilic acid was R higher than N
in Rvs.N, and anthranilic acid was upregulated expression

in R. The expression of gene-LOC110729895 and gene-
LOC110725292 were R lower than N, the two gene were
downregulated in R. Correlation analysis revealed that
phosphofructokinase 1 [EC:2.7.1.11] (gene-LOC110729895)
and brassinosteroid insensitive 1-associated receptor kinase 1
[EC:2.7.10.1 2.7. 11.1] (gene-LOC110725292) were negatively
correlated with anthranilic acid (PCC = −0.832, −0.855),
indicating that weak expression of these two genes affected the
accumulation of anthranilic acid (Figure 7A and Table 5).

Discussion

In this study, the metabolome and transcriptome
were combined to resolve the differences between quinoa
seedling resistance to S. exigua. Interactions between quinoa,
phytophagous insect and environmental factors are complex
and diverse. This study found that S. exigua was obvious pest
in the quinoa seedling stage, which infests the plant with larvae
that need to continuously nibble on quinoa leaves to ensure
their own nutrition, but at the same time, the nibbled leaves
of S. exigua and its saliva can cause quinoa produce secondary
metabolites and that can affect growth. In quinoa-S. exigua
intercropping, we observed that plants of the insect-resistant
quinoa cultivars always maintained a healthy growth state
from the seedling stage to the mature stage and were not
disturbed by pests throughout the growth period. However,
the insect-susceptible cultivars seedlings were attacked by
S. exigua, which nibbled on their leaves and thus mutilated
and affected seedling growth, while the pest continuously
grew. Secondary metabolites produced by plants play a key
role in plant adaptation to environmental stresses. Studies
have shown that quinoa can produce secondary metabolites
(SMs), such as phenolic acids, alkaloids and flavonoids. These
metabolites are toxic and difficult for phytophagous insects to
feed, in this case, they may have the potential to lead to lower
damage of phytophagous insects (Kokanova-Nedialkova et al.,
2009). While under the potential influence of phytophagous
insects, the plant also produces secondary metabolites to defend
itself against phytophagous insects, such as flavonoids, lignans
and saponins (Kokanova-Nedialkova et al., 2009, Murphy and
Matanguihan, 2015).

The quinoa seedling R and N were further determined
using ultra performance liquid chromatography tandem mass
spectrometry and a total of 724 metabolites were detected,
with a total of 159 differential metabolites (Supplementary
Table 1). Plant hormone signal transduction, starch and
sucrose metabolism, carbon fixation in photosynthetic
organisms, phenylpropanoid biosynthesis, glycerophospholipid
metabolism, phenylalanine, tyrosine and tryptophan
biosynthesis are closely related to insect resistance. Studies have
found that phenolic acids and alkaloids are closely related to
plant insect resistance and that amino acids and their derivatives
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TABLE 5 Correlation analysis of differential metabolites and differential genes.

gene_ID Meta Name Compounds EC Enzyme PCC

gene-LOC110683095 pme1651 Indole 3-acetic acid (IAA) EC:2.1.1.68 caffeic acid 3-O-methyltransferase −0.83

gene-LOC110725292 pme1651 Indole 3-acetic acid (IAA) EC:2.7.10.1 2.7.11.1 brassinosteroid insensitive 1-associated
receptor kinase 1

−0.834

gene-LOC110695735 pme1651 Indole 3-acetic acid (IAA) EC:3.1.27.1 ribonuclease T2 0.804

gene-LOC110682146 mws1090 pme3313
Zmgn000447

Glucose-1-phosphate
fructose6-phosphate
3-phospho-D-glyceric acid

EC:3.6.4.13 ATP-dependent RNA helicase DDX41 −0.821−0.817
−0.817

gene-LOC110737753 mws1090 Glucose-1-phosphate EC:2.7.10.1 2.7.11.1 brassinosteroid insensitive 1-associated
receptor kinase 1

−0.805

gene-LOC110735748 Zmzn000078 Dihydroxyacetone phosphate EC:1.1.1.195 cinnamyl-alcohol dehydrogenase −0.817

gene-LOC110721904 Zmzn000079 D-erythrose-4-phosphate EC:4.1.1.50 S-adenosylmethionine decarboxylase 0.828

gene-LOC110699613 Zmzn000079 D-erythrose-4-phosphate EC:3.2.1.67 galacturan 1,4-alpha-galacturonidase −0.826

gene-LOC110734008 mws2212 Caffeic acid EC:1.8.1.9 thioredoxin reductase (NADPH) −0.815

gene-LOC110727583 mws0014 Ferulic acid EC:1.16.1.7 ferric-chelate reductase −0.8

gene-LOC110718932 mws1077 Scopoletin-7-o-glucoside
(scopolin)

EC:2.4.1.- galactan beta-1,4-galactosyltransferase 0.826

gene-LOC110735213 mws1077 Scopoletin-7-o-glucoside
(scopolin)

EC:2.7.4.24 inositol-
hexakisphosphate/diphosphoinositol-
pentakisphosphate
1-kinase

0.816

gene-LOC110724454 mws1077 Scopoletin-7-o-glucoside
(Scopolin)

EC:5.2.1.2 maleylacetoacetate isomerase 0.81

gene-LOC110694254 pmb0484 Choline EC:3.2.1.2 beta-amylase 0.83

gene-LOC110682669 pmb0484 Choline EC:5.3.99.3 cytosolic prostaglandin-E synthase 0.819

gene-LOC110732988 pmb0484 Choline EC:2.4.1.123 inositol 3-alpha-galactosyltransferase 0.806

gene-LOC110729416 mws0704 O-phosphorylethanolamine EC:3.1.27.1 ribonuclease T2 0.801

gene-LOC110725292 Mws0120 Choline alfoscerate EC:2.7.10.1 2.7.11.1 Brassinosteroid insensitive 1-associated
receptor kinase 1

−0.82

gene-LOC110729895 mws1078 Anthranilic acid EC:2.7.1.11 6-phosphofructokinase 1 −0.832

gene-LOC110729180 Zmzn000079 D-erythrose-4-phosphate EC:1.6.2.2 cytochrome-b5 reductase −0.802

EC indicates enzyme digestion sites in related pathways, PCC indicates Pearson’s correlation coefficient.

are important precursors in the metabolic pathway of plant
insect resistance (Eriksson et al., 2006; Goyal et al., 2012).
The content of alkaloids and phenolic acids in the metabolites
of insect-resistant cultivars were much higher than that of
insect-susceptible cultivars. In addition, glycerophosphodiester
phosphodiesterase regulates choline alfoscerate and choline
accumulation and enrichment in glycerophospholipid
metabolism; caffeic acid 3-o-methyltransferase was enriched
in phenylpropane biosynthesis and regulated caffeic acid and
ferulic acid accumulation, which further indicated significant
differences between insect-resistant and insect-susceptible
cultivars of quinoa at seedling stage. Indoles and ferulic acid,
secondary metabolites produced by phenylpropane, which have
very important roles in plant resistance to stress and pests and
diseases, and phenolic acids are aromatic secondary metabolites
synthesized in large quantities by plants, including ferulic acid
and caffeic acid, all of which have strong defensive functions (Ti
and Zhang, 2009; Murakami et al., 2014). It has been shown that
ferulic acid analogs are closely related to the cell wall synthesis
of plants, and feruloylation of the cell wall can fight pathogens
and insects to some extent, and high concentrations of ferulic

acid may inhibit aphid feeding, survival and reproduction and
enhance plant resistance (Lyons et al., 1993; Cabrera et al.,
1995). In other words, some secondary metabolites produced
inside the plant such as Indole 3-acetic acid (IAA), choline
alfoscerate, choline, anthranilic acid, d-erythrose-4-phosphate
and caffeic acid make S. exigua difficult to feed, and the external
plant refers to feruloyls with plant feruloylation of the cell wall
to enhance its own resistance. Also phenolic ferulic acids lignify
the cells, all of which can be achieved against pathogens and
insects, meaning that quinoa was resistant to insects as other
studies have similar conclusions (Cabrera et al., 1995; Eriksson
et al., 2006; Goyal et al., 2012; Murakami et al., 2014).

While alkaloids have been shown to be a class of substances
with insecticidal activity that can affect the insect nervous
system, inhibit insect feeding and insect egg laying and thus have
an impact on normal insect growth and development of insects
(Pedras et al., 2002; Clauss et al., 2006). In the present study,
choline was positively correlated with gene-LOC110694254
(PCC = 0.83), gene-LOC110682669 (PCC = 0.819), and gene-
LOC110732988 (PCC = 0.806), and also expressed significantly
higher in R than N, choline belongs to alkaloids closely
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related to insect resistance, which means that these three
genes regulate the accumulation of choline to resist the bite of
phytophagous insects. Secondly, in the immunization process of
quinoa seedlings against biological stress transcription factors
play an important role by regulating the expression of target
genes. When the target genes are overexpressed in plants,
they can transcribe and activate the expression of a series
of downstream anti-insect functional genes. Genes do not
respond to induction alone, but genes and metabolites in
plants often intersect and influence each other, in which
bZIP also plays an important role (Zhang et al., 2011).
Gene-LOC110729518 in the transcription factor bZIP was
positively correlated with choline (PCC = 0.841), and gene-
LOC110723164 was also positively correlated with d-erythrose-
4-phosphate (PCC = 0.811), The regulated metabolites of these
two genes are closely related to insect resistance. In this
study, to elucidate the differential regulation of insect-resistant
bioaccumulation in different cultivars of quinoa at the seedling
stage, The association analysis of differential metabolites and
genes between Rvs.N showed that 14 species of differential
metabolites and 22 differential genes were closely related to
insect resistance, which was closely related to the expression
level of key genes in the bioaccumulation of insect-resistant
quinoa cultivars. However, the present study is about combined
transcriptome and metabolome analysis of the resistance
mechanism of quinoa seedlings (between insect-resistant and
insect-susceptible cultivars) to S. exigua. In addition, quinoa
comes in many colors (red, white, yellow and black quinoa) and
different colors of quinoa have different insect resistance, but the
research on the resistance difference between different colors of
quinoa between insect-resistant and insect-susceptible cultivars
have not been understood in depth. At the same time, 4368 novel
genes were identified in this study (Supplementary Table 8), but
further validation analyses are needed.

Conclusion

We integrated transcriptomic and metabolomic
analyses to elucidate the different regulatory pathways
of biosynthesis between insect-resistant quinoa cultivars
and insect-susceptible quinoa cultivars. 6 metabolic
pathways were identified namely plant hormone signal
transduction, starch and sucrose metabolism, carbon fixation
in photosynthetic organisms, phenylpropanoid biosynthesis,
glycerophospholipid metabolism, phenylalanine, and tyrosine
and tryptophan biosynthesis.

A total of 159 differential metabolites were detected, and
2,334 differential genes annotated via the KEGG function,
involving 128 pathways. The association analysis of differential
metabolites and the transcriptome revealed 14 differential
metabolites and 22 differential genes between R and N, among

which, gene-LOC110694254, gene-LOC110682669, and gene-
LOC110732988 were positively correlated with choline; the
expression of gene-LOC110729518 and gene-LOC110723164,
in relation to the bZIP transcription factor in insect-resistant
quinoa cultivars, was significantly higher than that in susceptible
cultivars, while the accumulation of corresponding metabolites
in insect-resistant cultivars was also significantly higher than
that in insect-susceptible cultivars. Thus, these may be the
key factors responsible for the difference in the insect-resistant
bioaccumulation in quinoa seedlings. Owing to the significant
difference in the expression of key factors in insect-resistant
biosynthesis of quinoa seedlings, the difference in metabolites
such as alkaloids and phenolic acids may affect the formation
of insect-resistant quinoa cultivars. The findings of this study
will be helpful for breeders to select new insect-resistant
quinoa cultivars.
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SUPPLEMENTARY FIGURE 1

Orthogonal partial least squares discriminant analysis model.

SUPPLEMENTARY FIGURE 2

Ion flow plots (TIC plots) of the mass spectrometry detection. (A) N for
negative ion mode; (B) P for positive ion mode. This is the spectrum
obtained by summing the intensities of all ions in the mass spectra at
each time point and depicting them consecutively.

SUPPLEMENTARY FIGURE 3

Correlation diagram between samples. The abscissa represents the
sample name, the ordinate represents the corresponding sample name,
the color represents the correlation value, and the group is the group.

SUPPLEMENTARY FIGURE 4

Z-value diagram of differential metabolites. The horizontal coordinate is
the value after normalization of the relative content of the substance,
the vertical coordinate is the name of the metabolite, and the points of
different colors represent different groups of samples.

SUPPLEMENTARY FIGURE 5

(A) Correlation heat map. (B) Expression density distribution. The square
of correlation heat map| r| between biological repeated samples must at
least be greater than 0.8. The curves of different colors in the Expression
density distribution represent different samples, and the abscissa
represents the logarithm of the corresponding sample FPKM.

SUPPLEMENTARY FIGURE 6

Differential gene expression volcano plot. The horizontal coordinates
indicate changes in gene expression level and the vertical coordinates
indicate the level of significance of differentially expressed genes. Red
dots represent upregulated differential genes, green dots represent
downregulated differential genes and blue dots represent
non-differentially expressed genes.

SUPPLEMENTARY FIGURE 7

(A) Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis, p-Value histogram. (B) Phenylpropanoid
biosynthesis canonical correlation analysis (CCA) plot. In the KEGG
enrichment analysis, the p-value histogram shows the enrichment
degree of pathways with both differential metabolites and genes.
Phenylpropanoid biosynthesis canonical correlation analysis (CCA) plot
is divided into four regions. In the same region, the farther away from
the origin, the closer the data points are to each other, and the higher
the correlation.
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