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Machine learning approach to 
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There is an increasing interest in using the Internet of Things (IoT) in the agriculture 

sector to acquire soil- and crop-related parameters that provide helpful 

information to manage farms more efficiently. One example of this technology 

is using IoT soil moisture sensors for scheduling irrigation. Soil moisture sensors 

are usually deployed in nodes. A more significant number of sensors/nodes is 

recommended in larger fields, such as those found in broadacre agriculture, to 

better account for soil heterogeneity. However, this comes at a higher and often 

limiting cost for farmers (purchase, labour costs from installation and removal, 

and maintenance). Methodologies that enable maintaining the monitoring 

capability/intensity with a reduced number of in-field sensors would be valuable 

for the sector and of great interest. In this study, sensor data analysis conducted 

across two irrigation seasons in three cotton fields from two cotton-growing 

areas of Australia, identified a relationship between soil matric potential and 

cumulative satellite-derived crop evapotranspiration (ETcn) between irrigation 

events. A second-degree function represents this relationship, which is affected 

by the crop development stage, rainfall, irrigation events and the transition 

between saturated and non-saturated soil. Two machine learning models [a 

Dense Multilayer Perceptron (DMP) and Support Vector Regression (SVR) 

algorithms] were studied to explore these second-degree function properties 

and assess whether the models were capable of learning the pattern of the soil 

matric potential-ETcn relation to estimate soil moisture from satellite-derived 

ETc measurements. The algorithms performance evaluation in predicting 

soil matric potential applied the k-fold method in each farm individually and 

combining data from all fields and seasons. The latter approach made it possible 

to avoid the influence of farm consultants’ decisions regarding when to irrigate 

the crop in the training process. Both algorithms accurately estimated soil 

matric potential for individual (up to 90% of predicted values within ±10 kPa) 

and combined datasets (73% of predicted values within ±10 kPa). The technique 

presented here can accurately monitor soil matric potential in the root zone 

of cotton plants with reduced in-field sensor equipment and offers promising 

applications for its use in irrigation-decision systems.
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Introduction

Population growth in recent decades has boosted water 
demand worldwide, but water use and water consumption trends 
at current rates are unsustainable (FAO, 2017). Therefore, 
multidisciplinary research efforts in water management are 
required to achieve a sustainable future (Cosgrove and Loucks, 
2015). This includes research on water management in agriculture, 
which accounts for ~70% of the freshwater use worldwide and is 
the most water-demanding of all economic sectors (Pimentel 
et al., 2004). Irrigation is the activity that requires most of the 
water resources available and influences a variety of biophysical 
processes in plants that directly relate to yield.

Optimizing irrigation scheduling decisions in agriculture is a 
challenge that needs to be met to manage water resources more 
efficiently and improve crop water productivity (Jägermeyr, 2020; 
Chaudhary and Srivastava, 2021). Technology development is 
critical in providing more accurate tools for monitoring soil and 
crop water status at different scales (Bittelli, 2011; Cahn and 
Johnson, 2017; Saad and Gamatié, 2020). A range of approaches 
are available for direct and indirect measurements of the soil and 
plant water status (see Jones (2006)). For irrigation scheduling 
purposes, soil moisture monitoring has traditionally been the 
methodology used, and it is generally preferred to other methods 
due to its suitability for irrigation automation. An evaluation of 
available soil moisture measurement technologies and their 
limitations can be found in Susha Lekshmi et al. (2014). Water 
content sensors provide helpful information to determine when 
to irrigate, but soil texture influences the measurements requiring 
site-specific calibration (Cahn and Johnson, 2017). Soil matric 
potential sensors indicate how readily water is accessible for plants 
(Jones, 2006), do not require soil-specific calibration and are 
generally preferred for water management in vegetable crops 
(Thompson et al., 2007; Cahn and Johnson, 2017).

One of the limitations to the wide use of soil matric potential 
sensors at the commercial scale is that they only provide point-
source measurements, and thus, many sensors are needed in 
large-scale broadacre farming to accounting for soil spatial 
variability (Cahn and Johnson, 2017). To monitor large 
heterogeneous farms with sensors, Wireless Sensor Networks 
can be  used to interconnect them and make data available 
online in near real-time. However, it considerably increases the 
cost of the monitoring system (acquisition, installation, 
maintenance, among others), which has been reported as one of 
the significant barriers to the wide adoption of these 
technologies by farmers (Blasch et al., 2022). Remote sensing 
techniques can estimate soil moisture and allow capturing the 
existing spatial variability in large areas. However, these 
techniques still need improvement and are not accurate enough 
to directly estimate soil moisture at a field scale suitable for 
irrigation scheduling (Shunlin Liang, 2020). Therefore, 
methodologies that could minimize the number of in-field 
sensors without losing soil moisture monitoring capability/
intensity would greatly value water managers.

While not yet ready to accurately directly monitor soil 
moisture at the field scale for irrigation scheduling, remote 
sensing-based approaches are helpful for the estimation of crop 
evapotranspiration through vegetation indices gathered from 
satellite, airborne and drone-based platforms following the FAO56 
method (Pereira et al., 2015; Pôças et al., 2020). In this approach, 
crop evapotranspiration (ETc) is estimated by multiplying the 
reference evapotranspiration (ETo) obtained from data collected 
at nearby weather stations by a site-specific crop coefficient that is 
obtained from vegetation indices that can be monitored at high 
temporal and spatial resolution. The Normalized Difference 
Vegetation Index (NDVI) is the most widespread vegetation index 
and is linearly related to the crop coefficient (Trout and Johnson, 
2007). This ETc/NDVI approach enables water managers to 
monitor crop water requirements at individual sites throughout 
the growing season. However, the rate at which moisture is 
depleted from the soil is related to the crop evapotranspiration, 
which varies with the crop phenological stage, and thus, their 
relationship is time dependent. This time-dependent relationship 
hinders the possibility of estimating or accurately predicting soil 
matric potential from evapotranspiration measurements by 
conventional data processing techniques. In this work, we studied 
this relationship when soil matric potential is used to monitor soil 
moisture in gravity surface irrigated systems. The hypothesis was 
that machine learning models can learn the interaction between 
soil-, crop-, and weather-related parameters to estimate soil matric 
potential in the root zone from remotely sensed 
evapotranspiration measurements.

With the adoption of Information and Communication 
Technology in agriculture and the substantial volume of data 
generated, data-driven machine learning techniques that can 
organize data from different sources and the power to learn from 
them become essential (Alzubi et al., 2018; Benos et al., 2021). 
Machine learning techniques have been applied in agriculture in 
various farming practices, with those related to crop management 
activities (disease detection, yield prediction, among others) 
receiving most of the attention. Although growers see potential in 
using the Internet of Things, remote sensing, and machine 
learning (Agriculture 4.0) for having better decision-making 
processes, particularly in irrigation, substantially less work has 
been undertaken on water management activities (Benos et al., 
2021). Within the studies focused on water management, machine 
learning techniques have been applied to estimate groundwater 
reservoirs, soil moisture (Paloscia et al., 2013; Coopersmith et al., 
2016; Prasad et al., 2018; Singh et al., 2019; Babaeian et al., 2021; 
Greifeneder et al., 2021; Grillakis et al., 2021; Orth, 2021; Sungmin 
and Rene, 2021), evapotranspiration (Ponraj and Vigneswaran, 
2020), and provide irrigation control (González-Briones et al., 
2019; Kondaveti et  al., 2019; Murthy et  al., 2019; Akshay and 
Ramesh, 2020; Campoverde et al., 2021; Ikidid et al., 2021; Perea 
et al., 2021; Bhoi et al., 2021a), among other applications (Liakos 
et al., 2018; Cardoso et al., 2020; Perea et al., 2021; Bhoi et al., 
2021b). The machine learning techniques applied in these studies 
are shown in Table 1, following the classification suggested in 
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(Liakos et al., 2018) and considering two additional categories: 
Multi-Agent System (MAS) and Genetic Algorithm. The 
algorithms applied to estimate soil moisture are Bayesian models, 
Artificial Neural Networks (ANN), Regression models, Decision 
Tree models and MAS. Several research papers rely on neural 
network algorithms to classify or estimate crop parameters. 
Support Vector Regression (SVR, also called SVM in most papers 
as shown in Table 1) and Decision Tree-based algorithms are also 
primarily used for the same purposes.

This work proposes the original approach of using the 
relationship between soil matric potential and the cumulative 
evapotranspiration between irrigation events expressed in kPa/
mm aiming to (i) explore the proposed relation over the cotton 
growing season and (ii) assess the feasibility of estimating soil 
matric potential in the cotton root zone (0.20 m below ground) 
from remotely sensed evapotranspiration by using machine 
learning models. The kPa/mm relation may represent the 
dynamics of crop water use during the season. Supported vector 
models and ANN were the machine learning models applied 
because of their capability to process time-dependent parameters. 
The models’ performance in estimating soil matric potential at bay 
level was evaluated and compared following two approaches: (i) 
when models were trained with data for each farm and growing 
season, and (ii) when models were trained with data from all the 
sites and seasons combined. The second approach was 
implemented to avoid any influence water managers’ decision 
practices could have on the algorithm responses.

The study contributes to the research on implementing 
machine learning techniques in irrigation water management that 
are scarce in the literature compared to crop management 
activities. It presents an approach to cotton producers of the main 
cotton-growing areas of Australia that would allow them to 
monitor soil matric potential with a reduced number of in-field 
sensors and potentially optimize on-farm water management in 
these systems.

Materials and methods

Site locations and characteristics

The study was conducted during two cotton-growing seasons 
(2019/20 and 2020/21) with data collected from three commercial 

irrigated cotton farms located in the Murrumbidgee Valley (sites 
A and B) and Moree Plains Shire (site C) in the south and north 
of NSW, Australia, respectively (Figure 1). During a typical cotton 
growing season, these farms have approximately 500–1,500 
irrigated hectares depending on irrigation allocations. Irrigation 
fields typically have bays ranging from 8–30 ha, so hundreds of 
irrigated bays may need to be  managed for irrigation water 
applications during the irrigation season.

In the 2019/20 growing season, soil matric potential was 
monitored at sites A and B, while in the 2020/21 season, it was 
monitored at sites A and C. The Murrumbidgee area (sites A and 
B) climate is semi-arid, while it is humid subtropical in Moree in 
the north of NSW. The weather conditions differed between 
growing seasons and between cotton producing areas. Total 
rainfall and reference evapotranspiration (ETo) for sites A and B 
in the 2019/20 cotton growing season (from mid-October to 
April) were 152 and 1,161 mm, respectively. In the 2020/21 
growing season, total rainfall and ETo were 305 and 1,224 mm at 
site A and 582 and 1,245 mm, respectively, at site C.

Three bays were monitored at sites A (14.6 ha in total) and 
B (21.0 ha), while five bays were monitored at site C (172.8 ha) 
in the Moree Plains cotton-producing region where the 
standard practice is to produce in larger bays (up to ~38 ha in 
farm C). In all sites, cotton was furrow irrigated employing a 
bank-less channel irrigation system (Grabham, 2012). 
Irrigation was scheduled based on the farm consultants’ 
decision except for site A during the 2020/21 season, where 
irrigation was triggered based on soil matric potential 
thresholds and recommendations obtained from the cloud-
based IRRISENS platform (Filev Maia et al., 2020). At this site, 
the grower was notified by text message when soil matric 
potential at 0.20 m depth at any of the three bays monitored 
was lower than −40 kPa to be  able to order water to the 
irrigation company and organize the irrigation event 48 h 
in advance.

Measured and estimated parameters

Soil matric potential and crop evapotranspiration (ETc) were 
measured and estimated at each site to explore their relationship 
between irrigation events over the growing seasons. These 
parameters, rainfall and the growing degree days (GDD), were 

TABLE 1 Algorithms used for a range of applications in agriculture using remote sensing (R) and sensors data (S).

Application BM SVM ANN Regression DT MAS Genetic

Water estimation – S S S – – –

Soil moisture R, S – R, S R, S R, S S –

Evapotranspiration – – R, S S S – R, S

Irrigation control S S S – S – –

Rainfall prediction – S – – – – –

Total 4 4 9 5 9 2 1

BM, Bayesian models; SVM, support vector machine; ANN, artificial neural network; DT, decision tree; MAS, multi-agent system.
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used as inputs in the machine learning models described in the 
following subsection.

A WiField logger (Brinkhoff et al., 2017) with two watermark 
sensors (Model 200SS, Irrometer Company Inc., CA, 
United  States) and one 1-wire temperature shielded sensor 
(model DS18B20) was used to continuously monitor soil matric 
potential at each bay. Watermark sensors were installed at 0.20 m 
below ground as in Kang et al. (2012) and Ballester et al. (2021), 
where soil matric potential measurements are essential to trigger 
irrigation events (Brinkhoff et al., 2017). Soil matric potential 
was calculated using the resistance of each watermark and the 
soil temperature based on the following equations 
(Irrometer, 2021):
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Figure 2 presents the seasonal evolution of the soil matric 
potential for each season and site. When soil matric potential 
readings are observed with more detail between irrigation events, 
there is an inflexion point that indicates the transition from a 
saturated (soil matric potential ≥ −10 kPa) to a non-saturated sate 
(Figure 3). Thus, soil matric potential evolution between irrigation 
events can be modelled by a second-degree function. The second-
degree equation coefficients indicate that the soil matric potential 
has approximately a linear behavior after the inflexion point. The 
same behavior was observed at different moments in the season 
(different crop phenological stages) with weather conditions 
influencing the soil matric potential decrease rate.

The ETc was estimated following the FAO56 approach (Allen 
et al., 1998), in which water requirements are obtained as the 
product between reference evapotranspiration (ETo) and a crop 
coefficient (ETc = ETo × Kc). ETo (using alfalfa as the reference 
crop) was estimated by the Penman-Monteith equation using 
weather information obtained from the nearest meteorological 
stations to each site. The crop coefficient was estimated from 
satellite-based NDVI images using the relationship reported in 
Trout and Johnson (2007) (Kc = 1.37 NDVI  –  0.086). NDVI 
images of each site were obtained using the Google Earth Engine 
API to access the Sentinel-2 top of atmosphere reflectance data 
collection. The extracted images were processed to eliminate 
those with more than 5% of pixels with clouds. The remaining 

FIGURE 1

Location of the farms in the Murrumbidgee Valley (sites A and B) and Moree Plains Shire (site C) in NSW, Australia, where soil matric potential was 
monitored for this study. The red asterisks shown in each NDVI (normalized difference vegetation index) map of each site indicate the monitoring 
stations. Each station was composed of two matric potential sensors and one temperature sensor buried at 0.20 m depth connected to a WiField 
datalogger.
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images were used to calculate the NDVI according to. As 
Sentinel-2 satellites do not provide daily data in the monitored 
areas, NDVI was estimated using linear regression for those dates 
with no images available.

Daily ETc was used to calculate the cumulative 
evapotranspiration between irrigation events as follows:

 
ET ET dcn

d

n
c= ( )

=
∑

0

where d is days since the last irrigation, its value is zero on the 
day that irrigation occurs, and maximum n on the day before the 
next irrigation. The cumulative ETc has the same cumulative 
behaviour as the soil matric potential.

The GDD index was another input parameter used in the models 
to account for the effect of temperature on crop development in each 
cotton-producing region (McMahon and Low, 1972). This index is 
computed from daily maximum and minimum air temperature data 
and a temperature threshold (the base temperature) at which crop 
growth stops. That for cotton is 12°C as follows:

FIGURE 2

Seasonal soil matric potential evolution measured at 0.20 m depth for each farm and cotton growing season.

FIGURE 3

Illustration of the soil matric potential evolution between irrigation events at each farm for different crop phenological stages. The least square 
function and coefficient of determination (R2) is shown for each irrigation event.
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TABLE 3 Description of the machine learning models configuration.

Model Layers/kernel Optimizer

DMP Input: 1 × 3

2 dense layers 32 

neurons each – Tanh

Output 1 × 1

Adam

SVR Input: 1 × 3

Radial basis function 

(RBF) kernel

Output 1 × 1

–

DMP, dense multilayer perceptron; SVR, support vector regression.

 0

( 12) ( )GDD
2=

− += ∑
n

k k

k

Tmax Tmin

 

Machine learning proposed approach

Data selection and pre-processing
In all monitored sites there were three sources of data: WiField 

loggers, Sentinel-2 data collections, and weather stations installed 
in each site or close to it. Table 2 depicts the machine learning 
input data collected in the field. Data cleaning and organization 
were the same in all seasons according to the following criteria:

 • soil matric potential readings range between 0 kPa and 
–200 kPa – readings lower than this value do not represent 
correct values;

 • soil matric potential at each bay was the average of 
two sensors;

 • weather data was collected from on-site weather stations 
(sites A and C) or nearby (site B);

 • remote sensing data extraction occurred every 5 days 
when Sentinel-2 covered the farm area at least once;

 • each satellite image and data extraction considered only 
points from the polygon representing each bay of the 
evaluated paddock, and the cloud coverage in such polygon 
must be less than 5% of the pixels in the image.

All data were organized sequentially according to the GDD to 
enable comparisons between crops from different locations and 
seasons. Two datasets were created to evaluate the algorithms. 
One dataset included data for each site and growing season 
individually, and the other dataset was composed of data from 
sites and seasons.

The time interval of data used to train and evaluate the 
algorithms was from the beginning of the monitoring period, 
excluding the initial 24 h after installing the sensors (wet 
conditions) and data for GDD < 600 (plants not emerged yet or 
emerging), up to 2,200 GDD. No irrigation events were 
undertaken in the evaluated paddocks after 1,700 GDD. The 

selection of the parameter set used as algorithms inputs was based 
on two criteria: (i) the training response (lower errors), and (ii) 
one parameter cannot be a linear combination of the other input 
parameters. This last condition forbids having NDVI and ETc in 
the same input set. The selected input set for all evaluations was 
composed of GDD, ETcn and Rainn. The GDD index is relevant to 
locating the input data in the proper phenological crop stage. The 
other two parameters are essential to evaluate the soil 
water availability.

Machine learning algorithms
The machine learning models must learn the relation kPa/mm 

and forecast the soil matric potential in non-monitored areas 
giving one set of input parameters. As this relation is nonlinear, 
two models were selected to deal with this nonlinearity. First, the 
Support Vector Regression (SVR) algorithm is based on the 
Support Vector model to estimate the value of a point as the best 
hyperplane that represents the given sample (Smola and 
Schölkopf, 2004). The second algorithm was a Dense Multilayer 
Perceptron (DMP) neural network that can be understood as an 
ANN in which one neuron is connected with all neurons from the 
subsequent layers (Arnold et al., 2019). The SVR algorithm was 
implemented based on the Sklearn package, and the DMP model 
was developed using the Tensorflow API (Abadi et al., 2016).

Table 3 presents the configuration of each algorithm. All tests 
were performed using the k-fold method (Bengio and Grandvalet, 
2004), which uses a cross-validation technique when the dataset 
is split in k folds with approximately the same number of samples. 
The algorithms are tested k times, each one changing the validation 
subset, i.e., each interaction deals with a selection of the k – 1 folds 
to training and one to test training, and each fold is used to test 
the algorithm once. The average of tested folds determines the 
algorithm’s accuracy.

Before splitting data in folds, they were shuffled to mix the 
order of the points in the farm dataset and to mix data from 
different farms and seasons in the second type of dataset. In the 
last type of dataset, this is a way to avoid points from just one farm 
being part of a fold and data from other farms in the other fold. 
The risk of not doing this shuffle is to make the algorithms, 
particularly DMP, learn the relation kPa/mm related to one 
grower’s practice instead of a pattern in the cotton crop.

TABLE 2 Potential input features used in this study to estimate soil 
matric potential.

Features Source Dimension/frequency

Solar radiation Weather station Daily value

GDD Weather station Daily value

NDVI Remote sensing Daily estimated

ETcn calculated Cumulative evapotranspiration 

between irrigation events (daily)

Rainn Weather station Cumulative rainfall in mm between 

irrigation events (daily)

Soil matric potential Sensor/estimated Daily average

GDD, growing degree days; NDVI, normalized different vegetation index; 
ETc, cumulative crop evapotranspiration.
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The SVR and DMP models received the same training inputs 
format 1 × 3, i.e., one input has three parameters, and present the 
result as 1 × 1, i.e., one output with one estimated/forecasted point. 
The input set was a combination of parameters from Table 2, and 
the output was soil matric potential in all evaluations.

The R2 (coefficient of determination) obtained for each tested 
fold was considered to evaluate the algorithms’ training and 
responses. However, as the objective of the algorithm evaluation 
is not to estimate the exact soil matric potential but to provide an 
admissible value, the algorithms were also evaluated based on the 
percentage of estimates within an interval of 10 kPa. This interval 
was selected because of the fluctuation observed in soil matric 
potential between sensors installed in the same bay next to each 
other when soil matric potential data for all the sites was assessed.

Results

Relation between soil matric potential 
and ETc (kPa/mm)

The relation between soil matric potential and cumulative 
evapotranspiration between irrigations expressed in kPa/mm, 
represents the ratio of the soil matric potential and water demand 
according to the crop development. This relation can be expressed 
as a second-degree function (Figure 4) in which the inflexion point 
corresponds to the inflexion point from the soil matric potential 
chart (Figure 3). It allows the observation of the dynamics of soil 
matric potential even when soil is saturated, and the crop water 
demand cannot be readily evaluated in the soil matric potential 
chart. Figure 4 shows the relationship between soil matric potential 
and cumulative evapotranspiration in several irrigation events 
(one line for irrigation event). The R2 of each relation kPa/mm is 
similar in farms A and C, even though irrigation management was 
different in each farm. In farm A irrigation scheduling was done 
based on the recommendations of an automatic irrigation control 
system while in farm A and B it was done based on the water 
managers’ practices. The relation was not affected by weather 
events or the crop phenological stage. The same relation was 
observed at different phenological crop stages (see Figure 4 – farm 
B – irrigation event #4 in the end of the growing season when crop 
water demand is lower, and irrigation is not needed) and weather 
conditions. However, rainfall had a decreasing effect on the slope 
of such relation as can be observed in Figure 4 (farms A and B– 
irrigation event #4) when it remained flat for longer.

In farms A and B, the relation kPa/mm had a maximum value 
close to 2.5, while in farm C the maximum value was close to 4.5. 
The difference could be related to the soil and weather conditions 
that were different for farms A and B compared to farm C. Due to 
the difficulty of having an analytical model that encompasses such 
relation, the alternative is to apply a machine learning model. Such 
models may learn the relation kPa/mm and predict the soil matric 
potential through remote sensing data in areas not monitored 
by sensors.

Algorithms’ evaluation in individual farms

The algorithms’ evaluation in individual farms comprises the 
automatic irrigation in farm A and non-automatic (or traditional) 
irrigation strategies in farms B and C. Farms A and B present a 
smaller monitored area than farm C. Consequently, there are 
fewer points in farms A and B compared to farm C to train and 
evaluate resultant model from each algorithm. Due to this 
situation, farms A and B had only three folds to be evaluated, 
while farm C had five folds. Therefore, three folds from each farm 
are presented to evaluate the algorithms’ responses in all 
following analyses.

The DMP presents R2 above 0.80 in farms A and C (Figure 5), 
indicating the automation of the irrigation process did not play a 
decisive role in the algorithm estimation capability, which can 
be  confirmed by SVR results (Figure  6). That SVR algorithm 
presents inferior performance compared to DMP in farms A and 
C, but the opposite in farm B, when the performance was 
substantially superior to DMP. It is possible to evaluate a sequence 
of points similar to a line in farm B (second and third folds in 
Figure  5) not closed from the R2 line estimated by the 
DMP algorithm.

It is also evaluated the soil matric potential estimations/
predictions versus measured points distribution in a ±10 kPa 
interval. Charts in Figures 7, 8 have the R2 = 1 (black line) and the 
±10 kPa represented between grey lines. Both charts represent 
individual farms with three folds each.

Both models’ estimations below –50 kPa present equivalent 
results, while DMP presents better estimations for points below 
–50 kPa in farms A and C. The percentage of estimated points 
in the ±10 kPa interval; across all farms showed a satisfactory 
performance (Table 4). The DMP had better performance than 
SVR in farm C, while there is no difference between algorithms 
in farm A. The monitored area in farm C is more extensive 
than on farms A and B. Due to the size of the bays in farm C, 
an irregular moisture distribution in the bays could be observed 
on the same day, which means the algorithms had to deal with 
significant differences in soil matric potential corresponding 
to the same GDD values in the input parameters.

Farm A presents the same results for both algorithms 
reflecting the regularity promoted by the automation process in 
the irrigated areas. However, farm B presented a significant 
difference between algorithms with SVR superior to DMP, getting 
90% of corrected estimated points in the ±10 kPa band (see farm 
B – SVR dispersion in Figure 8).

Evaluation of algorithms considering all 
farms and growing seasons combined

In individual farm evaluation, the differences in irrigation 
strategies did not cause overfitting in the neural network model 
but could cause a bias in the results (grower practices). Combining 
the measured points from all farms and seasons and shuffling the 
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points are essential to creating the evaluation dataset when such 
bias is not present.

Figure 9 presents the soil matric potential measured versus 
estimated to evaluate the responses provided by SVR and 
DMP. Both algorithms had equivalent results in all testing folds. 

According to the R2 metric, both algorithms present similar 
learning capabilities. The DMP reached R2 = 0.8424 in the fold (d), 
and SVR reached R2 = 0.7559 in the fold (a), meaning the DMP 
model provided a more accurate estimation of the soil matric 
potential in the root zone with a given input set.

FIGURE 4

Evolution of the relation kPa/mm observed during several irrigation events at each farm. Within each farm, the least square function and 
coefficient of determination (R2) is shown for each irrigation event.
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The performance of each model considering the ±10 kPa 
interval is represented in Figure  10. Data organization 
followed the k-fold method that generated other sets of folds 
for training/evaluation sessions. With the reorganization of 
points, the same characteristics were found and represented 
in Figure  9 (compared to Figure  8). Both models present 
similar responses when estimated points are contained in the 
proposed interval, reflecting the field’s measurements. 
Evaluating how many estimated points are in the ±10 kPa 
(Table  4), the SVR presents slightly better results than 
DMP. On average, 69.56% of points in DMP and 72.98% of 
points in SVR are in the proposed interval. Increasing the 
interval to ±15 kPa, both models present the same results 
(~80%) since the interval includes more correctly predicted 
points below –60 kPa.

Discussion

Relationship between soil matric 
potential and ETcn

Soil water dynamics are influenced by many bio-physical 
factors forming a complex system that is difficult to capture by 
analytical models without a significant number of input 
parameters and a complete understanding of their relationship. 
However, changes in soil moisture storage can be determined by a 
soil water balance model as the difference between water added to 
the soil (precipitation and irrigation) and water lost in the system 
(deep percolation, run off, lateral flow and evapotranspiration; 
O’Geen, 2013). In the context of this study, decreases in soil 
moisture storage in the top 0.20 m of soil are mainly due to the 

FIGURE 5

Results obtained with the DMP model when the analysis was done for individual sites. For each farm, the coefficient of determination (R2) obtained 
for the comparison between measured and predicted soil matric potential is shown for three folds.
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crop evapotranspiration. The relationship between soil matric 
potential and cumulative crop evapotranspiration between 
irrigation events (kPa/mm) that is expressed by a second-degree 
function should then represent this system. The R2 obtained for 
this relationship was in most cases >0.72 even though data was 
collected at different times in the season and from farms with 
different soil characteristics, water management strategies and 
weather conditions (Figure 4). For example, in farms A and B, the 
2019/20 cotton growing season was hotter and dryer than the 
2020/21 growing season. The highest (47°C) and lowest (19°C) 
maximum temperatures for the month of January since 1960 were 
recorded in the 2019/20 and 2020/21 growing seasons, respectively. 
These results suggest that the soil matric potential-ETcn relation 
between irrigation events is stable and machine learning models 
that capture this relationship can potentially be used to estimate 
soil matric potential from ETc measurements.

Performance of the models for individual 
and combined datasets

The SVR and DMP models were used in this study to learn 
the pattern of the proposed relationship to be able to indirectly 
estimate soil matric potential in areas not monitored with sensors 
from satellite-NDVI derived ETc measurements. This was possible 
without using specific soil characteristics as data input as it was 
required in other studies such as Villani et  al. (2018). The 
approach followed in this work is different from other studies 
using remote sensed data as an input parameter in machine 
learning models for the estimation or prediction of soil moisture 
(Ahmad et al., 2010; Coopersmith et al., 2016; Torres-Rua et al., 
2016; Sungmin and Rene, 2021). In Ahmad et  al. (2010), 
microwave backscatter observations and incidence angle from 
Tropical Rainfall Measuring Mission (TRMM), NDVI and 

FIGURE 6

Results obtained with the SVR model when the analysis was done for individual sites. For each farm, the coefficient of determination (R2) obtained 
for the comparison between measured and predicted soil matric potential is shown for three folds.

https://doi.org/10.3389/fpls.2022.931491
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Maia et al. 10.3389/fpls.2022.931491

Frontiers in Plant Science 11 frontiersin.org

simulated soil moisture data (at 0.10 m depth) were used as input 
parameters in a Support Vector Machine model to estimate soil 
moisture with good results. In Torres-Rua et al. (2016), surface 
soil moisture was estimated at spatial and temporal resolution 
using a Relevance Vector Machine model by combining in situ 
soil moisture and weather data with satellite-derived 
evapotranspiration (METRIC model). These models used in 
Ahmad et al. (2010) and Torres-Rua et al. (2016), were effective 
in estimating volumetric water content in the top 0.05 m of soil 
but its feasibility for estimating soil moisture at deeper soil layers 
was not studied which limits the applicability of these models to 
irrigation decision support systems. In the study here presented, 
soil matric potential was preferred to soil water content because 
of its suitability for irrigation automation and unneeded soil-
specific calibration. The SVR and DMP models learnt the pattern 
of the soil matric potential and crop evapotranspiration 

relationship using the GDD index, satellite NDVI-derived ETc 
and rainfall as input parameters. The models’ output was the 
estimated soil matric potential at 0.20 m depth, where thresholds 
can be used in practice to trigger irrigation events. Gumiere et al. 
(2020) and Dubois et al. (2021) also explored machine learning 
models for predicting soil matric potential in cranberry and 
potato crops, respectively, for irrigation management. In Gumiere 
et al. (2020), a Random Forest (RF) model with rainfall, reference 
evapotranspiration and soil matric potential measurements at 
0.10 m as input data predicted hourly soil matric potential with 
an R2 of 0.58. The average R2 obtained with the DMP and SVR 
models for individuals farms and for the entire dataset combined 
was ≥0.70 in this study. The best performance of the models here 
tested could be related with the fact that Gumiere et al. (2020) 
predicted soil matric potential hourly while daily values were 
estimated in this work. The RF, SVR, and Neural Network (NN) 

FIGURE 7

Results obtained with the DMP model when the analysis was done for individual sites considering the R2 = 1 (black line) and ± 10 kPa interval between 
the grey lines. Three folds are shown for each farm.
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models used in Dubois et al. (2021) had a higher performance 
(R2 > 0.92) in predicting soil matric potential than the models 
used here although remotely sensed data was not used as an input 
parameter in their study and thus it cannot be  used for the 
purpose proposed in this study.

Soil moisture estimation by machine 
learning models

Both SVR and DMP models performed well in estimating 
soil matric potential (Tables 4, 5). This is a strong indication 
that the kPa/mm relation can be  used to estimate the soil 
matric potential in the root zone of non-monitored areas 
from NDVI data, rainfall, and the GDD index that represents 
the development stage of the crop. The performance 

assessment for individual datasets (farms) showed that both 
models performed similarly and that they performed slightly 
better in farm A and B than in farm C. In particular, the SVR 

FIGURE 8

Results obtained with the SVR model when the analysis was done for individual sites considering the R2 = 1 (black line) and ± 10 kPa interval between 
the grey lines. Three folds are shown for each farm.

TABLE 4 Percentage of estimated points between the ±10 kPa and 
±15 kPa intervals in the analysis for all farms and seasons combined 
applying the DMP and SVR models.

Fold#
Points in ±10 kPa band Points in ±15 kPa band

DMP SVR DMP SVR

1 0.67 0.77 0.76 0.83
2 0.65 0.68 0.78 0.76
3 0.71 0.72 0.81 0.82
4 0.75 0.74 0.83 0.83
5 0.69 0.74 0.82 0.83
Avg. 0.69 0.73 0.80 0.82

DMP, dense multilayer perceptron; SVR, support vector regression.
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A B C

D E F

FIGURE 9

Results obtained with the SVR (A–C) and DMP (D–F) algorithms when the analysis was done combining data from all sites and seasons. The 
coefficient of determination (R2) obtained for the comparison between measured and predicted soil matric potential is shown for three folds.

A B C

D E F

FIGURE 10

Results obtained with the SVR (A–C) and DMP (D–F) algorithms when the analysis was done combining data from all sites and seasons 
considering the R2 = 1 (black line) and ± 10 kPa interval between the grey lines. Three folds are shown for each farm.
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model in farm B presented the highest accuracy, but this 
could just be that the models fit better the dataset for those 
particular farm and season. The performance of the models 
considering the ±10 kPa interval when data from all sites and 
seasons was combined was slightly worse than for individual 
farms although still with an accuracy around 70% (Table 4). 
The SVR model estimated 4% more readings within the 
±10 kPa interval than DMP. The performance improved 
significantly in both models when the interval increased to 
±15 kPa mainly due to the inclusion of estimates of soil matric 
potential between −60 kPa and −120 kPa within this larger 
interval. The dataset used for the training and testing of the 
models had more readings between 0 and −60 kPa than below 
this value because irrigation was scheduled in these sites to 
ensure plant water availability and avoid water stress 
conditions. Consequently, the soil matric potential dataset 
below −60 kPa was scarce for a proper training of the models 
and the accuracy in estimating soil matric potential in drier 
soil was lower.

Conclusion

This study showed that soil matric potential and cumulative 
ETc between irrigation events (kPa/mm) have a stable and robust 
relationship that integrates the effects of soil type and weather 
condition in a second-degree function. It also demonstrated that 
machine learning models with capability to process time-
dependent parameters such as the DMP and SVR applied here can 
learn the patter of the soil matric potential-ETcn relation. This 
offers the possibility of accurately estimating soil matric potential 
in the root zone of crops in non-monitored areas with in-filed 
sensors from remotely sensed ETc estimates. The approach is 
scalable to farms with multiple irrigation fields without the 
limitations of on-ground sensing related to the cost and 
organization of the sensors network.

The assessment of this relation kPa/mm with machine 
learning models provides a new technique to estimate soil 
tension in the root zone of cotton crops although it is 
potentially suitable for other crops. Future work can consider 

collecting data across wider areas and more seasons to refine 
the relation kPa/mm and machine learning models’ 
performance. Additionally, research on expanding the relation 
kPa/mm in other crops to evaluate if the relation sustains and 
how well it represents the complexity of the crop/soil/water/
weather system has merit for other industries.
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TABLE 5 Percentage of estimated points between the ±10 kPa interval 
in the analysis for individual farms with the DMP and SVR models.

Fold#
Farm A Farm B Farm C

DMP SVR DMP SVR DMP SVR

1 0.89 0.88 0.75 0.94 0.55 0.63

2 0.78 0.80 0.77 0.87 0.60 0.61

3 0.83 0.82 0.78 0.90 0.78 0.64

4 – – – – 0.80 0.57

5 – – – – 0.84 0.58

Avg. 0.84 0.84 0.77 0.90 0.72 0.61

DMP, dense multilayer perceptron; SVR, support vector regression.
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