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Yield is an important indicator in evaluating rice planting, and it is the collective result of 
various factors over multiple growth stages. To achieve a large-scale accurate prediction 
of rice yield, based on yield estimation models using a single growth stage and conventional 
spectral transformation methods, this study introduced the continuous wavelet transform 
algorithm and constructed models under the premise of combined multiple growth stages. 
In this study, canopy reflectance spectra at four important stages of rice elongation, 
heading, flowering and milky were selected, and then, a rice yield estimation model was 
constructed by combining vegetation index, first derivative and wavelet transform based 
on random forest algorithm or multiple stepwise regression. This study found that the 
combination of multiple growth stages significantly improved the model accuracy. In 
addition, after two validations, the optimal model combination for rice yield estimation is 
first derivative-wavelet transform-vegetation index-random forest model based on four 
growth stages, with the coefficient of determination (R2) of 0.86, the root mean square 
error (RMSE) of 35.50 g·m−2 and the mean absolute percentage error (MAPE) of 4.6% for 
the training set, R2 of 0.85, RMSE of 33.40 g.m−2 and MAPE 4.30% for the validation set 
1, and R2 of 0.80, RMSE of 37.40 g·m−2 and MAPE of 4.60% for the validation set 2. The 
research results demonstrated that the established model could accurately predict rice 
yield, providing technical support and a foundation for large-scale statistical estimating 
of rice yield.

Keywords: remote sensing, hyperspectral, yield, wavelet transform, multi-growth stage, rice

INTRODUCTION

Rice is one of the important food crops in China and occupies an important position in 
agricultural production, so the production work of rice is also related to our food security 
and sustainable agricultural development. In recent years, with the improvement of people’s 
economic level, people’s research on rice has gradually shifted to the quality aspect, but the 
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yield is still an aspect that we  cannot ignore. Large-scale 
estimating of rice yield is of great importance to ensure national 
food security and regulate food crop production.

The information of different bands in spectral data, the 
vegetation indices, and hyperspectral characteristic parameters 
of various band combinations can directly or indirectly tell 
the growth status of crops, and they are a comprehensive 
reflection of the effects of various factors on field crops (Curran, 
1989). The research of hyperspectral technology on rice focuses 
on using various independent variables such as original reflectance 
spectrum, differential transformation, vegetation index, area 
variable, and location to initially establish prediction models 
for rice leaf area index (LAI), biomass, yield, etc., and then 
achieves rice yield estimates (Feng et  al., 2021; Miclea et  al., 
2022). Regarding the current research, the research on nitrogen 
content and protein content of crops are relatively mature (Xue 
et  al., 2004; Zhu et  al., 2007; Wang et  al., 2012; Zheng et  al., 
2020), but the model accuracy of yield study still has more 
potential for improvement in practical production work. For 
example, Shen et  al. (2009) used data assimilation method to 
predict rice yield based on radar image data with the root 
mean square error of 113 g·m−2. Yang et al. (2019) used unmanned 
aerial vehicle multispectral images to train a convolutional 
neural network model to predict rice yield with the root mean 
square error of 65.8 g·m−2. In the field of hyperspectral 
pre-processing, Yu et  al. (2020a) used wavelet transform to 
pre-process unmanned aerial vehicle hyperspectral images and 
developed a nitrogen content estimation model in rice. Osco 
et  al. (2020) used the first derivative transformation method 
to process the hyperspectral data to filter out the most appropriate 
wavelength to predict the nutrient content in orange leaves. 
Amirhossein et  al. (2020) developed a yield estimation model 
for snap beans by using continuum removal. Yang et al. (2021b) 
used wavelet transform to remove hyperspectral noise and 
developed a model for estimating corn yield. He et  al. (2018) 
estimated the canopy chlorophyll content of winter wheat based 
on the wavelet transform. Jin and Wang (2016) successfully 
traced the canopy transpiration of a desert plant by using first 
derivative spectra. Therefore, preprocessing crop canopy spectra 
with first derivative transformation, continuum removal, and 
wavelet transform is based on the certain study. However, few 
studies have used these preprocessing methods in combination, 
and this research attempts to use them in combination to 
be  able to significantly improve the accuracy of the model.

On the other hand, most studies on canopy-level spectra 
adopted a single growth stage, usually the mature stage (Inoue 
et al., 1998; Zheng et al., 2016; Sampaio et al., 2018; Tuvdendorj 
et  al., 2019; Yu et  al., 2020b; Shao et  al., 2021). Modeling 
studies based on the combination of multiple growth stages 
were not common. In fact, rice yield is a collective result 
of multiple growth stages. Relevant studies have revealed that 
rice yield was affected by various factors such as water, light, 
fertilizer, and quality. These impacts were exerted on every 
growth stage, exhibited as variations in growth, and eventually 
shown as differences in yield. Therefore, in addition to the 
spectral information of the maturity stage, the canopy spectral 
information of the important growth stages before the mature 

stage should also be  included in the study to improve the 
yield estimation accuracy analysis. At present, there are two 
main methods for rice yield estimation using spectral data, 
statistical regression (Chang et  al., 2005; Nguyen and Lee, 
2006; Xue and Yang, 2008; Bajwa et  al., 2010) and data 
assimilation (Huang et  al., 2016; Xie et  al., 2017; Mokhtari 
et  al., 2018). Data assimilation could significantly improve 
the estimates of model parameters and model dynamic 
simulation ability to improve estimation accuracy (Reichle, 
2008; Wang and Yu, 2021). However, this method requires 
the input of phenological characteristics, weather, soil, and 
variety coefficient, which are not easy to get and are complicated 
parameters. It seriously reduces the practical performance of 
the model, and the accuracy needs to be improved too (Wang 
et  al., 2020). For example, Huang et  al. (2015) collected 
weather and soil climate data and used convolutional neural 
network algorithm to build a winter wheat yield prediction 
model with an accuracy of 73.2 g·m−2. Ren et  al. (2008) built 
a winter wheat yield prediction model based on Moderate-
resolution Imaging Spectroradiometer (MODIS) products and 
used statistical regression method with an accuracy of 
21.4 g·m−2. Therefore, in this study, two modeling methods, 
multiple stepwise regression and random forest, are chosen 
to compare the accuracy and finally select the best yield 
estimation model.

Therefore, this study selected four key stages of rice growth, 
the elongation stage, the heading stage, the flowering stage, 
and the milky stage, to study the impact of the combinations 
of spectral information of multiple growth stages on the yield 
prediction model.

MATERIALS AND METHODS

As shown in Figure  1. This was a flowchart of the entire 
study, and the approach used had four main stages: data 
collection, data processing, model build, and model validation. 
A detailed description of the steps was given as follows.

Experimental Design
Experimental site 1 was located in Yangzhou University 
experiment base, Jiangsu Province, China. The field experiment 
was a continuous experiment between 2015 and 2016, which 
was set up as three different experimental varieties (Nangeng 
9,108, Yangnongdao No.1, and Yangdao No.6) with the same 
fertilizer variety for a total of 60 plots (N0: 0, N1: 100 kg.
ha−1, N2: 200 kg.ha−1, N3: 300 kg.ha−1, N4: 400 kg.ha−1).

Experiment site 2 was set up at the test field in Gongdao 
Town, Yangzhou City, Jiangsu Province, China in 2019. The 
experiment was set up into a total of 60 plots of 2 rice 
variety (Nangeng 9,108, Yangliangyou 013), in which 5 N 
fertilizer levels (N0, N1, N2, N3, and N4) were set at 0, 
100 kg.ha−1, 200 kg.ha−1, 300 kg.ha−1 and 400 kg.ha−1, 5 K 
fertilizer levels (K0, K1, K2, K3, and K4) were set at 0, 
50 kg.ha−1, 100 kg.ha−1, 150 kg.ha−1 and 200 kg.ha−1, 5 P 
fertilizer levels (P0, P1, P2, P3, and P4) were set at 0, 
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100 kg.ha−1, 200 kg.ha−1, 300 kg.ha−1 and 400 kg.ha−1, 
respectively. Figure  2 shows the geographical location of 
the experimental area. Figure  3 is an experimental plot 
distribution map.

Data Collection
Field Canopy Spectra Measurement
Measurements were made with a Fieldspec®3 (350–2,500 nm) 
Hi-Res spectrometer from ASD (Analytical Spectral Devices, 
Inc., CO, United  States), with sampling intervals of 1.3 nm 
(in the 350–1,000 nm interval) and 2 nm (in the 1,000–2,500 nm 
interval). The spectra were measured in clear weather, without 
wind or with low wind speed, from 10:30 to 14:00 British 
Summer Time (BST). The probe was measured vertically 
downward at a distance of 0.6 m from the top of the plant 
crown, and the reflectance spectrum was the average of 10 
repetitions within the plot (each measurement was made at 
a randomly selected location within the plot). The measurements 
were taken once at each of the four critical stages of rice, 
namely, elongation, heading, flowering, and milky, each 
measurement was calibrated by using a standard white 
reflectance panel (the standard white panel reflectance was 1).

Yield Determination
At the rice maturity stage, rice was harvested at a randomly 
selected 1  m2 area in each experimental field (avoiding the 
field edge). After harvest, the grains were threshed, sun-dried 
to a constant weight, and weighed to determine the rice yield 
of each experimental plot.

Spectral Variables
By reviewing the literature and results of related studies, it 
was found that spectral parameters such as red edge, yellow 
edge, and blue edge were frequently used in quality monitoring 
and prediction in the fields such as quality (Guo et  al., 2019; 
Olivares Díaz et  al., 2019; Yang et  al., 2021a). Therefore, in 
this study, spectral characteristic parameters such as field canopy 

spectrum, first derivative spectrum of field canopy, four vegetation 
indices, and three edge parameters (red edge, blue edge, and 
yellow edge) were selected for parameter screening and model 
establishment, as listed in Table  1.

Hyperspectral Data Processing
Data Preprocessing
The hyperspectral data had large noise in the range of 
350–2,500 nm. Therefore, the Savitsky-Golay (SG) filter 
(Savitzky and Golay, 1964) in Matlab 2016b version was 
used to smooth the original canopy reflectance spectrum, 
and the processed spectrum was marked as Original 
Reflectance (OR).

Conventional Spectral Transformation
To further eliminate the impact of noise and truly exhibit the 
spectral characteristics of ground objects, this study selected 
two conventional spectral transformation methods, first derivative 
transformation and continuum removal transformation of spectral 
reflectance. The spectrum obtained by first-derivative 
transformation after being pre-processed by the SG filter was 
noted as First-derivative (FD).

The spectrum obtained by continuum removal transformation 
after pre-processed by SG filter was noted as Continuum 
Removal (CR). The equation for calculation is as follows (Yang 
and Du, 2021).

 S R Rcr C= /
0

where Scr is the continuum removed spectral reflectance, R is 
the original spectral reflectance, and RC0

 is the continuum 
linear reflectance.

Wavelet Transform
The property of wavelet transform is that time-domain features 
are added based on the Fourier transform. By decomposing 
the signals in time and frequency domains, wavelet transform 

FIGURE 1 | A flowchart of the research process.
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achieves the separation and extraction of characteristic signals 
to obtain more effective information. Wavelet transforms are 
divided into two groups, continuous wavelet transform  
(CWT), and discrete wavelet transform (DWT). In this study, 
CWT was used to decompose the canopy reflectance spectral 
data at various scales. The equation for calculation is as follows.

 
( ) ( ) ( ),,
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where ƒ(λ) is the spectral reflectance; λ is the number of 
spectral bands in the range of 350–2,500 nm; ,a by  is the 
wavelet basis function; a is the scale factor; and b is the 
translation factor. The wavelet coefficient W a bf ,( )  contains 
two-dimensional data, the band and scale. The behavioral scales 
were generated and listed as the matrix of bands.

CWT on the rice canopy spectra was conducted in Matlab 
2016b, and the 10 decomposition scales [1, 10] were set (Lamb 
et al., 2002), namely 21, 22, …, 210. Correlation analysis was carried 
out between the transformation results under the 10 scales and 
rice yield, and the results were used to screen characteristic bands.

Training Set and Validation Sets
The experimental data for 2015, 2016, and 2019 were 
selected, including the spectral data of the elongation stage, 

FIGURE 2 | Experimental area overview.
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the heading stage, the flowering stage, and the milky stage. 
The sample size was 180. The samples from 2015 (n = 60) 
were used as the training set to establish a production 
estimation model. And the samples in 2016 (n = 60) and 
2019 (n = 60) were, respectively, used as the validation set 
to verify the accuracy of the production estimation  
model. Table  2 shows the data characteristics.

Model Building and Result Validation
The multivariate stepwise regression (MSR) method was used 
to establish a multiple linear regression model with multiple 
parameters. The central idea is to introduce independent variables 

one by one, on the condition of significantly improved coefficient 
of partial determination (partial R2) after introduction. At the 
same time, after introducing each new independent variable, 
the old independent variables should be  tested one by one to 
remove those with insignificant partial R2. This process of 
introducing while removing was conducted until neither a new 
variable was introduced nor an old variable was removed. Its 
essence is to establish the “optimal” multiple linear regression 
equation. The equation for this type of model is (Uyanık and 
Güler, 2013):

 y b b x b x b x en n= + + + +0 1 1 2 2

A

B

FIGURE 3 | Experimental plot distribution map. (A) Experimental area 1, (B) Experimental area 2.
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where y is the dependent variable, x x xn1 2, , ,¼  are the n 
independent variables used in the modeling, b b b bn0 1 2, , , ,¼  
are the constant terms corresponding to each independent 
variable, and e  is the error term.

Random forest (RF) is a machine learning algorithm first 
proposed by Breiman. The algorithm uses the bootstrap 
resampling method to collect samples from the original sample 
and performs decision tree modeling for each sample extracted, 
combining them into multiple decision trees for prediction. 
The advantage of random forest is that the training is relatively 
fast and no cross-validation is required (Breiman, 2001). 
Therefore, random forest is widely used in the classification 
and prediction of remote sensing. When the random forest is 
applied to regression problems, the average of the results of 
each decision tree is the predicted value of the dependent variable.

The indicators selected for the model test were coefficient 
of determination (R2), root mean square error (RMSE), and 
mean absolute percentage error (MAPE).
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TABLE 2 | Data characteristics.

Sample set Number of 
samples

Minimum (g·m−2) Maximum (g·m−2) Mean value Standard 
deviation

Variance Coefficient of 
variation

Training 60 520 925 686.3 107.9 11633.7 0.16
Validation 1 60 450 925 659.6 102.1 10417.3 0.15
Validation 2 60 443 788 600.6 74.0 5469.7 0.12

TABLE 1 | Spectral variables.

Type Symbol Name Definition References

Vegetation index NDVI Normalized vegetation 
index

(NIR-R)/(NIR + R) Huete, 1988

DVI Difference vegetation 
index

NIR-R Gitelson et al., 2002

RVI Ratio vegetation index R/NIR Pearson and Miller, 1972
EVI Enhanced vegetation 

index
2.5(NIR-R)/(1 + NIR + 2.4R) Jiang et al., 2008

Hyperspectral 
characteristic variable

λr Red edge position Wavelength position of Dr Gong et al., 2002

Red Dr Red edge slope First derivative spectral 
maximum within the red 
edge

Gong et al., 2002

edge SDr Red edge area Area of the first derivative 
spectrum within the red 
edge

Gong et al., 2002

λb Blue edge position Wavelength position of Db Gong et al., 2002
Blue Db Blue edge slope First derivative spectral 

maximum within the blue 
edge

Gong et al., 2002

edge SDb Blue edge area Area of the first derivative 
spectrum within the blue 
edge

Gong et al., 2002

λy Yellow edge position Wavelength position of Dy Gong et al., 2002
Yellow Dy Yellow edge slope First derivative spectral 

maximum within the yellow 
edge

Gong et al., 2002

edge SDy Yellow edge area Area of the first derivative 
spectrum within the yellow 
edge

Gong et al., 2002

NIR is any reflectivity in the wavelength range of 760–2,500 nm, R is any reflectivity in the wavelength range of 620–700 nm.
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Where n  is the number of sample sets, x  is the mean 
value of rice yield, xi  is the measured value of rice yield, 
and ix̂  is the predicted value of the model.

The higher the value of R2, the better the goodness of fit 
of the corresponding model. RMSE and MAPE tell how accurate 
the predictions are, and they are two indicators evaluating the 
regression model. The smaller the values of RMSE and MAPE, 
the more accurate the model predicts.

RESULTS AND ANALYSIS

Analysis of Canopy Spectral 
Transformation of Rice in Various Growth 
Stages
The first derivative, continuum removal, and wavelet transform 
were performed on the original reflectance. All three methods 
showed varied curves from the pattern of OR (Figures  4, 5). 
As shown in Figure  4, the reflectance of OR and CR was 
quite different in the four stages in the range of 800–1,100 nm, 
whereas it was difficult for the FD treatment to intuitively 
show the difference in spectral reflectance in various stages. 
Figure  5 shows the patterns of rice canopy spectra for 10 
scales of transformations at various stages. It can be  seen from 
Figure  5 that the patterns of the four stages were relatively 
flat on scale [1, 5], with no clear spectral features, were all 
wave-shaped on scale [6, 8], turned to parabolic on scale [9, 
10], and were approaching a straight line beyond 2000 nm. 
Overall, the spectral features were more distinct than the 
original spectrum after being transformed at scale 6, 7, 8, 
9, and 10.

Correlation Analysis
Correlation Between Rice Yield and Conventional 
Spectral Transformations
To further take advantage of the rice canopy spectra to predict 
the rice yield, based on the correlation analysis between the 
original reflectance and rice yield, this study also conducted 
a correlation analysis between the first derivative spectra and 
rice yield, and between the reflectance spectra after continuum 
removal and rice yield (Figure  6). It can be  seen that the 
original spectrum at the jointing stage was significantly 
correlated with the yield in the range of 400–720 nm. After 
the first derivative of the spectrum was processed, most of 
the sensitive bands were still retained in the visible light 
range, in addition, the range for sensitive bands selection 
was extended to the near-infrared region beyond 800 nm, 
such as 910–925 nm, 935–966 nm, 983–1,010 nm, etc. At the 
heading stage, the strongest correlation after the first-derivative 
treatment increased to r′

1283 nm = −0.73 from r694 nm = −0.69 in 
the original spectrum. The result of the flowering stage was 
similar that the strongest correlation increased from 
r705 nm = −0.67 to r′

686 nm = −0.71. Compared with the previous 
three stages, the sensitive bands of the milky stage were 
narrower, and overall, the correlation was decreased as well. 
Considering the correlation performance of the three treatments, 

FD > OR > CR, therefore, the spectral spectrum after FD 
treatment was selected as an independent variable to 
be  introduced into the yield prediction model.

Correlation Between Rice Yield and 
Wavelet Transform
Figure  7 shows the correlation coefficient matrix of rice yield 
and rice canopy spectra after 10-dimensional CWT at various 
stages. As shown in Figure  7, the sensitive bands related to 
rice yield mainly focused on the decomposition at scale [4, 
9], and the correlations were weak at scale [1, 3] and [10]. 
The result after the wavelet transform was compared with the 
result after the first derivative transform. It was shown that 
at the elongation stage, the maximum correlation coefficient 
r appeared at scale [4] at 683 nm with a value of 0.74, significantly 
higher than the maximum r-value of 0.64 at 440 nm of first 
derivative transform. At the heading stage, the maximum 
correlation coefficient r was at scale [8] at 732 nm with a 
value of 0.81, higher than the maximum correlation of −0.73 
at 1283 nm of the first derivative transform. At the flowering 
stage, the maximum correlation coefficient was 0.74 at scale 
[5] at 675 nm, slightly higher than the maximum correlation 
of −0.71 at 426 nm of the first-derivative. At the milky stage, 
the maximum correlation coefficient was 0.65 at scale [4] at 
570 nm, significantly higher than the maximum correlation of 
−0.51 at 557 nm of the first derivative transform. In addition, 
the number of sensitive bands of spectral reflectance to rice 
yield under the first derivative treatment was significantly less 
than that treated by CWT. Therefore, the overall results 
demonstrated that CWT was significantly better than FD. The 
effective spectral signals were better displayed after wavelet 
transform, and it was conducive to digging into the information 
to facilitate subsequent research and analysis.

To explore which scales of the wavelet transform have the 
most potential in retrieving rice yield, the 10 dimensions under 
each growth stage were analyzed independently 
(Supplementary Figure  1). The results showed that at the 
elongation stage, the absolute values of the correlation coefficients 
between spectral reflectance and rice yield under wavelet 
transform at scale [4, 6] and [8] were increased significantly, 
and the number of sensitive bands also increased substantially 
compared with the FD transform. The improvement by wavelet 
transform was more distinct at the heading and flowering 
stages, with dominant scales concentrated in [4, 9]. While the 
milky stage was significantly improved at scales [4, 5] and [7, 
8]. Therefore, the overall results indicated that the wavelet 
transform of the original spectrum had strong adaptability at 
scale [8], and performed well across all the four growth stages.

Correlation Between Vegetation Indices 
and Rice Yield
Four vegetation index (VI), Normalized Difference Vegetation 
Index (NDVI), Ratio Vegetation Index (RVI), Difference 
Vegetation Index (DVI), and Enhanced Vegetation Index 
(EVI), were calculated using the red and near-infrared bands, 
and the correlation between each of them with measured 
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yield was analyzed. The results are shown in Table  3. It is 
exhibited that the Pearson correlation coefficients of the 
four vegetation indices all increased first and then  
decreased as the growth stage advanced and peaked at the 

heading stage. Therefore, it is speculated that the vegetation 
indices at the heading and flowering stages would  
perform better for the prediction of rice yield in the later  
stage.

A B C

FIGURE 4 | Spectral reflectance of rice leaf canopy under different treatments in various growth stages: (A) OR, (B) FD, (C) CR.

A B

C D

FIGURE 5 | Changes in reflectance of wavelet transform of rice canopy spectra in various growth stages: (A) elongation stage, (B) heading stage, (C) flowering 
stage, (D) milky stage.
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Correlation Between FD-Based 
Hyperspectral Characteristic Parameters 
and Rice Yield
The characteristic parameters such as red edge, yellow edge, 
and blue edge were calculated, and further, they were 
normalized and differentially calculated. The correlation analysis 
was carried out between the obtained values and rice yield, 
and the results are shown in Table 4. As shown, the correlation 
coefficients between the hyperspectral parameters and yield 
at the heading and flowering stages were generally higher 
than those at the elongation and milky stages. And the three 
hyperspectral parameters, λr, SDr/SDb, and (SDr − SDb)/
(SDr + SDb), performed best regarding adaptation and were 
strongly correlated with the yield at all four stages.

Construction of Rice Yield Prediction 
Models
The yield of rice is a collective result of multiple growth 
stages, and each growth contributed spectral variables that 
are closely related to yield. Therefore, this study combined 

the spectral variables of multiple growth stages to predict 
rice yield and adopted MSR and RF to establish prediction 
models to determine the optimal combination of growth 
stages. In addition, to verify whether the wavelet transform 
could improve the prediction accuracy of the yield estimation 
model, two prediction models were established in this study. 
One was the yield prediction model based on the first derivative 
transform, the other one was based on first derivative-
wavelet transform.

A B

C D

FIGURE 6 | Correlation between rice yield and conventional spectral transformations in various growth stages: (A) elongation stage, (B) heading stage, 
(C) flowering stage, (D) milky stage.

TABLE 3 | Summary of optimal parameters of vegetation index.

Stage RVI NDVI DVI EVI

Correlation 
coefficient

Correlation 
coefficient

Correlation 
coefficient

Correlation 
coefficient

Elongation 
stage

0.58 0.59 0.34 0.43

Heading stage 0.74 0.73 0.62 0.67
Flowering 
stage

0.72 0.71 0.56 0.64

Milky stage 0.61 0.63 0.24 0.34
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Comparison of Different Models Based on 
First Derivative Transform
The MSR and RF models established based on the first derivative 
transformation of multiple growth stages are shown in Table 5. 
As far as the results of a single growth stage were concerned, 
the model of the heading stage performed the best. The optimal 

MSR models at the corresponding four growth stages were 
the heading stage model, the heading-milky stage model, the 
elongation-heading-milky stage model, and the elongation-
heading-flowering-milky stage model, respectively. The optimal 
RF models were the heading stage model, the heading-flowering 
model, the elongation-heading-milky model, the elongation-
heading-flowering-milky model.

Comparison of Different Models Based on 
First Derivative-Wavelet Transform
The MSR models and RF models established based on first 
derivative-wavelet transform of multiple growth stages are shown 
in Table  6. Regarding the modeling results of a single growth 
stage, the model of the heading stage performed the best. 
Comparing the models of each growth stage, it can be  seen 
that the optimal MSR models for the corresponding four growth 
stages were the heading stage model, the heading-flowering 
stage model, the elongation-heading-flowering stage model, and 
the elongation-heading-flowering-milky model, respectively. The 
optimal RF models were the heading stage, the heading-milky 
stage, the elongation-heading-milky stage, the elongation-
heading-flowering-milky stage.

A comprehensive comparison of Tables 5, 6 showed that 
the most suitable growth stage combinations for rice yield 
estimation was the elongation-heading-flowering-milky stage. 
In the model validation section, this study validated the MSR 
model and RF model for the four stages combinations.

Validation of the Predictive Model
The evaluation results of the two modeling methods based on 
validation set 1 were shown in the table (Table  7). VI was 
combined with FD and FD-CWT, respectively, for a comparative 
analysis of the two modeling approaches. For the MSR model, 

TABLE 4 | Correlation analysis between spectral characteristics variable and rice 
yield at different stages.

Hyperspectral 
characteristic

Correlation coefficient

variable Elongation 
stage

Heading 
stage

Flowering 
stage

Milky stage

λr 0.59 0.66 0.71 0.61
λb −0.12 0.23 0.30 0.07
λy 0.12 0.18 0.01 0.45
Dr 0.34 0.61 0.58 0.21
Db −0.39 −0.40 −0.58 −0.21
Dy −0.12 −0.21 −0.03 −0.38
SDr 0.28 0.58 0.51 0.22
SDb −0.47 −0.54 −0.63 −0.25
SDy −0.14 −0.03 −0.20 0.11
SDr − SDb 0.32 0.61 0.56 0.26
SDr − SDy 0.30 0.60 0.54 0.22
SDb − Sdy −0.45 −0.67 −0.60 −0.40
SDr/SDb 0.58 0.73 0.72 0.63
SDr/SDy 0.52 0.72 0.42 −0.17
SDb/SDy −0.39 −0.62 −0.46 −0.39
(SDr − SDb)/
(SDr + SDb)

0.64 0.73 0.72 0.67

(SDr − SDy)/
(SDr + SDy)

0.52 0.73 0.51 0.11

λb is blue edge position, Db is blue edge slope, SDb is blue edge area; λy is yellow edge 
position, Dy is yellow edge slope, SDy is yellow edge area; λr is red edge position, Dr is 
red edge slope, SDr is red edge area.

TABLE 5 | Rice yield prediction model based on first derivative transform.

Stage combination MSR RF

R2 RMSE (g·m−2) MAPE (%) R2 RMSE (g·m−2) MAPE (%)

Elongation 0.46 92.50 11.80 0.49 83.70 8.70
Heading 0.50 67.60 7.50 0.55 63.10 7.10
Flowering 0.44 72.50 8.40 0.46 75.00 8.20
Milky 0.49 80.40 8.30 0.51 74.50 8.10
Elongation-heading 0.48 73.80 8.30 0.50 65.50 7.70
Elongation-flowering 0.50 67.20 8.50 0.55 63.90 8.00
Elongation-milky 0.50 70.10 8.10 0.61 60.90 7.20
Heading-flowering 0.51 69.80 7.50 0.59 60.40 6.90
Heading-milky 0.55 64.10 7.10 0.50 69.50 7.60
Flowering-milky 0.49 66.50 7.40 0.53 63.30 8.10
Elongation-heading-
flowering

0.60 63.60 7.70 0.62 57.60 6.80

Elongation-heading-
milky

0.62 58.30 6.90 0.67 52.60 6.50

Elongation-flowering-
milky

0.54 65.70 7.80 0.55 60.50 7.50

Heading-flowering-milky 0.58 63.50 7.10 0.60 55.50 6.60
Elongation-heading-
flowering-milky

0.70 50.30 5.60 0.77 45.10 5.50
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the combination of VI with CWT-FD improved the modeling 
set R2 by 0.11 and reduced the RMSE and MAPE by 12.70 g·m−2 
and 0.80%, respectively, while the validation set R2 improved 
by 0.11 and reduced the RMSE and MAPE by 15.5 g·m−2 and 
1.4%, respectively. For the RF model, the modeling set R2 
improved by 0.09 and RMSE and MAPE decreased by 9.60 g·m−2 
and 1.00%, respectively, and the validation set R2 improved 
by 0.05 and RMSE and MAPE decreased by 11.80 g·m−2 and 
0.70%, respectively. Consequently, the most suitable combination 
of independent variables for estimating rice yield was 
VI-FD-CWT. In terms of the effect of different modeling 
algorithms, the RF algorithm gave the best results with modeling 
sets R2, RMSE, and MAPE of 0.86, 35.50 g·m−2, and 4.60%, 
respectively, and validation sets R2, RMSE, and MAPE of 0.85, 
33.40 g·m−2, and 4.30%, respectively. Based on the four growth 
stages and CWT-FD-VI combination, the RF model was the 
best estimation model for rice yield.

The optimal MSR and RF models generated by the two 
transformation methods based on combinations of four growth 
stages were tested. The validation sets were independent sample 
sets, and the results are shown in Supplementary Figures 2, 3.

To verify whether different varieties and nitrogen fertilizer 
levels affect the prediction accuracy of the models, completely 

independent validation sets were used in this study to 
re-evaluate the optimal MSR model and RF model. The 
evaluation results are shown in Supplementary Figure  4. 
The validation results of the validation set 2 showed that 
the RF model was superior to the MSR model, with R2 
improving by 0.08 and RMSE and MAPE decreasing by 
6.3 g·m−2 and 1.3%, respectively.

DISCUSSION

Literature and previous studies have already proved that 
the spectral reflectance can tell the growth status of crops 
to various extents. However, the existing models are usually 
established based on the original spectrum without any 
processing, leaving a lot of room for improvement regarding 
the model accuracy. For example, Li et  al. used a successive 
projection algorithm (SPA) to determine characteristic bands 
and then established an estimation model for estimating 
the pH of water body (Li and Guo, 2021). The spectral 
preprocessing methods such as first derivative and continuum 
removal which have been commonly used in recent years 
could amplify the effective information in the spectrum to 

TABLE 6 | Rice yield prediction model based on first derivative-wavelet transform.

Stage combination MSR RF

R2 RMSE (g·m−2) MAPE (%) R2 RMSE (g·m−2) MAPE (%)

Elongation 0.54 88.30 10.20 0.50 76.60 9.90
Heading 0.64 60.90 7.90 0.66 58.00 7.80
Flowering 0.56 64.50 8.20 0.58 66.40 7.90
Milky 0.48 72.40 9.00 0.53 69.90 8.70
Elongation-heading 0.65 58.10 7.30 0.67 58.30 6.70
Elongation-flowering 0.60 65.40 8.70 0.60 60.80 6.90
Elongation-milky 0.66 60.90 8.10 0.61 60.20 6.50
Heading-flowering 0.68 57.50 7.00 0.62 57.20 6.60
Heading-milky 0.65 59.60 7.80 0.69 54.60 6.20
Flowering-milky 0.60 61.30 7.90 0.65 54.80 6.70
Elongation-heading-
flowering

0.73 47.10 6.50 0.74 47.40 5.90

Elongation-heading-
milky

0.67 50.30 6.80 0.75 46.00 5.70

Elongation-flowering-
milky

0.66 54.70 7.20 0.71 58.40 6.40

Heading-flowering-milky 0.68 48.30 6.60 0.73 50.90 6.00
Elongation-heading-
flowering-milky

0.81 37.60 4.80 0.86 35.50 4.60

TABLE 7 | Comparison of the two modeling approaches.

Training set Validation set

Stage 
combination

Model 
algorithm

Independent 
variable

R2 RMSE (g·m−2) MAPE (%) R2 RMSE (g·m−2) MAPE (%)

Elongation- MSR FD-VI 0.70 50.30 5.60 0.68 51.80 6.10
Heading- CWT-FD-VI 0.81 37.60 4.80 0.77 36.30 4.70
Flowering- RF FD-VI 0.77 45.10 5.60 0.80 45.20 5.00
Milky CWT-FD-VI 0.86 35.50 4.60 0.85 33.40 4.30
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a certain extent. For example, Yuan et al. used SG to smooth 
the hyperspectral data of the original spectrum, screened 
the sensitive bands, and identified the early rice blast disease 
with an accuracy of 90% (Yuan et  al., 2021). Gao et  al. 
adopted the first derivative and continuum removal in the 
estimation of the phosphorus content of grassland forages 
and pointed out that the first derivative was the most effective 
spectral preprocessing method (Gao et  al., 2019). The range 
of characteristic spectral bands after processing by first 
derivative could be  extended to the infrared region. This 
conclusion is consistent with the previous findings. Previous 
research of our lab revealed that the field rice canopy 
spectrum was the collective result of multiple factors including 
weather and rice variety. In addition, noise was also introduced 
into the canopy spectral data collected in the field due to 
human reasons and the machine itself. It is difficult for 
the conventional spectral preprocessing methods to deep 
excavate effective information. Therefore, in this study, the 
original spectrum after SG smoothing was taken and subjected 
to continuous wavelet transform to eliminate spectral noise. 
The results demonstrated that the wavelet transform of 
original spectrum could not only greatly boost its correlation 
with rice yield, but also increase the number of sensitive 
bands in various stages compared with the first derivative 
transform, with an especially distinct effect in the flowering 
and heading stages. At the same time, the comparative 
analysis also revealed that the wavelet transform under scale 

[8] was the most effective for mining effective information, 
and its strong ability was seen for all the four stages,  
basically consistent with the previous research results (Li 
et  al., 2019; Zhou et  al., 2021). Therefore, wavelet transform 
can be used in the next step of research to establish estimation 
models for important agronomic parameters in each 
growth stage.

In terms of hyperspectral parameter selection, correlation 
analysis showed that various parameters demonstrated different 
sensitivities in different growth stages. The parameters NDVI, 
RVI, and “tri-edge” parameters all performed nicely in all 
the four growth stages after difference, ratio, or normalization 
transformations. However, the correlations between them with 
rice yield were generally higher in the heading and flowering 
stags than in the other two growth stages. By analyzing the 
sensitive bands selected by various hyperspectral studies in 
recent years (Wu and Shi, 2004; Xie et  al., 2014; Bagchi 
et  al., 2016), it was found that most of them were in the 
near-infrared region, and there have been few related 
applications in the field of visible light. Nevertheless, in our 
study on the bands selected by the optimal models for 
different growth stages, it was shown that except for the 
red-edge parameter, all the others were distributed in the 
visible light range. The results of the present study demonstrated 
that the established prediction models based on wavelet 
transform could greatly reduce the difficulty of parameter 
acquisition and improve the practical model performance. 

A

B

C

D

FIGURE 7 | Absolute value of correlation coefficients of different wavelet coefficients with rice yield in various growth stages: (A) elongation stage, (B) heading 
stage, (C) flowering stage, (D) milky stage.
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The comparison of previous studies showed that the established 
prediction model for yield was often limited to using a single 
vegetation index. For example, Lai et  al. used NDVI at the 
mature stage to build a rice panicle differentiation prediction 
model (Lai and Lin, 2021). Nazir et  al. used Sentinel-2 
satellite images together with different single vegetation index 
to predict rice yield (Nazir et  al., 2021). However, usually, 
this method had low accuracy, and in practical applications, 
issues such as overfitting were seen. Huang et  al. pointed 
out that such disadvantages existed when simply using the 
relationship between vegetation index and crop yield to build 
a model (Huang et  al., 2019). In addition, in the optimal 
models regarding combinations of different growth stages, 
the four vegetation indices checked in the study were not 
included in the final optimal model. It indicated that these 
four vegetation indices cannot be used to accurately estimate 
the yield of rice. In the next stage of research, we  may 
consider replacing them with other vegetation indices, such 
as Soil-Adjusted Vegetation Index (SAVI), Optimized Soil-
Adjusted Vegetation Index (OSAVI), Green Normalized 
Difference Vegetation Index (GNDVI), Normalized Difference 
Water Index (NDWI), etc.

In terms of growth stage selection, our study found that 
the heading and flowering stages were the best predictors 
of rice yield, followed by the jointing and milky stages. The 
trend was not a monotonically increasing curve following 
the growth stages, but a parabolic curve that first increased 
and then decreased. Presumably, it may be  because of the 
strong interference of soil and weeds due to the low coverage 
rate of rice before the jointing stage. In addition, the nutrient 
accumulation of rice in the booting stage has not finished 
yet, and the spectral change is mainly affected by the growth 
of stems and leaves. Therefore, the spectral information of 
rice at the early growth stages was not suitable for yield 
estimation. The heading and flowering stages of rice were 
the key stages to yield. Gradually, rice transitioned from 
nutritional phase to reproductive phase, and the crop 
population was coordinated. Therefore, the hyperspectral 
information of these two stages contributed the most to the 
rice yield estimation model. Most of the current studies on 
rice yield were based on remote-sensing information of a 
single growth stage. For example, Jin et  al. established a 
winter wheat yield estimation model using a combination 
of multiple vegetation indices at the heading stage and gave 
a verification R2 of 0.69, but they did not explore much 
information on the growth stages (Jin et al., 2022). Therefore, 
the present study comprehensively utilized the information 
on multiple growth stages based on previous studies to verify 
and further explore the significance and role of the spectra 
of different combinations of growth stages on the rice yield 
prediction model.

The research results already demonstrated that the accuracies 
of the regression models based on the combinations of 
multiple growth stages were higher than those established 
by the parameters of single growth stages. Therefore, the 
introduction of information on multiple growth stages may 
significantly improve the accuracy of the prediction model. 

The optimal combination of growth stages was elongation- 
heading-flowering-milky. In addition, two validation sets 
were set up in this study considering the influence of variety 
and fertilizer variety on the accuracy of the model. In this 
study, to verify the generality of the optimal growth stage 
combination model, another validation set using a different 
variety and a different fertilizer test were used to verify the 
accuracy of the model. The R2 of the MSR model decreased 
by 0.05 and the RMSE and MAPE increased by 7.40 g·m−2 
and 1.2%, respectively. The R2 of the RF model decreased 
by 0.05 and the RMSE and MAPE increased by 4.00 g·m−2 
and 0.3%, respectively. Therefore, it proved that the 
generalizability of the RF model was higher than the 
MSR model.

At present, the research on estimating rice yield still faces 
many challenges, and more exploration is urgently needed. 
First, the hyperspectral prediction model has been applied 
in various fields in recent years, but its mechanism investigation 
remains insufficient. For example, the technology still cannot 
distinguish different varieties by spectrum. At present, most 
of the models were derived from empirical models. With 
the continuous advancement of science and technology, 
hyperspectral technology become more and more mature 
in the future. Secondly, with the continuous innovation in 
machine learning field in recent years, more and more 
algorithms have been applied to the field of agricultural 
remote sensing, such as the Support Vector Machine algorithm, 
Gaussian Process Regression algorithm, etc. Appropriate 
algorithms can significantly improve the accuracy of the 
prediction model and are a great help to practicability 
improvement. In addition, the full rise of agricultural  
drones will provide new directions for large-scale yield 
estimation too.

CONCLUSION

By comprehensive analysis and comparison of correlations 
and modeling, it was demonstrated that wavelet transform 
was the most effective spectral preprocessing method, followed 
by first-derivative. This study found that after the original 
spectrum was processed by the first-derivative and wavelet 
transform, the effective information was amplified and 
enhanced, and the ability to characterize rice yield became 
stronger. Therefore, the wavelet transform and first derivative 
transform methods have important application values in 
enhancing spectral characteristics. Secondly, the rice yield 
prediction models established based on combining multiple 
growth stages could significantly improve the prediction 
accuracy. The RF model established by combining first 
derivative-wavelet transform and the four growth stages 
(elongation-heading-flowering-milky) carried out the best 
prediction, with modeling set R2 of 0.86, RMSE of 35.50 g·m−2, 
and MAPE of 4.60%. The validation set 1 had the results 
as R2 of 0.85, RMSE of 33.40 g·m−2, and MAPE of 4.30%. 
The validation set 2 had the results as R2 of 0.80, RMSE of 
37.40 g·m−2, and MAPE of 4.60%.
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