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The root apoplastic pH as an
integrator of plant signaling

Francisco M. Gámez-Arjona*†, Clara Sánchez-Rodríguez and

Juan Carlos Montesinos*†

Department of Biology, ETH Zurich, Zurich, Switzerland

Plant nutrition, growth, and response to environmental stresses are pH-

dependent processes that are regulated at the apoplastic and subcellular

levels. The root apoplastic pH is especially sensitive to external cues and can

also be modified by intracellular inputs, such as hormonal signaling. Optimal

crosstalk of themechanisms involved in the extent and span of the apoplast pH

fluctuations promotes plant resilience to detrimental biotic and abiotic factors.

The fact that variations in local pHs are a standard mechanism in di�erent

signaling pathways indicates that the pH itself can be the pivotal element to

provide a physiological context to plant cell regions, allowing a proportional

reaction to di�erent situations. This review brings a collective vision of the

causes that initiate root apoplastic pHs variations, their interaction, and how

they influence root response outcomes.

KEYWORDS

pH, apoplast, root, signaling, plants

Introduction

The concentration of H+ (protons) present in all aqueous compartments defines

their pH and determines the physicochemical properties of the molecules embedded in

the solution. The pH affects both the enzymatic and transporters activity and the protein-

protein interactions since the structure and solubility of the proteins are dependent on

their net charge and ionization of specific residues (Pace et al., 2009). For this reason,

proton levels have a leading role in the development and growth of living organisms.

Focusing on plants, pH impacts all essential aspects of their biology such as nutrient

absorption by the root, control of the cell wall (CW) expansion, or stomatal movements

(Barbez et al., 2017; Geilfus, 2017; Li et al., 2021; Zhang et al., 2021). The pH range found

in plant cells is between 4.0 and 8.4, depending on the different subcellular compartments

and the rhizosphere (Tsai and Schmidt, 2021). Extreme swings in pH have severe negative

repercussions on plant fitness (Ratcliffe, 2003). Consequently, plants possess strong

regulatory mechanisms to buffer proton concentration oscillations and to keep the pH

within a range compatible with proper growth and development.

Regulation of pH is managed by all subcellular compartments, but it is within the

apoplast where the pH (hereafter named pHapo) plays a more crucial role in regulating
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essential processes like intercellular signaling, plant–microbe

interactions, plant response to abiotic stresses, and water and

nutrient transport (Figure 1) (Monshausen et al., 2009, 2011;

Barbez et al., 2017). Plants have different mechanisms to sustain

apoplastic H+ ions levels in ranges in consonance with the plant

physiology. This includes plasma membrane proton pumps,

organic anion release, root respiration, redox-coupled process

(Hinsinger et al., 2003), and the buffer capacity of the plant

CW (Martinière et al., 2018). Although they do not act directly

in buffering pH, phytohormones have a strong impact on the

regulation of pHapo. While the role of auxin or abscisic acid

(ABA) in pHapo has broadly been studied, other hormones are

getting more attention as modulators of proton pump activity,

such as cytokinin (Falhof et al., 2016).

Environmental challenges such as high salinity, drought,

anoxia, or microbes induce drastic pHapo changes provoking

a systemic plant response (Felle et al., 2005; Minibayeva et al.,

2015; Geilfus, 2017; Geilfus et al., 2017; Kesten et al., 2019). A

specific example of this influence happens during high rainfalls.

The dissolved atmospheric carbon dioxide (CO2) forms

carbonic acid (H2CO3), which together with the atmospheric

pollutants acidify the soil (Blake, 2005). This low external

pH increases the availability of Mn2+ and/or Al3+ inhibiting

plant growth (Msimbira and Smith, 2020). Interestingly, in

some cases, the same stress induces different variations in

the pHapo. The plant pathogen Fusarium oxysporum induces

a fast root pHapo acidification during its first contact with

the root, while the pHapo is alkalinized in later stages of the

infection (Kesten et al., 2019). In this review, we revisit the

role of the root pHapo in cellular signaling and how it is

regulated. Root pHapo values are especially dynamic, changing

more than two pH units upon certain stresses (Geilfus, 2017),

likely because molecules diffusion between the root apoplast and

the exterior is happening with high permeability. Additionally,

the pHapo change depends on the intensity of the stress. For

example, pHapo increases proportionally to the concentration of

NaCl (Geilfus and Mühling, 2012). Importantly, as with other

signaling mechanisms, the pHapo values tend to return to their

steady state after their modification.

The acid growth theory is broadly assumed in the plant

scientific community, which affirms that while acid pHapo

enables cell growth, alkaline pHapo induces CW stiffness and

protection against osmotic stress and pathogens ultimately

arresting cell growth (Takahashi et al., 2012; Barbez et al., 2017;

Du et al., 2020). The fact that so many different processes are

linked to the pHapo brings to light the pivotal role of the H+

levels in the development of the plant. We consider that the root

pHapo acts as a regulatory element, which uses the local levels

of protons as a link between the external environment and plant

physiology. The oscillation of the pHapo during different stresses

would be a way through which plant development systems

coordinate to react properly. Furthermore, pH levels coordinate

with cytosolic secondary messengers such as Ca2+, allowing

the translation and scalability of the external signalization to

the cytosol (Behera et al., 2018). We present here, an overview

of the processes that can modulate the root pHapo, how the

rhizosphere and the phytohormones participate in this process,

and how the connection among these elements determines root

response (growth and nutrient absorption).

pHapo in the root and rhizosphere

There are different methods to estimate the pH of the plant

cell and its subcellular compartments, including the apoplast.

Themost used and accuratemethods are based on the use of dyes

(such as Bromocresol) in vivo pH-sensor based of fluorescent

probes, H+-selective microelectrodes, or 31P nuclear magnetic

resonance spectroscopy [reviewed in Geilfus (2017) and Tsai

and Schmidt (2021)]. Thanks to these approaches, we know

that the pH is not constant across the length and tissues of

the root and additionally varies within the different subcellular

compartments of the cell. Concretely, the root pHapo oscillates

in an acidic range between 4.5 and 5.5, assuming normal growth

conditions (Felle, 2001; Tsai and Schmidt, 2021). Ultimately, this

allows for cell elongation. In contrast, the pH in the cytosol

is slightly alkaline, with values around 7.5 (Felle, 2001). The

cytosol has a stronger buffer capacity (20 to 80mM H+ per pH

unit) than the apoplast (low millimolar range per pH unit) (Oja

et al., 1999; Felle, 2001), probably because dramatic pH changes

within the cytosol would likely produce devastating effects on

the major part of the cellular metabolism processes, small pH

changes are enough to act as the signaling element (Kader and

Lindberg, 2010). Thus, pHapo has a higher dynamic range than

the cytosolic pH, which potentially might give the apoplast the

capacity to create more complex signaling. The root apoplast

is a continuum through different cell root layers. However, the

pHapo of the endodermis and the stele are significantly more

acidic than the pHapo of the root external cell layers in mature

areas of the root (Martinière et al., 2018). Plants keep this radial

variation in pH even when the culture media surrounding the

plant is significantly more alkaline (Martinière et al., 2018). One

possible explanation that could justify the differences in the

pHapo along the radial root cell layers is the establishment of

a pH gradient that allows for the directionality of the nutrients

acquisition. However, it is unknown whether the pHapo of the

inner layers of the root becomes more alkaline upon stress, as it

happens within the epidermal cell upon treatment withmicrobe-

associated molecular pattern such as chitin (Felle et al., 2009;

Kesten et al., 2019).

The rhizosphere is the volume of soil that has a direct

exchange of molecules with the root. The nature of the root-

soil interphase is influenced by the root secretions, the soil

composition, and their associated microorganisms. There are

substantial levels of molecule diffusion between the rhizosphere

and the apoplast of the root outer layers which hints at
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FIGURE 1

pHapo as the hub for root response. pHapo forms a gradient along the rhizosphere and the di�erent root cell layers, that favors nutrient and water

uptake. In normal root growth conditions (left panel), low concentrations of auxin promote plasma proton pumps (AHA) activation lowering the

pHapo which induces CW loosening and vacuole regulation for water uptake. This, together with nutrient uptake, boosts cell growth (acid

growth theory). Acid pH induces the activation of CW modifying proteins (CWMPs) such as expansins, to promote the CW loosening easing root

growth. Under stress situations, hormones such as ABA or ethylene inhibit the AHAs activity fostering the alkalinization of the epidermal pHapo

and the rhizosphere. Microbe perception through microbe-associated molecular patterns (MAMPs) and damage-associated molecular pattern

(DAMPs) also reduce the activity of AHAs leading to the pHapo alkalinization. In these alkaline conditions, peroxidases generate H2O2 (Reactive

Oxygen Species, ROS), and the CWMPs are inactivated promoting the sti�ness of the CW.

the strong influence of the rhizosphere over the root pHapo

(Alassimone et al., 2012). Interestingly, the pHapo close to

the plasma membrane (PM) stays acid even when the pH

of the media gets significantly more alkaline, highlighting the

strong regulatory mechanisms involved in maintaining the

pH stable (Martinière et al., 2018). The rhizosphere pH is

an essential element in plant nutrient acquisition because it

determines the solubility and availability of these nutrients.

In general, plants are adapted to grow in soils with a pH in

the range between 5.5 and 7.5 because in these conditions

the nutrient availability is optimized (Msimbira and Smith,

2020) (Figure 1). Acid soils favor micronutrients such as iron

(Fe) or manganese (Mn) acquisition, while neutral or slightly

alkaline soils increase the availability of macronutrients such as

nitrogen (N), phosphorous (P), or potassium (K). Nevertheless,

the rhizosphere pH must be balanced to avoid the deficiency

or toxicity, respectively, of some ions such as Al+3 or Fe2+

(Msimbira and Smith, 2020). Hence, plants have different

mechanisms to actively change the pHapo, which will also

influence the rhizosphere’s pH. In fact, it has been observed

that the overexpression of H+-ATPase in rice plants changes the

rhizosphere’s pH, enhances nutrient uptake, and increases yield

production (Zhang et al., 2021). Thus, the modulation of root

pHapo represents an interesting target in biotechnology.
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FIGURE 2

Origin and consequences of pHapo changes. The root pHapo is determined by di�erent cellular elements and processes, such as root respiration,

redox-coupled reactions, CW structure, organic acids, and the activity of AHAs. Changes in pHapo a�ect the activity of CW modifying proteins

(CWMPs), water and nutrient uptake, and the cellular response. The pKa is predicted to be more acidic in the CW than the apoplastic fluid. The

AHA activity participates in the creation of the proton motive force (PMF), which is used by di�erent transporters to internalize nutrients.

Calcium ions (showed as Ca2+) contribute to CW structure by interacting with pectins and forming the egg- box in a pH-dependent manner.

AHA activity is regulated by phytohormones and by CW integrity sensors after perceiving signals at the apoplast (like RALFs and DAMPs), leading

to apoplast alkalization.

Plant mechanisms to modify the
root pHapo

The root pHapo is altered through endogenous and

exogenous processes. Here, we will focus on the endogenous,

plant-mediated processes which play a dominant role in the

establishment of the pHapo, i.e., PM proton pumps activity, root

respiration, organic anion release, redox-coupled process, and

the CW (Figure 2).

Plasma membrane proton pumps

Extrusion of H+ by the proton pumps at the PM is

the dominant mechanism used by plants to regulate the

differential pH between the cytosol and the apoplast (Figures 1,

2). These pumps use the energy derived by the ATP to

create a proton gradient that contributes to the generation

of a proton motive force (PMF) (Haruta and Sussman, 2012;

Wegner and Shabala, 2020). This PMF is used to then drive
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solute and water uptake into the cell (Cosse and Seidel, 2021).

Among the 11 plasma proton pumps in Arabidopsis thaliana,

named AUTOINHIBITED H+-ATPases (AHAs) (Axelsen and

Palmgren, 2001), the most expressed ones are AHA1 and AHA2,

that share an elevated level of functional complementation,

and which importance is evidenced by the embryo lethality of

the double mutant (Haruta et al., 2010). Importantly, the fact

that the overexpression of AHAs does not show any obvious

phenotypical effect suggests that the levels of these proteins are

tightly controlled and/or the regulation of their activity is mainly

acting posttranslationaly. AHA activity is regulated through

the phosphorylation/de-phosphorylation of different amino acid

residues by various proteinaceous interaction partners. These

interactions are driven by phytohormones, lipids, and Ca2+

signaling, all of which are highly conserved among plants

(Haruta et al., 2015; Falhof et al., 2016). This plethora of AHAs-

activity regulators shows that these pumps have an extraordinary

impact onmany key aspects of plant biology and any disturbance

could have disastrous consequences for plant fitness (Gévaudant

et al., 2007). However, the identity of direct regulators of AHAs

is still elusive. It is also unknown and unexplored whether the

variations in the level of activation of the AHAs are part of a

signaling cascade on their own, in addition to the role of the

pH as a secondary messenger. Indeed, mutants displaying AHA

overactivation, such as the mutant on the companion cellulose

synthase (cc1cc2) or FERONIA (fer-4), show an upregulation of

defense-related genes, making them more tolerant to pathogen

attack and supporting the potential direct connection between

AHA activity and plant defense (Masachis et al., 2016; Kesten

et al., 2019).

Root respiration

Root respiration produces at least 50% of the CO2 present in

the soil (Pregitzer et al., 2007). When there is high availability of

N in the soil, plants can enhance their growth rate, increasing

significantly the CO2 concentration in these soils (Pregitzer

et al., 1998). The CO2 present in the soil interacts with the

water forming weak acid carbonate (H2CO3) that, in neutral and

alkaline environments, will release H+ and acidify the apoplast

and the rhizosphere (Figure 2).

Organic anions

Malate, oxalate, fumarate, malonate, succinate, and

oxalacetate are some of the organic anions found in root

exudates (Vančura and Hovadík, 1965; Wegner et al., 2021).

They are released by the cell in a deprotonated form because

their pKa is usually lower than the pHapo (Hinsinger et al.,

2003), helping the cell to buffer the proton extrusion generated

by the AHAs when the pHapo becomes too acidic (Figure 2). For

this reason, some of the organic anions transporters at the PM

are activated upon extracellular pH drop (Liang et al., 2013).

Moreover, these molecules are secreted by the roots to improve

P acquisition (Lambers et al., 2006) or increase plant tolerance

to elevated levels of aluminum (Al) (Yang et al., 2013), which

might take place during rhizosphere acidification.

Redox-coupled process

The oxidation state of key elements such as Fe, Mn, N, or

Sulfur (S) is coupled with the pHapo because the direction of

the reaction to change their oxidation state is conditioned by

the amount of H+ present in the media (Hinsinger et al., 2003).

For example, the chemical reduction of Fe3+ consumes H+

ions increasing the pHapo, while the chemical oxidation of Fe2+

acidifies the soil (van Breemen, 1987) (Figure 2).

The cell wall

The plant CW is mainly composed of the carbohydrates

cellulose, hemicellulose, and pectin, with proteins embedded

in it. Pectin is enriched in uronic acids, mostly galacturonic

acids (GalAs), whose carboxyl group is negatively charged.

Pectin is secreted to the apoplast and heavily methylated at

their GalAs. Its demethylation at the CW and the potential

link with Ca2+ ions to form the so-called egg-boxes alters

the charge balance of the CW (Shomer et al., 2003). The pKa

value of carboxyl groups in the GalAs is between 4.0 and 5.0,

which means they behave as weak acids helping to maintain

acidic apoplastic spaces (Meychik and Yermakov, 2001). The

CW arabinogalactan proteins also contain uronic acids (Seifert

and Roberts, 2007) which, potentially, could also contribute to

the CW charge, although the quantitative importance of this

possibility is not clear. It has been reported that the pH of

the CW is more acid than the apoplastic fluid (Sentenac and

Grignon, 1981, 1987), suggesting that the CW carboxyl groups

might be highly protonated, based on their pKa, in a steady state

apoplast (Figure 2), but this should be corroborated with more

accurate methods.

All these mechanisms are linked to environmental

conditions. Proton pumps are induced in Fe-deficient roots

(Santi and Schmidt, 2009), and their overexpression enhances

N and C uptake by rice (Zhang et al., 2021). Redox-coupled

reactions with Fe, N, or S might cause temporal variation in the

soil pH during seasonal flooding (van Breemen, 1987). Organic

acids produce changes in soil pH increasing nutrient availability

(Liu et al., 2022) and might contribute to microbial growth,

which together with root respiration, will produce CO2 with

a strong influence on plant biology in alkaline soils (Hinsinger

et al., 2003). Overall, the plant mechanisms to modify pHapo
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have a critical role under stress conditions, such as high salinity

or drought (Miao et al., 2022).

Plants hormones and pHapo

Phytohormone signaling pathways can be triggered in

response to different stresses and help the plant to adjust to

specific necessities. Some of the hormonal signaling pathways

alter the pHapo as a consequence of their response mechanisms.

Abscisic acid (ABA) is considered a stress-response

hormone whose signaling is triggered as a result of

environmental stress including drought, high soil salinity,

temperature, and metal soil contamination (Roberts and

Snowman, 2000; Zörb et al., 2013; Urano et al., 2017).

Treatment with ABA specifically inhibits the AHA activity,

alkalizing the apoplast and impairing the hypocotyl elongation

(Hayashi et al., 2014) or root growth (Planes et al., 2015).

However, the downregulation of AHA activity induced by ABA

in guard cells is determinant of stomatal closure (Bauer et al.,

2013; Miao et al., 2022). Inversely, lower concentrations of ABA

activate the AHAs’ activity, stimulating the root growth (Miao

et al., 2021). Certainly, there is controversy among published

ABA data regarding its influence on pHapo, pointing out that

the effect of ABA on pHapo might be concentration- and cell-

type-dependent. ABA also exerts different effects on different

plant species; for example, saline stress and ABA-mediated

response cause the inhibition of the activity of proton pumps

and pHapo alkalinization in tomato roots (Gronwald et al.,

1990), whilst in cucumber roots, the same conditions activate

the activity of the proton pumps (Janicka-Russak and Kłobus,

2007). The different effects that ABA has on the pHapo suggest

that it is not the only factor influencing AHA activity and other

signaling elements seem to be essential in regulating the pHapo.

Over the last years, it has been extensively discussed the

role of auxin in plant cell growth. Auxin enhances AHA activity

by mediating the phosphorylation of the penultimate threonine

residue within the C-terminal autoinhibitory domain of AHAs

(Takahashi et al., 2012). This auxin’s AHA activation implies the

induction of SAUR19 gene expression, which inhibits the PP2C-

D phosphatase activity, required for the dephosphorylation of

the C-terminal autoinhibitory domain of AHAs. Since PP2C-

D is not active, the AHA’s C-terminal autoinhibitory domain

remains active (Spartz et al., 2014). The activation of AHAs

allows for the loosening of the CW (read below, section

the impact of pHapo on apoplastic biology) facilitating cell

growth (Barbez et al., 2017; Du et al., 2020). The role of

auxin in regulating the pHapo is biphasic and dependent

on its concentration. The above mechanism describing AHA

activation and the pHapo acidification by auxin is observed

under endogenous auxin concentrations. However, high levels

of auxin applied externally trigger a fast pHapo alkalinization

that requires the FERONIA receptor activity and induces the

concomitant inhibition of cell expansion (Barbez et al., 2017).

Thus, a controversial aspect of the auxin effect on the pHapo has

raised in the last years, where the auxin regulation of the pHapo

seems to be dependent not only on its local concentration but

also on the cell type or/and plant tissue where auxin acts. It has

recently been reported that the same auxin concentration can

promote growth in shoots while having the opposite effect on

roots. This implies the existence of differential activity of auxin

receptors, such as TIR1/AFB and TMK1, that is dependent on

tissue localization (Li et al., 2021; Lin et al., 2021).

The function and signaling of the gaseous hormone ethylene

(ET) are intimately related to auxin in regulating plant

development. ET is also a major regulator of stress responses

(Vaseva et al., 2018), and the external application of ET or its

precursor, the 1-aminocyclopropane-1-carboxylic acid, induces

a fast apoplastic alkalization inhibiting the fast cell elongation

of epidermal root cells (Staal et al., 2011). ET modulates the

alkaline stress-mediated inhibition of root growth by increasing

auxin accumulation via induction of auxin biosynthesis-related

genes, control of local auxin biosynthesis, and the expression of

the auxin transporter AUX1 (Li et al., 2015; Vaseva et al., 2018)

(Figure 2). ET signaling can also modulate cellular responses

involved in plant acclimation to acidic pH by regulating the

activity of the class III peroxidases (CIII Prxs). The CIII-

Prx produces CW modifications, such as hydroxyproline-

rich glycoproteins crosslinking and callose deposition lead to

higher CW stiffness, and higher tolerance to extremely low pH

ultimately leads to an arrest in cell expansion during stress

conditions (De Cnodder et al., 2005; Graças et al., 2021).

Cytokinin (CK) hormonal actions usually antagonize those

of auxin effects and can counterpart its signaling. CK has a

key role in root growth, intervening in the balance between

cell division and cell differentiation within the root tip (Dello

Ioio et al., 2007; Montesinos et al., 2020). CK participates in

the establishment of the root transition zone, determining the

root meristem size, through the activation of the AHAs that

acidify the pHapo and the activation of the α-expansin EXPA1.

The latter helps in the loosening of the CW, and the beginning

of the cell expansion in the root elongation zone. Thus, the

pHapo acidification of the root mediated by the CK activation

of AHA1 and AHA2 proton pumps is necessary to control the

initiation of cell differentiation (Pacifici et al., 2018). Curiously,

although auxin and CK usually have opposing effects, they can

promote similar cellular responses that are dependent on their

concentration, signal duration, and cell type.

Brassinosteroids (BRs) are plant steroidal hormones that,

similar to auxin and CK, participate in the regulation of

plant growth and differentiation by controlling cell division

and expansion. BRs can activate the AHAs during hypocotyl

elongation by inducing the phosphorylation in their penultimate

amino acid (Thr) (Minami et al., 2019). In this line, it was shown

that the BR-receptor BRI1-BAK1 system interacts directly with

AHA2 and AHA7 proteins in vivo. However, it remains unclear
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whether this interaction is enough to phosphorylate and activate

these H+-ATPases (Miao et al., 2018, 2022; Yuan et al., 2018).

Remarkably, little is known about how BRs can modify the

pHapo in root cells and further investigation in this direction will

be necessary for the coming years.

The fact that different phytohormones converge in

regulating the pHapo supports the idea that pHapo might be a

universal language among cells to coordinate cell responses.

Another plant’s short-distance communication signaling

mechanism is mediated by the RALF (Rapid Alkalinization

Factor) small signaling peptides (Figure 2). RALFs peptides

regulate plant patterning and development (Murphy and De

Smet, 2014). This family of small peptides holds 34 members in

A. thaliana, and as its name indicates, they have been associated

with alkalinization of the extracellular medium (Pearce et al.,

2001; Blackburn et al., 2020). Concretely, RALF1 interacts

with the PM-localized receptor FERONIA (FER) to regulate

the pHapo. This interaction leads to AHA2 phosphorylation

reducing its activity and a fast alkalinization of the apoplast

that inhibits root cell elongation (Haruta et al., 2014). RALF33

and RALFL36 treatment decreased by 3-fold the H+ pumping

activity of H+-ATPases and increase the pHapo, inhibiting root

growth (Gjetting et al., 2020). RALF23 overexpression leads

to an alkalinization of the rhizosphere and inhibition of the

root growth (Srivastava et al., 2009). RALF23 could exert part

of its function by altering the nanoscale organization of the

BRs-receptor BAK1, and its interaction with FER (Gronnier

et al., 2022). Interestingly, pathogens like Fusarium oxysporum

also secrete RALF-like peptides during their plant infection to

produce a pHapo alkalinization that enables fungal colonization

(Masachis et al., 2016).

Overall, having such a complex and evolving system that

includes hormonal and small peptides regulation to modify

pHapo suggests that pHapo is a way to escalate the cell response

signal, acting as an element to regulate the activity and properties

of many different proteins and molecules at once.

The impact of pHapo on apoplastic
biology

Cell wall remodeling

Changes in pHapo have a direct impact on the CW integrity

and the properties of the proteins embedded in it. The balance of

protonation in pectin carboxyl groups determines their capacity

to interact with cations, mostly Ca2+ to form the egg-box,

and affects the pectin–cellulose and pectin–pectin interactions,

which has a significant impact on the structure of the CW

(Meychik et al., 2021) (Figure 2). During plant cell elongation,

precise and local acidification cycles of pH changes occur,

changing the CW components’ interaction and causing a CW-

restructuring without compromising the cell integrity leads

to unidirectional cell growth (Hocq et al., 2017; Arsuffi and

Braybrook, 2018; Majda and Robert, 2018). The activity of

several CW modifying proteins (CWMPs), such as expansins,

is pH-dependent (Cosgrove, 1999; Sampedro and Cosgrove,

2005). The precise control of H+ fluxes and the spatio-temporal

specificity of expansins expression and localization are essential

in cell elongation (Samalova et al., 2022). In fact, salt stress alters

the expansins expression pattern in wheat, affecting the cell wall

extensibility under different pHapo (Shao et al., 2021). Expansins

promote the loosening of the CWwhile the increase of the turgor

pressure created by the enhanced intake of K+ allows the cells

to grow (Channels, 1991; Mathur and Hülskamp, 2001; Hager,

2003; Velasquez et al., 2016; Phyo et al., 2019). On the other

hand, alkaline pHs induce the activity of other CWMPs, such

as extensins and peroxidases, which fortify the CW (Castilleux

et al., 2021). Overall, we propose that the ability to create

microdomains within the apoplast, by tightly regulating the

pHapo oscillations, might allow the cell to precisely modify its

CW and adapt its growth to its developmental needs. However,

this idea needs further experimental validation.

Apoplastic ion balance

The homeostatic balance of certain ions between the

apoplast and the cytosol is a key element in plant development

and is closely related to proton level regulation. The strong ion

difference (SID) represents the net charge between the cations

and anions and it has a direct influence on the pH (Gerendás

and Schurr, 1999). Proton ATPases energize ions secondary

transporters, such as K+, Mg2+, or Cl−, to balance the net

charge created by proton transport and to permit a pH gradient

(Good, 1988; Hangarter and Good, 1988; Gerendás and Schurr,

1999). K+ is one of the most abundant cations present in

plants since it is essential for their growth, and it has a strong

connection with the pHapo. In a situation with low levels of

apoplastic K+, acidification of the extracellular space enhances

K+ uptake, allowing for cell growth (Chen and Gabelman, 2000;

Minjian et al., 2007). On other occasions, the pHapo is affected by

high levels of toxic anions, such as Na+ which induces apoplastic

alkalinization (Foster and Miklavcic, 2020) or NH4+ which

produces apoplastic acidification (Liu and von Wirén, 2017).

Likely, it is in those moments, in which the apoplastic balance

ion is affected, when the pHapo might act as a signal to activate

the cell response.

The CW also takes part in the apoplastic cation/anion

balance in a pH-dependent manner. In standard growth

conditions, pectin binds Ca2+ and B3+ (O’Neill et al., 2004;

Phyo et al., 2019). However, those cations might be displaced

by protons if the pH decreases significantly thus modifying the

CW structure. Moreover, in the case of a significant increase for

another cation, such as Na+ during saline stress, we hypothesize

that Na+ could compete for the negative charges at the CW, and
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replace protons, boron, and calcium from the carboxyl groups of

pectins and AGPs. In fact, during salt stress the apoplastic space

becomes alkaline which might enhance the interaction of Na+

with the CW, allowing its compartmentalization and decreasing

its toxicity. Interestingly, treatment with anions like SO2−
4 or

NO−

3 , which are abundant in nature, does not trigger apoplastic

pH changes, suggesting a strong compensatory mechanism

related to the presence of anions (Martinière et al., 2018).

Plasma membrane transporters’ activity

The activity of several transporters is connected with the H+

flux across the PM (Zhou et al., 2021). In Arabidopsis, pH 6.6

seems to be optimal for AHA transport activity (Olivari et al.,

1993; Hoffmann et al., 2019), although, at lower pHs, the activity

of the AHAs is enhanced due to the cytosolic acidification (Liang

et al., 2020). The Na+/H+ exchangers (NHXs) use the H+ influx

to pump Na+ extracellularly (Aharon et al., 2003), and their

activity might be enhanced with higher AHA activity (Fan et al.,

2019). This leads us to think that the apoplastic alkalinization

observed upon salt stress might facilitate AHA’s activity. The

cation/H+ exchangers (CHX) are hypothesized to use the H+

gradient in a similar way to that described for NHXs, but it

needs to be experimentally demonstrated (Sze and Chanroj,

2018). The extracellular acidification also stimulates the activity

of N transporters such as ammonium transporter (AMT) or

nitrate transporter (NRT) (Søgaard et al., 2009; Fan et al., 2016).

The activity of the different isoforms of phosphate transporters

(PHT) has different optimal pHs (Ai et al., 2009; Sun et al.,

2012;Wang et al., 2014). Interestingly, the loss of AHA2 function

coincides with the downregulation of K transporters (Hoffmann

et al., 2019). All these examples underline that the pHapo

influences many of the most relevant families of ion transporters

with significant consequences in plant physiology.

Intracellular communication: Electric
signaling, calcium, glutamate, and ROS

Plants need to adapt constantly to a dynamic environment,

and for that, they require systems that monitor multiple stimuli

and integrate this information to generate long-distance signals

that serve for communication and generation of responses in

different tissues and organs. The unification of these different

cellular signaling systems has been an object of study in

the last decades. The pHapo is closely related to electric

signaling, glutamate, Ca2+, and ROS systems, interacting with

each other to provide the appropriate duration, localization,

and physiological context in response to the stimuli that

generate the signals (Johns et al., 2021). Different examples

illustrate how pHapo coordinates with Ca2+ and the generated

electrical signals, also named slow wave potentials (SWPs). For

example, the inactivation of the electrogenic proton pumps, and

consequent alkalinization of the pHapo, have been implicated in

the generation of SWPs (Kumari et al., 2019); or the constitutive

activation of AHA1 inhibits both Ca2+ waves and SWP

generation (Shao et al., 2020). Furthermore, the reactivation of

the AHA1 activity is fundamental for the repolarization of the

PM and the restoration of the membrane potential after the

signal transmission (Kumari et al., 2019; Johns et al., 2021).

Ion channels like the GLUTAMATE RECEPTOR–LIKE

(GLR) family act as sensors that convert the external signal

into an increase in intracellular Ca2+ concentration, generating

Ca2+ waves and the SWPs, that propagate to distant organs

(Toyota et al., 2018). The fact that the GLRs (GLR3.3 and

GLR3.6) are only active when the pHapo is above 6.5, indicates

that alkaline pHapo is an essential condition for these channels

for opening (Shao et al., 2020). Furthermore, the constant

activation of H+-ATPases by fusicoccin generates an increase

in the extracellular protons, which impairs the depolarization

phase of glutamate-induced SWPs (Shao et al., 2020), illustrating

once more, the high dependency on the activity of these

transporters on pHapo. Other calcium transporters such as

CNGC14 also show the existing connection between Ca2+

signaling and pHapo, since the loss-of-function cngc14 mutant

losses the capacity to alkalinize the apoplast after high auxin

concentration treatments (Shih et al., 2015). In general, different

abiotic stresses produce different hallmarks in pHapo and Ca2+

dynamics in the cytosol and the apoplast, this variety of signaling

signatures allows the cell to respond accordingly to the specific

stimulus (Gao et al., 2004).

Reactive oxygen species (ROS) waves can propagate through

different plant tissues similarly to electric and calcium waves

during long-distance signaling (Johns et al., 2021). The increased

levels of intracellular Ca2+ can activate the RESPIRATORY

BURST OXIDASE HOMOLOG D (RBOHD) PM-localized

enzymes, that synthesize ROS, such as H2O2, in the apoplastic

space during the plant electrical/ionic system signaling (Gilroy

et al., 2016; Johns et al., 2021). Likewise, pHapo affects

ROS production, being the alkalization of the apoplast an

essential step for the generation of H2O2 (Bolwell et al., 1995;

Monshausen et al., 2007). The PM is permeant to H2O2 and

thereby variations in pHapo can be translated to the interior

of the cell. The presence of H2O2 will amplify the signaling

by interacting with proteins with redox-sensitive moieties

in the cytosol or other subcellular compartments (Antunes

and Brito, 2017; Rampon et al., 2018; Janku et al., 2019).

Moreover, oscillations in cytosolic H2O2 might modulate the

AHA activity and participate in pHapo regulation (Mangano

et al., 2018). While pHapo alkalinization contributes to CW

stiffening through H2O2 production, low pHapo levels can help

the protonation of superoxide anion radicals (i.e., •OH), which

promote CW loosening (Pottosin et al., 2014). Contrary to

what one might think, active oxygen species production does

not seem to contribute to alkalinization of the apoplast by H+
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consumption, since in tobacco cells have been observed that the

NtrbohD oxidase activity does not affect the extracellular pH

(Simon-Plas et al., 2002).

Root pHapo in stress situations

Abiotic stress

Environmental events affect simultaneously the rhizosphere

and the pHapo. Some of them promote acidification, like high

rainfall, ammonium-based fertilizers, and plant growth on its

own (Msimbira and Smith, 2020). On the other hand, irrigation

with water containing prominent levels of bicarbonates or

drought tends to alkalinize the rhizosphere in a long term

(Odutola Oshunsanya, 2019). Saline stress (NaCl) is one of the

most common severe stresses faced by plants, producing pHapo

alkalinization because of two events happening concomitantly:

Cl− ions are internalized via symport with 2 H+ using the

proton gradient generated by the AHAs (Geilfus, 2017) and salt-

induced ABA-increase downregulates the AHA activity (Falhof

et al., 2016; Geilfus, 2017). Nevertheless, ABA should have a

secondary role since the levels of ABA are still increasing while

the pH starts to drop in the apoplast (Zhang et al., 2016).

Importantly, alkaline soils induce similar effects on plants as salt

stress and both stresses have a synergistic effect exacerbating the

plant responses when both are present (Xu et al., 2013), likely

because the plants tend to accumulate more Na+ in alkaline

substrates (Guo et al., 2010).

Moderate water stress enhances H+ efflux in the root

apoplast to facilitate water uptake (Siao et al., 2020), but

alkalinization of the apoplast is observed in the leaf (Geilfus,

2017). The same stimulus having an opposite effect on pHapo

fluctuation in different plant tissues suggests that pHapo might

originate the signal to the plant response but the direction of the

pHapo changes provides the meaning of the pH signaling.

Biotic stress

pHapo regulation during biotic interactions is time, spatial

and microbial dependent, thus generalizations are not possible.

Some fungal pathogens, such as the root vascular fungus F.

oxysporum (Fo), induce fast apoplastic acidification in the first

stages of contact by increasing the AHA activity, which seems

to be required for plant defense (Kesten et al., 2019). Later,

a strong transcriptional downregulation of the AHAs and an

upregulation of their inhibitors (Menna et al., 2021), together

with the secretion by Fo of RALF peptide, provokes an apoplastic

alkalinization that favor Fo infection (Masachis et al., 2016).

However, it remains to be explained how the fungus advances

through a CW which might become stiffer upon alkalinization.

Conversely, other fungal pathogens, like Sclerotinia sclerotiorum,

induce acidification by the secretion of organic acids, which

induce cell death (Cessna et al., 2000).

Microbes and small herbivores cause wounds and

mechanical stress to plants. The response to these alterations

includes the synthesis in situ of the plant hormone Jasmonic

Acid (JA). JA triggers a cellular response that can travel quickly

from the wound to distal cells and from the root to the shoot.

In this process, the alteration of the pHapo is essential to create

the intracellular signaling that includes the SWPs, glutamate,

Ca2+, and ROS response. Concretely, during wound response,

the activity of AHA1 is transiently inhibited at the beginning

of the signaling, alkalinizing the pHapo. The apoplastic proton

variance is required to generate the PM depolarization and to

propagate the SWP. The AHA activity is also important during

the PM repolarization phase, where its activity is recovered

(Kumari et al., 2019; Shao et al., 2020).

Soil pH alters the microbiota of the rhizosphere that

can potentially interact with the root. In general, acid soils

enhance fungal over bacterial growth, which might favor

fungal pathogens spreading, and alkaline soils favor bacterial

growth (Rousk et al., 2009, 2010). However, acidification of the

rhizosphere has also been reported to enhance the spread of

soil-borne bacterial pathogens (Li et al., 2017).

Rhizosphere and pHapo proton levels influence the growth

of both the plant and the intruder and their defense and

virulence, respectively. Nevertheless, it is the timing and the

dynamic of the pHapo changes that have a leading role

in biotic interactions, and the organism that controls or

tolerates better those pH oscillations prevails. We propose

that those pHapo changes which return to basal levels,

such as the strong and fast acidification seen upon Fo

contact, would have the potential to contribute to cell

signaling. On the other hand, stress-induced long-term pHapo

changes would be a structural situation as a product of the

earlier signaling.

Perspectives for the pHapo role in
plant biology

pHapo fluxes in response to physiological needs or

environmental stress might have strong consequences for

plant cells beyond the ones described so far. Based on

different lines of evidence discussed through this review,

we predict that the intensity, duration, direction, and

tissue/cellular localization of the pHapo changes could act

as a signal for the root to cope with those different and

very challenging stresses. Therefore, in this last section,

we discuss potential areas of research to undertake in the

next years.
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pH microdomains within the CW

The apoplast is a heterogenous and dynamic compartment

and so is its pH. Although some works have shown those

differences in the pHapo within different apoplastic regions

(Sentenac and Grignon, 1981, 1987; Martinière et al., 2018),

pHapo measurements are presumably an average of different

subdomains and future experiments should be focused on

revealing the dynamics of those pH microdomains in vivo. It

is particularly interesting to resolve the participation of specific

components of the CW in pHapo since CW has a different

composition even in different areas of the same cell.

Role of pH in the cellular cortex

An interesting concept to explore in the future is the

alteration that the pHapo exerts on the cell cortex pH. AHA

activation, and the consequent apoplastic acidification, modify

the pH on the internal side of the PM, while the rest of the cytosol

is able to keep the pH stable (Kesten et al., 2019). Thus, the pH

in the cell cortex area is slightly different from the rest of the

cytosol and presumably should be tightly regulated to maintain

the PMF (Figure 2). Moreover, variations in the cell cortex

pH should alter the important cellular processes that occur in

this area, such as the cortical microtubules polymerization and

depolymerization, and the activation of cell surface receptors

and transporters (Lomin et al., 2012; Kour et al., 2021; Lanassa

Bassukas et al., 2022). However, we still need to understand

this regulation.

Interlink between plant hormones
and pHapo

Different stresses tend to activate more than one hormonal

pathway and, in some cases, the transcriptional responses

from each hormone are specific to the stress (Nemhauser

et al., 2006). Interestingly, one of the common points in this

interplay is the AHA-dependent pHapo changes, which happen

concomitantly with the action of the specific plant hormone.

Understanding how those phytohormone-dependent pHapo

changes are connected with a certain response of the plant

might provide a potential biotechnological tool to enhance plant

resilience under different stresses.

New molecules to enhance plant tolerant
through pHapo modification

Higher pHapo together with the increase in ROS, certain

plant hormones, or cytosolic Ca2+ waves stimulate the

deposition of callose, lignin, and suberin in the CW. These

highly resilient molecules help to protect the cell against abiotic

and biotic stresses (Miedes et al., 2014; Geilfus et al., 2017; Bacete

et al., 2018; Vaahtera et al., 2019), but plant cell growth becomes

seriously compromised. Nowadays, the use of microbial and

plant CW-derived molecules is a potential strategy to prime

plant tolerance to pathogens (Molina et al., 2021), although

their impact on crop yield remains a problem to be solved. We

envision that the identification of molecules that modulate the

pHapo in a more localized, transient, and weaker way will be

an interesting biotechnological solution to promote plant stress

tolerance with lower collateral effects on growth.

Conclusion

Environment and internal signaling integration provides

the plant with the proper perception of its biological status.

In this sense, pHapo is a ubiquitous element that emerges

as a perfect candidate to unify the different inputs and

generate a homogenous response. The pHapo is connected

with well-described cell messengers: plant hormones, ROS,

and cytosolic Ca2+. Although many aspects remain unsettled,

pHapo might be the general switch that plant physiology

relies on.
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Vančura, V., and Hovadík, A. (1965). Root exudates of plants: II. Composition of
root exudates of some vegetables. Plant Soil 22, 21–32. doi: 10.1007/BF01377686

Vaseva, I. I., Qudeimat, E., Potuschak, T., Du, Y., Genschik, P., Vandenbussche,
F., et al. (2018). The plant hormone ethylene restricts Arabidopsis growth
via the epidermis. Proc. Natl. Acad. Sci. U S A. 115, E4130–E4139.
doi: 10.1073/pnas.1717649115

Velasquez, S. M., Barbez, E., Kleine-Vehn, J., and Estevez, J. M. (2016). Auxin
and cellular elongation. Plant Physiol. 170, 1206–1215. doi: 10.1104/pp.15.01863

Wang, X., Wang, Y., Piñeros, M. A., Wang, Z., Wang, W., Li, C., et al.
(2014). Phosphate transporters OsPHT1;9 and OsPHT1;10 are involved in
phosphate uptake in rice. Plant Cell Environ. 37, 1159–1170. doi: 10.1111/pce.
12224

Wegner, L. H., Li, X., Zhang, J., Yu, M., Shabala, S., and Hao, Z. (2021).
Biochemical and biophysical pH clamp controlling Net H+ efflux across the
plasma membrane of plant cells. N. Phytol. 230, 408–415. doi: 10.1111/nph.
17176

Wegner, L. H., and Shabala, S. (2020). Biochemical pH clamp: the
forgotten resource in membrane bioenergetics. New Phytol. 225, 37–47.
doi: 10.1111/nph.16094

Xu, W., Jia, L., Shi, W., Baluska, F., Kronzucker, H. J., Liang, J.,
et al. (2013). The Tomato 14-3-3 protein TFT4 modulates H+ efflux,
basipetal auxin transport, and the PKS5-J3 pathway in the root growth
response to alkaline stress. Plant Physiol. 163, 1817–1828. doi: 10.1104/pp.113.
224758

Yang, L.-T., Qi, Y.-P., Jiang, H.-X., and Chen, L.-S. (2013).
Roles of organic acid anion secretion in aluminium tolerance of
higher plants. Biomed Res. Int. 2013:173682. doi: 10.1155/2013/
173682

Yuan, W., Li, Y., Li, L., Siao, W., Zhang, Q., Zhang, Y., et al. (2018).
BR-INSENSITIVE1 regulates hydrotropic response by interacting with plasma
membrane H+-ATPases in Arabidopsis. Plant Signal. Behav. 13:e1486147.
doi: 10.1080/15592324.2018.1486147

Zhang, J., Yu, H., Zhang, Y., Wang, Y., Li, M., Zhang, J., et al. (2016). Increased
abscisic acid levels in transgenic maize overexpressing AtLOS5 mediated root
ion fluxes and leaf water status under salt stress. J. Exp. Bot. 67, 1339–1355.
doi: 10.1093/jxb/erv528

Zhang, M., Wang, Y., Chen, X., Xu, F., Ding, M., Ye, W., et al. (2021). Plasma
membrane H+-ATPase overexpression increases rice yield via simultaneous
enhancement of nutrient uptake and photosynthesis. Nat. Commun. 12:735.
doi: 10.1038/s41467-021-20964-4

Zhou, J.-Y., Hao, D.-L., and Yang, G.-Z. (2021). Regulation of cytosolic
pH: the contributions of plant plasma membrane H+-ATPases and
multiple transporters. Int. J. Mol. Sci. 22:12998. doi: 10.3390/ijms2223
12998

Zörb, C., Geilfus, C.-M., Mühling, K. H., and Ludwig-Müller, J. (2013). The
influence of salt stress on ABA and auxin concentrations in two maize cultivars
differing in salt resistance. J. Plant Physiol. 170, 220–224. doi: 10.1016/j.jplph.2012.
09.012

Frontiers in Plant Science 14 frontiersin.org

https://doi.org/10.3389/fpls.2022.931979
https://doi.org/10.1105/tpc.114.126037
https://doi.org/10.1111/j.1365-313X.2009.03926.x
https://doi.org/10.1104/pp.110.168476
https://doi.org/10.1104/pp.112.196345
https://doi.org/10.1104/pp.18.00142
https://doi.org/10.1104/pp.112.196428
https://doi.org/10.1126/science.aat7744
https://doi.org/10.1038/s41477-020-00831-8
https://doi.org/10.1111/tpj.13460
https://doi.org/10.1038/s41477-019-0502-0
https://doi.org/10.18174/njas.v35i3.16724
https://doi.org/10.1007/BF01377686
https://doi.org/10.1073/pnas.1717649115
https://doi.org/10.1104/pp.15.01863
https://doi.org/10.1111/pce.12224
https://doi.org/10.1111/nph.17176
https://doi.org/10.1111/nph.16094
https://doi.org/10.1104/pp.113.224758
https://doi.org/10.1155/2013/173682
https://doi.org/10.1080/15592324.2018.1486147
https://doi.org/10.1093/jxb/erv528
https://doi.org/10.1038/s41467-021-20964-4
https://doi.org/10.3390/ijms222312998
https://doi.org/10.1016/j.jplph.2012.09.012
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	The root apoplastic pH as an integrator of plant signaling
	Introduction
	pHapo in the root and rhizosphere
	Plant mechanisms to modify the root pHapo
	Plasma membrane proton pumps
	Root respiration
	Organic anions
	Redox-coupled process
	The cell wall

	Plants hormones and pHapo
	The impact of pHapo on apoplastic biology
	Cell wall remodeling
	Apoplastic ion balance
	Plasma membrane transporters' activity
	Intracellular communication: Electric signaling, calcium, glutamate, and ROS

	Root pHapo in stress situations
	Abiotic stress
	Biotic stress

	Perspectives for the pHapo role in plant biology
	pH microdomains within the CW
	Role of pH in the cellular cortex
	Interlink between plant hormones and pHapo
	New molecules to enhance plant tolerant through pHapo modification

	Conclusion
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


