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Accurately detecting and segmenting grape cluster in the field is fundamental 

for precision viticulture. In this paper, a new backbone network, ResNet50-

FPN-ED, was proposed to improve Mask R-CNN instance segmentation so 

that the detection and segmentation performance can be  improved under 

complex environments, cluster shape variations, leaf shading, trunk occlusion, 

and grapes overlapping. An Efficient Channel Attention (ECA) mechanism was 

first introduced in the backbone network to correct the extracted features for 

better grape cluster detection. To obtain detailed feature map information, 

Dense Upsampling Convolution (DUC) was used in feature pyramid fusion 

to improve model segmentation accuracy. Moreover, model generalization 

performance was also improved by training the model on two different datasets. 

The developed algorithm was validated on a large dataset with 682 annotated 

images, where the experimental results indicate that the model achieves an 

Average Precision (AP) of 60.1% on object detection and 59.5% on instance 

segmentation. Particularly, on object detection task, the AP improved by 1.4% 

and 1.8% over the original Mask R-CNN (ResNet50-FPN) and Faster R-CNN 

(ResNet50-FPN). For the instance segmentation, the AP improved by 1.6% and 

2.2% over the original Mask R-CNN and SOLOv2. When tested on different 

datasets, the improved model had high detection and segmentation accuracy 

and inter-varietal generalization performance in complex growth environments, 

which is able to provide technical support for intelligent vineyard management.
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Introduction

There is an urgent need to develop new technologies and methods for Precision 
Viticulture (PV) to ensure a greater efficiency, quality and sustainability of agricultural 
activities (Santesteban, 2019; Gené-Mola et al., 2020). However, agricultural automation 
is generally more difficult than industrial automation because of the uncertainties of field 
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conditions, plant structures, and the outdoor environments, 
which necessitates systems capable of monitoring plant and fruit 
structure at a fine-grained level (Kirkpatrick, 2019). Proper 
detection and localization of such structures are critical 
components of agricultural monitoring, robotics, and 
autonomous systems (Duckett et  al., 2018). For a variety of 
applications, an accurate fruit detection and localization is 
required, particularly, for fruit counting and yield estimation 
(Bargoti and Underwood, 2017). Upon fruits being accurately 
detected and localized, precision agricultural applications can 
be conducted for inter and intra-field variability management. 
Fruit detection can also serve as a precursor for disease and 
nutrient deficiency monitoring, as well as a critical component of 
actuation (Barbedo, 2019). For example, automated spraying and 
harvesting could be developed, which is drawing ever-increasing 
attention given the shrinking agricultural labor force (Shamshiri 
et al., 2018). In addition, as many agronomically relevant traits are 
highly heterogeneous with respect to environmental conditions, 
fruit detection can also be used for field phenotyping to improve 
plant research and breeding operations (Milella et al., 2019).

Early research on fruit detection relied on classical feature 
engineering methods, which included human-designed 
descriptors based on color, geometric and textural features 
(Gongal et al., 2015). Based on such features, machine learning 
techniques such as Bayesian classifiers, support vector machines 
(SVM), and clustering were applied to perform fruit detection and 
classification (Wu et  al., 2012; Kurtulmuş and Kavdir, 2014). 
Although these schemes can achieve a high computing speed, they 
suffer from a limited accuracy under challenging conditions such 
as crop variability, multi-crop detection, lighting changes, and 
occlusion issues, among others (Xu et al., 2013).

With the rapid development of deep learning methods, many 
high-performance computer vision algorithms based on deep 
neural networks have also been successfully applied to fruit 
detection, with a higher detection speed and accuracy (LeCun 
et al., 2015; Yan et al., 2021). For example, Wang and He (2021) 
developed a YOLOV5s model with channel pruning based on a 
deep learning approach for a fast and accurate detection of 
growing apple fruit in their natural environment prior to thinning. 
Parvathi and Selvi (2021) proposed Faster-RCNN with ResNet-50 
algorithm which can achieve a precision of 89.4% for the detection 
of coconut maturity. Previous detection techniques generally 
relied on rectangular bounding boxes to identify individual items. 
For fruits with a regular shape such as oranges and apples, this 
approach if adequately fitted to the fruit boundaries, could provide 
estimates of fruit shape and space occupancy (circular shape). 
However, for grape clusters, rectangular boxes would not properly 
adjust to the berries.

A step further beyond object detection is instance 
segmentation (Lin et al., 2014), which can correctly identify berry 
pixels in the detection box, allowing for a finer fruit 
characterization. Additionally, occlusions caused by leaves, 
branches, trunks, and even other clusters can also be addressed 
properly by instance segmentation, which is very useful for robotic 

manipulation and other automation tasks (Santos et al., 2020). 
Pérez-Borrero et  al. (2020) proposed a deep learning-based 
approach for strawberry instance segmentation by designing a 
new architecture based on Mask R-CNN backbone and Mask 
networks. Based on the 200 test images, the results maintained 
competitive results to the original Mask R-CNN in term of mean 
AP (43.85% vs. 45.36%). However, the dataset in the study was 
single and the context was relatively simple and therefore not 
representative. As a result, its generalization performance may not 
be good enough for practical applications under variable natural 
conditions. Despite the use of various convolutional neural 
network (CNN) techniques for fruit recognition, the problem of 
detecting and segmenting wine grapes clusters from field images 
is still a very complex challenge due to a variety of relevant factors 
such as environment lighting, complex backgrounds, large shape 
variations between grapes clusters and occlusion.

In this study, an improved Mask R-CNN model was proposed 
to ensure the accuracy of grape detection and segmentation in 
field environments. The main contributions are listed as below:

 1. The Efficient Channel Attention (ECA) mechanism was 
introduced into the backbone network of Mask R-CNN to 
enhance the feature extraction capability of the network 
under complex background conditions.

 2. Dense Upsampling Convolution (DUC) was used in 
pyramid feature fusion instead of the traditional nearest 
neighbor interpolation upsampling method to obtain more 
image details and improve model accuracy.

 3. The improved Mask R-CNN was trained on two datasets 
with different acquisition criteria to enhance the model 
generalization performance.

 4. The detection and segmentation performance of the 
improved Mask R-CNN was compared against state-of-
the-art (SOTA) models.

Materials and methods

Image preparation

Image acquisition
This work focuses on wine grapes of the Chardonnay variety 

in complex field background environments. The collection site 
was at a wine grape production demonstration site in Yangling, 
Shaanxi Province, China. Grape images were acquired prior to 
harvest in the vineyard using a Sony ILCE-5100 l digital camera 
from Thailand with a spatial resolution of 3,008 × 1,668 pixels, an 
aperture value of f/3.2 and an exposure time of 1/60 s. The 
collected images included two main parts, the Grape-A dataset 
and the Grape-B dataset.

In particular, the Grape-A dataset was collected during July–
August 2020 from 9:00 am–12:00 pm each day in a variety of 
weather conditions such as sunny and cloudy days, and lighting 
conditions such as down light and back light. The camera lens was 
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randomly placed at a parallel distance of 50–100 cm from the 
grapes and a total of 218 images were collected. While the Grape-B 
dataset was collected mainly between July and September 2021. 
The camera lens was taken at a random distance of 100–150 cm 
parallel to the grapes, and other acquisition conditions were the 
same as Grape-A dataset, and a total of 464 images were collected. 
Figure 1 shows examples of the acquired images under different 
environmental conditions.

Images annotation
The acquired images were annotated via the interactive 

polygon tool in the LabelMe software (Russell et al., 2008), where 
the annotation information was saved in JSON files. The tool 
defines the continuous or discontinuous contours of the grapes by 
using a sequence of points. The criteria adopted in the labelling 
process included creating the most accurate possible mask for 
each cluster of grapes in the image, with the labelled pixels named 
“grape” consistently and the others treated as background. It 
covered extreme cases such as clusters that are obscured by trunks, 
leaves, wires, and ropes, overlapping clusters, and clusters located 
at the edge of the image or barely perceptible clusters. In cases 
where occlusion leaves the same target cluster in a truncated or 
separated state, the difficulty of annotating the same truncated 
instance can be effectively resolved by setting the same Group id 
in annotating the image (Figure 2).

After a precise annotation of each grape cluster contours in 
each image, the computer program automatically calculates the 
outer rectangular box based on the cluster polygon contours to 
save the time required for box annotation in object detection. The 

visualization of the annotated instance segmentation dataset is 
illustrated in Figure 3.

Grape cluster instance segmentation 
based on improved Mask R-CNN

Mask R-CNN (He et al., 2017) is developed on the basis of 
object detection network Faster R-CNN (Ren et al., 2015), which 
replaces the RoIPool layer of the original Faster R-CNN with 
RoIAlign, and uses bilinear interpolation to eliminate the error 
caused by two quantization operations to solve the problem of 
region of interest (RoI) mismatch between the feature map and 
the original image. Additionally, the fully convolutional network 
(FCN; Long et al., 2015) is added as a semantic segmentation 
branch of the network. In this study, a grape instance segmentation 
method based on an improved Mask RCNN was proposed to 
accurately segment grapes in natural growth environments in the 
field. A residual feature pyramid structure (ResNet-FPN) fusing 
Efficient Channel Attention (ECA) and Dense Upsampling 
Convolution (DUC) were used instead of the original Mask 
RCNN backbone network to extract grape image features at 
different scales, and the extracted image features at different scales 
were used to find the anchor frames of interest in the feature space 
by the region proposal network (RPN; Li et  al., 2018), i.e., 
rectangular boxes that may contain regions of interest. The 
network is then split into two branches, classification prediction 
and mask prediction, where the classification branch is the same 
as the Faster R-CNN, giving predictions for the RoI and generating 

A B

C D

FIGURE 1

Examples of images acquired under different field sunlight conditions and distances. (A) Natural sunlight. (B) Smooth light. (C) Backlighting. 
(D) Distance changes (2020).
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category labels and rectangular box coordinates. The mask branch 
generates a binary mask that depends on the classification results, 
based on which grape clusters are segmented. Figure 4 shows the 
structure of the segmenting grape cluster method based on the 
improved Mask R-CNN network. The details are elaborated in the 
following subsections.

Backbone network
The backbone network is crucial for feature extraction, and 

sufficient feature information can be extracted from the image to 
facilitate the subsequent image processing tasks. As the depth of 
the network increases, the mode performance will gradually 
degrade. This problem can be effectively solved by introducing a 
deep residual network (ResNet; He et al., 2016) into the Mask 
R-CNN backbone.

In this study, two different acquisition criteria were set, and 
the grape cluster size showed great variability due to the variation 
of the distance of the camera lens. In the image feature extraction 

process, the low-level features often contain more detailed 
information such as texture, color, and contour of the image, but 
contain a lot of irrelevant information and noise. While the 
higher-level features often contain high-level semantic 
information such as category and attributes of the image, but the 
spatial resolution of the higher-level features is very low, and more 
detailed information of the image are lost compared with the 
lower-level features. Therefore, in order to better obtain the grape 
cluster image feature information, the Feature Pyramid Network 
(FPN; Kim et al., 2018) is introduced in ResNet, so as to achieve 
effective integration of low-level features to high-level features at 
multiple scales, thus making full use of the feature information 
extracted by convolutional neural networks at different scales.

However, in complex field background environments, the 
images are susceptible to natural background variations. In 
particular, grape clusters in natural states have a great close-field 
nature and overlapping blockage between fruit targets, tree trunk 
and leaf cover, and light conditions cause some difficulties in the 

A B C

FIGURE 2

Example annotation of an occluded grape cluster for instance segmentation. (A) Divided clusters of the grape. (B) Annotation process. 
(C) Instances visualization.

A B

FIGURE 3

Visualization of the annotation results for an example image. (A) Original image. (B) Annotated image.
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detection and segmentation of grape clusters. The attention-based 
approach allows the model to focus on and enhance effective 
feature information while ignoring some useless feature 
information, thus improving the model’s robustness to field 
environment variations. In view of the corrective effect of the ECA 
module on channel features, this study improves the backbone of 
Mask R-CNN by proposing a new backbone feature extraction 
network, ResNet50-FPN-ED. The network incorporates an 
attention mechanism that employs DUC in feature pyramid fusion 
instead of the traditional nearest neighbor interpolation up 
sampling method. The ECA module and DUC operations are 
described as detailed in sections ECA module and Dense 
Upsampling Convolution, respectively. The structure of the 
improved backbone network is shown in Figure 5.

In the improved backbone network, the input image is first 
compressed to 1/2 of the original height (H) and width (W) by a 
7 × 7 convolutional kernel in ResNet50, and then the feature maps 
are compressed to 1/4, 1/8, 1/16, and 1/32 times of the original 
image size by four different numbers of Bottleneck structures of the 
residual network to obtain feature maps C2, C3, C4, and C5 with 
different scales. Besides, these four types of feature maps are input 
to the channel attention module ECA for feature correction and 
filtering, and the effective feature information extracted by the 
network is given a higher weight to complete the calibration of the 
channel weight information and filter the useless information. The 
captured grape images have different sizes of grape cluster targets 
due to the influence of distance variations, and different targets 
have different features. Therefore, the FPN structure is constructed 
by connecting the obtained feature maps at different scales 
horizontally from bottom to top, and feature fusion at different 
scales is carried out. The fused feature maps at different resolutions 
are used to detect objects at the corresponding resolution sizes, 
which ensures that each network layer has the appropriate 
resolution and strong semantic features. The four feature maps 
obtained by the ECA module are first uniformly dimensioned 
down to 256 channels by 1 × 1 convolution, while the output size is 

maintained. The bottom feature map is then passed through a new 
up-sampling DUC in a top-down manner to obtain a feature map 
of the same size, and then the features are fused. This produces a 
multi-scale feature representation in a single cyclic operation, 
effectively fusing the information extracted at a deeper level with 
the feature information extracted by the network at a shallower 
level. Next, all levels of feature maps are allowed to be fused with 
features of different resolutions and semantic strengths, resulting 
in features with both good spatial and strong semantic information. 
Finally, the fused features of all levels are convolved by a 
convolution kernel of 3 × 3 size to eliminate the aliasing effect 
generated by feature fusion. The output is P2, P3, P4 and P5, and 
P6 is obtained by maximum Pooling of P5 with a stride of 2. These 
five different scales of feature maps are then used as input to the 
RPN to find regions of interest. The detailed network structure 
parameters of the improved backbone are shown in Table 1.

ECA module
The SE (Hu et  al., 2018) module brings side effects to 

channel attention prediction by performing a fully-connected 
operation after dimensionality reduction of the channels, as 
capturing the dependencies between all channels is inefficient 
and unnecessary. The ECA (Wang et al., 2020a) module, as a 
channel attention module, is an enhanced and improved version 
of the SE module, where its structure is shown in Figure 6. Its 
main idea is to propose a local cross-channel interaction 
strategy without dimensionality reduction, which captures local 
cross-channel interaction information by considering each 
channel and its k-nearest neighbors after global average pooling 
(GAP) of channels. The ECA module firstly computes the input 
feature map of size H × W × C (C is number of feature channels) 
using GPA to obtain a feature vector of size 1 × 1 × C to have a 
global receptive field. Secondly, the cross-channel interaction 
information was captured by 1D convolution with a convolution 
kernel size of k. The convolution kernel size k was related to the 
number of input channels and was adaptively chosen by Eq. (1) 

FIGURE 4

Structure of grape cluster instance segmentation network based on improved Mask R-CNN.
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FIGURE 5

Structure of the improved ResNet50-FPN-ED backbone network.

TABLE 1 Parameters of the improved Mask R-CNN backbone: ResNet50-FPN-ED network architecture.

ResNet-50 ECA FPN

Layers Output size Conv Up-sampling Conv Output size

Conv1
7 7,64
MP,2
× 

 
 

W/2 × H/2 × 3

Conv2_x
1 1,64
3 3,64 3
1 1,256

× 
 × × 
 × 

C2(W/4 × H/4 × 256)
ECA(256,k1) (1 × 1,256) ADD (3 × 3,256) P2(W/4 × H/4 × 256)

Conv3_x  
1 1,128
3 3,128 4
1 1,512

× 
 × × 
 ×   

C3(W/8 × H/8 × 512) ECA (512, k2) (1 × 1,256) DUC(256,1,024)

ADD (3 × 3,256) P3(W/8 × H/8 × 256)

Conv4_x  
1 1,256
3 3,256 6
1 1,1024

× 
 × × 
 ×   

C4(W/16 × H/16 × 1,024) ECA(1,024, k3) (1 × 1,256) DUC(256,1,024)

ADD (3 × 3,256) P4(W/16 × H/16 × 256)

Conv5_x  
1 1,512
3 3,512 3
1 1,1024

× 
 × × 
 ×   

C5(W/32 × H/32 × 2048) ECA(2048, k4) (1 × 1,256) DUC(256,1,024) (3 × 3,256) P5(W/32 × H/32 × 256)

(3 × 3,256) (MP,2) P6(W/64 × H/64 × 256)

k is the convolutional kernel size in the ECA module, (MP,2) are maximum pooling, and stride = 2. ADD is the feature map fusion operation.
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to determine the coverage of local cross-channel interactions 
(Wang et al., 2020a). The weights of each feature channel are 
then generated by a sigmoid activation function calculation. 
Finally, the output feature channel weight vector is multiplied 
with the original input feature map to complete the original 
feature calibration in the channel dimension, so that the 
extracted features are more directional, and invalid or ineffective 
feature channels are suppressed, thus improving the extraction 
of effective features. The ECA module avoids dimensionality 
reduction operations allowing the model to learn more effective 
channel attention, and the module has a small number of 
parameters which is determined only by its convolutional kernel 
size K (almost negligible).

 
y

g g
C

C b

odd
( ) = ( )

+
log2  

(1)

where C is the number of input channelst, t odd  is an odd 
number similar to t, γ was set to 2 and b was set to 1.

Dense Upsampling Convolution
When FPN fuses feature maps from the bottom up, the 

resolutions of feature maps obtained from different stages and 
depth networks are different (e.g., the output size of C2, C3, C4, 
C5), so upsampling operations are required to obtain feature 
maps of the same size as the previous level and then add them 
pixel by pixel for feature fusion to build a feature pyramid 
structure. However, the original Mask R-CNN uses a simple 
nearest neighbor interpolation approach for upsampling, which 
results in the loss of detailed information of some features and 
the interpolation is unlearnable, which has side effect on the 
model performance. Inspired by super-resolution, this paper 
uses DUC (Wang et  al., 2018) instead of nearest neighbor 
interpolation upsampling operation, which is able to 

compensate for the loss in aspect dimension by channel 
dimension. The feature map is restored to the required 
resolution by making the model learn a series of upsampling 
convolution filters. The specific DUC operation flow is shown 
in Figure 7. The obtained feature map (H/r × W/r × C) is first fed 
into a set of 3 × 3 convolutions for learning, and the size of the 
feature map obtained after convolution is H/r × W/r × (C × r2), 
and then reshaped to H × W × C size, where r is the ratio of the 
up-sampled recovered feature map to the original feature 
map size.

Grape cluster instance segmentation and loss 
function

Feature maps of five size scales generated by the improved 
backbone extraction network are sent to the RPN network. 
The size of grape clusters in different images varies greatly due 
to different capture distances. Five different scale anchors 
were designed in generating RoI: 8, 16, 32, 64, and 128, 
combined with labeling rectangular boxes with three aspect 
ratios of 0.5, 1, and 2. The final combination of 15 benchmark 
windows for predicting the regions containing grape clusters 
in the images makes the output more accurate RoI. The 
generated RoI and the corresponding feature maps are then 
sent to RoIAlign for alignment and fixing the anchor size. 
Finally, the aligned feature maps are passed to t the fully 
connected layer and fully convolutional layers. The fully 
connected layer is responsible for performing bounding box 
regression and classification, while the fully convolutional 
layer implements grape cluster instance segmentation by 
deconvolution operations to generate mask.

The loss function is essential for model training, which allows 
the model’s weights to be continuously optimized by the difference 
between prediction and ground truth. The loss function of the 
improved Mask R-CNN is shown in Eq. (2).

FIGURE 6

ECA Module.
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 L L L Lcls box mask= + +
 

(2)

where Lcls  is the classification loss, Lbox  is the regression 
loss of the bounding box, and Lmask  is the mask loss. In 
particular, the mask branch generates a mask of size m x m for 
each RoI and each category, for a total of n categories. Thus, the 
total output is of size n m m´ ´ . For the predicted binary mask 
output, a sigmoid function is applied to each pixel point and the 
resulting result is used as input to the cross-entropy loss function, 
with the overall loss defined as the average binary cross-
loss entropy.

Model training

The experiments were conducted by using the open source 
platform detectron2, Pytorch version 1.7.1, with an NVIDIA RTX 
3090 graphics card, CUDA version 11.0, and 24 GB of video 

memory. All training and testing of the models were performed 
on a Linux (Ubuntu 20.04) operating system.

The datasets (images and annotation results) under two 
different conditions were divided into a training set and a test set 
with equal proportions of 8:2, where the detailed division results 
are shown in Table  2. In order to facilitate subsequent model 
training and testing, the annotated results of each part of the 
dataset were converted to the annotation style of the standard 
COCO dataset (Lin et al., 2014).

In order to speed up the model training, weights trained 
on the COCO dataset were adopted. For the improved Mask 
R-CNN model, as its network structure has been changed 
accordingly, the network is initialized by loading partial 
weights. The hyperparameters for model training were set to 
50 for epoch, 2 for batch size, 0.01 for the initial learning rate, 
and 0.1 times the initial value for decay rate for every 5,000 
iterations. To prevent model overfitting, weight decay was set 
to 10−4 and stochastic gradient descent (SGD; Bottou, 2012) 
was used to update the parameters and optimize the 
training process.

Data enhancement techniques were used randomly during 
the training process, meaning that each new batch of images 
was input to the network for training with random mirroring 
operations (horizontal and vertical), rotation, cropping and 
color changes (brightness, contrast and saturation) applied 
online to the input images, along with a transformation of the 
coordinate information in the corresponding annotation file. In 
addition, a random scaling process was set for each batch of 
images with a minimum edge length from 640 to 800 pixels, in 
steps of 32, and a maximum edge size of no more than 
1,443 pixels.

FIGURE 7

Illustration of DUC operation.

TABLE 2 Training set and test set splitting.

Dataset name Images Masked 
clusters

Train Grape-A 174 689

Grape-B 370 4,244

Total 544 4,933

Test Grape-A 44 219

Grape-B 94 1,075

Total 138 1,294

https://doi.org/10.3389/fpls.2022.934450
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Shen et al. 10.3389/fpls.2022.934450

Frontiers in Plant Science 09 frontiersin.org

Model evaluation metrics

Similarly, COCO competition metrics (Lin et  al., 2014) 
including average precision (AP) and average recall (AR) were 
used to evaluate the performance of the proposed grape cluster 
instance segmentation model. The AP summarizes the shape of 
the precision/recall curve, and is defined as the mean precision at 
a set of equally spaced recall levels (Everingham et al., 2010). AR 
is the maximum recall given a fixed number of detections per 
image, averaged over categories and intersection over unions 
( IoU ). The necessary metrics including precision (P) and recall 
(R) in the calculation of AP and AR are described by Eq. (3).

 
P TP

TP FP
=

+
,

 
R TP

TP FN
=

+  
(3)

where ,TP  ,FP  and FN  means true positive, false positive, 
and false negative, respectively.

In instance segmentation, a prediction is considered a TP  
when it IoU  is greater than a selected threshold, otherwise it is 
considered a .FP  Some of the metrics used in the COCO 
competition are shown in Table 3 (Tassis et al., 2021).

Results

Overall test results of the improved Mask 
R-CNN model

In order to evaluate the performance of the improved Mask 
R-CNN model for grape recognition under complex background 
conditions, a test dataset was created with a total of 138 images 
from both Grape-A and Grape-B datasets acquired in different 
years. The performance of the ResNet50-FPN, ResNet101-FPN 
and the Mask R-CNN with ResNet50-FPN-ED (an improved 

backbone network in this paper) was first evaluated for grape 
clusters recognition. The results on the test set are shown in 
Table 4, which show that the proposed improved Mask R-CNN 
backbone ResNet50-FPN-ED has significant advantages over the 
original backbone of Mask R-CNN. In particular, the AP reaches 
60.10% on object detection task with an improvement of 1.4% 
over the original ResNet50-FPN; when IoU  = 50%, the 
APIoU =0 5.  reaches 85.60% with an improvement of 0.5%; for 

more stringent metrics, when IoU = 75%, APIoU =0 75.  with an 
improvement of 1.1%; ARmax=100  reached 69.50% with an 
improvement of 2.10% over the original backbone. On the 
instance segmentation task, AP reached 59.50% with an 
improvement of 1.6% over the original backbone, APIoU =0 5.  
reached 87.10% with an improvement of 0.8%, APIoU =0 75.  
reached 66.90% with an improvement of 2.60%, ARmax=100  
reached 66.90% with an improvement of 1.80% over the original 
backbone. Although the average inference speed of the proposed 
method on the test set is 62.6 ms per frame, which is slightly 
longer than the inference time of the original Mask R-CNN with 
ResNet50-FPN (57.3 ms per frame), it effectively improves the 
detection and segmentation accuracy for grape clusters. In 
addition, it was found that the trained Mask R-CNN with a deeper 
backbone ResNet101-FPN did not bring a greater improvement 
in detection and segmentation accuracy in field grape cluster 
recognition. The results of using ResNet50-FPN-ED as the Mask 
R-CNN backbone in this study were significantly better than 
ResNet101-FPN. Moreover, the deeper ResNet101-FPN network 
model has a much larger number of parameters, which takes a 
longer time to train and make inference (with instance 
segmentation speed being only 70.4 ms per frame), and therefore 
is not scalable. As the IoU  increases, the AP value decreases, 
which is in line with the actual detection results of the model. It is 
also noted that the ARmax=1  is lower for both tasks due to the fact 
that all images contain multiple instances of the object of interest, 
especially for the Grape-B dataset, as the camera was captured at 
a greater distance in image acquisition and multiple grape 
instances could be observed within the field of view. For both 
identical tasks, the same Mask-RCNN network as used in the 
literature presented good results, e.g., Santos et al. (2020) used the 
same network for grape detection and instance segmentation in a 
field setting and obtained APIoU =0 5. = 74.3%, further confirming 
that the improved Mask R-CNN model is more accurate while 
with a higher reliability.

When IoU = 50%, the proposed method achieves an 
APIoU =0 5. of more than 85% for both detection and instance 

segmentation, but the results may still contain some uncertainty 
as the annotations are hand-made and not all cluster instances 
are annotated. This is because the target area where some cluster 
instances may appear is very small and not easily detected due 
to severe occlusion and irregular contours of the clusters. Due 
to the irregular contours of the clusters, some grapes grow too 
densely for the individual instances to be distinguished from 
each other when annotating clusters that overlap each other 
with some subjectivity and uncertainty. Therefore, when 

TABLE 3 COCO metrics definition.

Metric Definition

AP The average of these 10 tests is then used as 

the final value for each 0.05 change from 

IoU = 0.5 to IoU = 0.95

0.5APIoU = Precision is calculated considering IoU  > 

0.5 for TP

0.75APIoU = Precision is calculated considering IoU  > 

0.75 for TP

max 1AR = Recall considering only the detection of an 

object

max 10AR = Recall considering the detection of up to 10 

objects

max 100AR = Recall considering the detection of up to 100 

objects
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comparing the results, the network may have found other 
instances that were not labelled, or may not be able to indicate 
the labelled instances. In addition, some grapes grow overly 
densely resulting in overlap between clusters and shading by 
trunk leaves, which also affects model recognition. However, 
the proposed method is able to improve this situation. Figure 8 
shows some prediction results of the Mask R-CNN model on 
the test set with a number of different backbones (including the 
improved one). The proposed backbone (ResNet50-FPN-ED) is 
able to detect more instances compared to the other two 
backbone networks (Figures 8C-1,2).

Grape segmentation results under 
different test sets

To further explain the performance of the proposed model 
under two different datasets Grape-A and Grape-B, the test sets of 
these two datasets were tested separately (i.e., the same training 

dataset with different test datasets). The example instance 
segmentation results of the improved Mask R-CNN for the two 
different types of datasets are shown in Figure  9. 
Figures 9A-1,C-1–3 show some of the instance regions found by 
the proposed model that are not fully annotated. This is due to the 
fact that the dataset was manually annotated and some instances 
are occluded and at the edges of the image which are difficult to 
perceive even for the human eye (Figures  9B-1,D-1,3). It can 
be seen that the number of observable instances on the Grape-A 
dataset is less than on Grape-B due to the capture distance 
(Figures 9A,C). Moreover, due to the denser field of view, the 
cluster shapes vary more significantly between instances in the 
Grape-B dataset, thus with more areas of cluster overlap. 
Figures 9C-2 shows that due to the occlusion of the leaves and 
trunk, the model generates a duplicate segmentation, mistaking 
two different instances for the same one, and surprisingly also 
found unannotated instances at the same time. However, the 
overall segmentation results are promising. It can effectively avoid 
the missed detection due to occlusion.

TABLE 4 Test results for different backbones on Mask R-CNN (the best one is highlighted in bold, the same below).

Backbone ResNet50-FPN ResNet50-FPN-ED ResNet101-FPN

Box Seg Box Seg Box Seg

AP 58.70 57.90 60.10 59.5 57.90 57.20

0.5APIoU = 85.10 86.30 85.60 87.10 85.00 86.70
0.75APIoU = 64.00 64.30 65.10 66.90 61.70 62.60

max 1AR = 9.00 8.80 9.50 9.20 9.30 9.20
max 10AR = 56.00 54.70 57.10 55.70 55.40 54.30
max 100AR = 67.40 65.10 69.50 66.9 66.90 64.40

Box represents the bounding box result of object detection, Seg represents the segmentation result, same as below.

A B

C D

FIGURE 8

Instance segmentation results by Mask R-CNN with different backbones. (A) Instances segmentation results of Mask RCNN with ResNet50-FPN. 
(B) Instances segmentation results of Mask RCNN with ResNet101-FPN. (C) Instances segmentation results of improved Mask RCNN with ResNet50-
FPN-ED. (D) Ground truth results. (1, 2) are partial enlargements of the instance segmentation results of the corresponding images, respectively.
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The performance of the backbone ResNet50-FPN-ED in the 
improved Mask R-CNN was compared against the original 
backbone ResNet50-FPN on the two different datasets. The results 
on the test set of Grape-A dataset and Grape-B dataset are shown 
in Tables 5, 6, respectively. It is clearly observed from both tables 
that the proposed improved Mask R-CNN approach has 
significantly improved AP values for both detection and instance 
segmentation tasks over the original Mask R-CNN under two 
different types of datasets. This further confirms that the proposed 
method has better detection and segmentation results in dealing 
with datasets with different capture distances. It is worth noting 
that, as shown in the table, the proposed method has the most 
significant improvement in the detection and segmentation tasks 
on the Grape-A dataset. Compared with the original model, AP, 

APIoU =0 5. , APIoU =0 75. , and ARmax=100  have improved 
detection tasks by 2.6%, 0.9, 3.1%, and 2.9%, respectively. The 
performance for instance segmentation tasks are increased by 
2.2%, 1.5%, 0.5%, and 2.3%, respectively. As aforementioned, this 
is related to the collection standards of the two datasets. Due to the 
observation distance and camera field of view, the target size of the 
overall grape cluster instance of Grape-A dataset is larger than that 
of Grape-B dataset. The introduced attention mechanism ECA 
module is more sensitive to larger target sizes than small targets, 
and the improved detection effect is also more significant.

Comparison of the improved Mask 
R-CNN model with SOTA models

To further verify the improved Mask R-CNN model, two 
SOTA models were compared. The instance segmentation network 
SOLOv2 (Wang et al., 2020b) and the object detection network 
Faster R-CNN (ResNet50-FPN) were also trained under the same 
conditions and compared on the 138 test images, where the results 
of the post-test comparisons are shown in Table 7. In addition, the 
model prediction results under different natural conditions were 
shown in Figure  10. The Faster R-CNN only performs object 
detection, and the results show that although the detection speed 
is 50.24 ms per frame, slightly faster than the improved Mask 
R-CNN model, it does not perform semantic segmentation to 
classify the berry pixels in detail. Because mask prediction has a 
time cost. Under the conditions of close camera lens distance, the 

A B

C D

FIGURE 9

Instance segmentation results of the improved Mask R-CNN on two different types of test datasets. (A) Several image segmentation results of 
improved Mask R-CNN in Grape-A dataset. (B) Ground truth for several images in the Grape-A dataset. (C) Several image segmentation results of 
improved Mask R-CNN in Grape-B dataset. (D) Ground truth for several images in the Grape-B dataset. (1-3) are partial enlargements of the 
instance segmentation results of the corresponding images, respectively.

TABLE 5 Performance comparison between the improved Mask 
R-CNN backbone and the original one on the Grape-A test set.

Backbone ResNet50-FPN ResNet50-FPN-ED

Box Seg Box Seg

AP 59.90 61.00 62.50 63.20

0.5APIoU = 81.90 84.70 82.80 86.20
0.75APIoU = 63.50 71.20 66.60 71.70

max 1AR = 17.40 17.00 17.80 17.30
max 10AR = 64.50 64.20 67.10 66.90
max 100AR = 68.10 68.30 71.00 70.60

The best one is highlighted in bold.
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two object box detections achieve almost the same results 
(Figures  10D,F), however, the improved Mask R-CNN has an 
advantage in the case of light variation and more severe occlusion 
(Figures  10A,C,G-2,I-2). The improved Mask R-CNN has 
improved AP by 1.8%, APIoU =0 75.  by 1.4%, and ARmax=100  by 
2.3% compared to the Faster R-CNN in object detection task. 
Although there is no significant difference in APIoU =0 5. , the 
overall detection accuracy of the improved Mask R-CNN is better. 
In particular, SOLOv2 seems to perform better than Faster R-CNN 
for instance prediction under normal conditions (Figures 10A,B) 
but Figures 10H-1,2 shows more false segmentation in bright light. 
This may be related to the structure of the SOLOv2 network, which 
transforms the segmentation problem into a location classification 
problem and deals directly with instance segmentation without 
relying on box detection. SOLOv2 network is not conducive to the 
segmentation of overlapping targets (Figures 10E-1) and has a 
detection speed of only 54.90 ms per frame, which is slower than 
the proposed model. For the instance segmentation task, the 
proposed method improves AP by 2.2%, APIoU =0 5.  by 3.5%, 
APIoU =0 75.  by 2.9%, and ARmax=100  by 2.5% over the SOLOv2. 

It can be seen that the proposed improved Mask R-CNN model has 
a higher accuracy and stability than SOLOv2 and Faster R-CNN 
for grape cluster detection and segmentation under complex 
background conditions, which further demonstrates the 
advantages of the proposed method.

Discussion

Effect of different natural environmental 
conditions on grape segmentation

Based on the image detection and instance segmentation of 
grape clusters, the model detection results show some variability 
due to the huge variation of light conditions in the field background 
conditions and the variation of camera lens distance during data 
collection. To verify the effectiveness of the improved Mask R-CNN 
under varying light conditions and camera lens variation in field 
conditions, the original Mask R-CNN was chosen to compare the 
instance segmentation performance. The results are shown in 
Figure 11. It can be seen that the original Mask R-CNN model 
results in missed detection due to darker regions caused by lighting 
and camera viewpoint changes, and overlapping occlusion between 
grape clusters (Figures 11A,E). In addition, the same grape instance 
is divided into two parts caused by the occlusion of the wire and 
the tree trunk, which leads the model to incorrectly detect one 
instance as two (Figure 11C). However, the proposed improved 
Mask R-CNN method can recover more instances than the original 
model under variable complex conditions (Figures 11B,F), and 
Figures 11D-1 also shows that the model is potentially corrective 
to the extracted features, indicating that the method introducing 
the channel attention mechanism can extract more effective feature 
information and suppress useless feature information than the 
original backbone, thus improving the model detection and 
segmentation accuracy. This result is consistent with that of Jiang 
et al. (2022) who improved the detection accuracy of young apple 
in low-quality images by adding the Non-local attention module 
(NLAM) and Convolutional block attention model (CBAM) to the 
baseline of the YOLOv4 model. The experimental results also show 
that the attention mechanism can better improve the detection 
accuracy of images with highlights/shadows, and severe occlusions. 
Previous studies (Li et al., 2021; Wang and He, 2022) have similarly 
shown this result. In particular, in this study, the DUC operation 
employed for feature fusion can recover more image detail 
information from the previous level in the feature fusion stage, 
which is very effective for semantic segmentation tasks.

Analysis of grape segmentation results 
under different training datasets

To assess the effect of models trained on different types of 
datasets, the improved Mask R-CNN was trained and tested 
individually on Grape-A and Grape-B datasets, and compared with 
the original Mask R-CNN, where the comparative results for 
Grape-A dataset and Grape-B dataset are shown in Tables 8, 9, 
respectively. It is shown that the proposed method consistently 
outperforms the original method. Notably, comparing the results of 
the models built on the overall dataset in section “Grape 
segmentation results under different test sets” and the two distinct 
types of test sets, the test results on dataset Grape-A alone were 

TABLE 6 Performance comparison between the improved Mask 
R-CNN backbone and the original one on the Grape-B test set.

Backbone ResNet50-FPN ResNet50-FPN-ED

Box Seg Box Seg

AP 58.80 57.40 59.70 58.80

0.5APIoU = 85.50 87.00 86.50 87.20
0.75APIoU = 64.60 62.90 64.80 66.10

max 1AR = 7.30 7.10 7.70 7.50
max 10AR = 54.20 52.60 54.90 53.40
max 100AR = 67.20 64.40 69.10 66.10

The best one is highlighted in bold.

TABLE 7 Comparative test results of the improved Mask R-CNN 
model against Faster R-CNN and SOLOv2.

Model Faster 
R-CNN

SOLOv2 Improved Mask R-CNN

Box Seg Box Seg

AP 58.30 57.30 60.10 59.5

0.5APIoU = 85.80 83.60 85.60 87.10
0.75APIoU = 63.70 64.00 65.10 66.90

max 1AR = 9.20 9.30 9.50 9.20
max 10AR = 55.50 54.90 57.10 55.70
max 100AR = 67.20 64.40 69.50 66.9

The best one is highlighted in bold.
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superior to the test results on a combination of the two datasets. 
However, the test results of the models trained on dataset Grape-B 
alone were almost remained consistent, which might be related to 
the structure of the training dataset. The great variability and 
specificity of the features between the samples inevitably introduces 
some adversarial and redundant features into the model learning 
process, leading to a lower performance of the combined training 
model than if it had been trained on a single dataset. Also, the model 
constructed from a single dataset suffered from poor generalization 
performance to more heterogeneous datasets. Although the number 
of grape cluster instances in Grape-A dataset was small, it was 
sufficient for the model to learn enough features to identify grape 
clusters under the same environmental conditions.

Effect of different grape varieties on 
grape segmentation

To verify the effect of different grape varieties on the 
segmentation of the proposed model, it was tested by using the 
Embrapa Wine Grape Instance Segmentation Dataset (WGISD), a 
publicly available dataset provided by Santos et al. (Santos et al., 
2019). Four different varieties in the dataset, Cabernet Franc, 
Cabernet Sauvignon, Sauvignon Blanc and Syrah, were selected for 
prediction and some of the results are shown in Figure 12. What is 
surprising is that the model is still able to detect the clusters 
correctly for different varieties. The proposed model potentially 
improves the segmentation among different varieties. It also shows 
that the model has a satisfactory generalization performance for 

different grape varieties, which reduces the variation between 
varieties. This is probably benefited from the data enhancement 
during training, where potentially similar features between 
varieties are captured, reflecting the real field conditions.

Conclusions and future work

This paper presents an improved instance segmentation model 
for grapes in a natural field environment. A new backbone network, 
ResNet50-FPN-ED, was proposed to improve the Mask R-CNN 
model by introducing an ECA module in the backbone network 
and using DUC instead of the traditional nearest neighbor 
interpolation upsampling method in pyramid feature fusion. By 
correcting the feature information and recovering more image 
details in the feature fusion stage, the proposed method is able to 
improve the missed and false detection caused by the variability of 
grape cluster shape, illumination and occlusion conditions.

For the object detection task of the improved model, AP reached 
60.1%, APIoU =0 5.  reached 85.6%, APIoU =0 75.  reached 65.1%, and 
ARmax=100  reached 69.5%, which was an improvement of 1.4%, 

0.5%, 1.1%, and 2.1%, respectively, over the original Mask R-CNN 
model. For the instance segmentation task of the improved model, 
AP reached 59.5%, APIoU =0 5.  reached 87.1%, APIoU =0 75.  reached 
66.9%, and ARmax=100  reached 66.9%, which was an improvement 
of 1.6%, 0.8%, 2.6%, and 1.8%, respectively, over the original model. 
More instances were recovered in the proposed model than the 
original one, which improves the detection performance for occlusion 
and darker areas. To verify the effectiveness of the improved Mask 
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FIGURE 10

Comparative results of the improved Mask R-CNN model with Faster R-CNN and SOLOv2 under different conditions. (A–C) are the prediction 
results of Faster R-CNN, SOLOv2, and improved Mask R-CNN under normal conditions, respectively. (D–F) are the prediction results of Faster 
R-CNN, SOLOv2, and improved Mask R-CNN under distance conditions, respectively. (G–I) are the prediction results of Faster R-CNN, SOLOv2, 
and improved Mask R-CNN under light conditions, respectively. (1,2) are partial enlargements of the instance segmentation results of the 
corresponding images, respectively.
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R-CNN model, it was also compared against the instance 
segmentation network SOLOv2 and the object detection network 
Faster R-CNN (ResNet50-FPN) under the same test conditions, and 
the improved Mask R-CNN had a higher AP over Faster R-CNN in 
object detection task (1.8% higher AP, 1.4% higher 0.75,=IoUAP  and 
2.6% higher max 100).=AR  For instance segmentation task, the 
proposed method has 2.2% higher AP and 2.9% higher APIoU =0 75.  
than SOLOv2, and it is worth mentioning that APIoU =0 5.  is 3.5% 
higher and ARmax=100  is 2.5% higher. Furthermore, the proposed 
model was trained and tested independently on two different datasets, 
Grape-A and Grape-B. The accuracy of both models was improved 
to a certain degree compared to the original Mask R-CNN model, and 
the effect of different datasets on model performance was discussed, 
and better generalization performance was also achieved across grape 
varieties on the public dataset.

There is also room for further improvement. One urgent 
improvement is the model detection speed so that the model 
can be  deployed on mobile robots or agricultural tractor 
platforms for real time applications with video input. It is noted 
that the computation cost of the developed model is not a 
critical issue for offline applications such as yield prediction or 
yield mapping. However, for other applications in vineyard 
precision cultivation, such as precision spraying and harvesting, 
real-time processing is generally required. In the future, the 
model complexity can be  reduced by pruning the model 
channels, thus increasing the model detection speed. In 

A B

DC

FE

FIGURE 11

Effects of different natural environmental conditions on the performance of the improved Mask R-CNN. (A,C,E) are the predictions of the 
original Mask R-CNN under low light, occlusion and overlapping grape clusters in smooth light, respectively. (B,D,F) are the predictions of the 
improved Mask R-CNN under low light, occlusion and overlapping grape clusters in smooth light, respectively. (1) is partial enlargements of the 
instance segmentation results of the corresponding images.

TABLE 8 Comparison of test results with different backbones based 
on dataset Grape-A.

Backbone ResNet50-FPN ResNet50-FPN-ED

Box Seg Box Seg

AP 63.70 63.00 64.80 63.80

0.5APIoU = 83.60 86.20 84.70 85.70
0.75APIoU = 70.90 73.00 72.20 72.00

max 1AR = 17.00 16.70 17.90 17.20
max 10AR = 68.40 66.40 67.70 66.10
max 100AR = 73.00 70.70 73.00 71.00

TABLE 9 Comparison of test results with different backbones based 
on dataset Grape-B.

Backbone ResNet50-FPN ResNet50-FPN-ED

Box Seg Box Seg

AP 58.30 57.20 59.40 58.40

0.5APIoU = 86.10 87.00 87.20 87.80
0.75APIoU = 62.70 63.30 64.70 64.90

max 1AR = 7.50 7.30 7.60 7.30
max 10AR = 54.10 52.50 54.30 53.40
max 100AR = 66.60 63.80 68.80 66.60

https://doi.org/10.3389/fpls.2022.934450
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Shen et al. 10.3389/fpls.2022.934450

Frontiers in Plant Science 15 frontiersin.org

addition, the evolution of computing hardware and the 
development of efficient algorithms could also overcome this 
issue in the future. Furthermore, the manual annotation dataset 
is limited. Extending the grape dataset under different 

conditions, using domain adaptation algorithms to improve the 
generality of the algorithm and investigating further 
improvements in segmentation accuracy are also necessary for 
future work.

FIGURE 12

Example results of the improved Mask R-CNN model for different grape varieties.
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