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Plant disease visualization simulation belongs to an important research area

at the intersection of computer application technology and plant pathology.

However, due to the variety of plant diseases and their complex causes,

how to achieve realistic, flexible, and universal plant disease simulation

is still a problem to be explored in depth. Based on the principles

of plant disease prediction, a time-varying generic model of diseases

affected by common environmental factors was established, and interactive

environmental parameters such as temperature, humidity, and time were set

to express the plant disease spread and color change processes through

a unified calculation. Using the apparent symptoms as the basis for plant

disease classification, simulation algorithms for different symptom types

were propose. The composition of disease spots was deconstructed from

a computer simulation perspective, and the simulation of plant diseases

with symptoms such as discoloration, powdery mildew, ring pattern, rust

spot, and scatter was realized based on the combined application of

visualization techniques such as image processing, noise optimization and

texture synthesis. To verify the effectiveness of the algorithm, a simulation

similarity test method based on deep learning was proposed to test the

similarity with the recognition accuracy of symptom types, and the overall

accuracy reaches 87%. The experimental results showed that the algorithm in

this paper can realistically and effectively simulate five common plant disease

forms. It provided a useful reference for the popularization of plant disease

knowledge and visualization teaching, and also had certain research value

and application value in the fields of film and television advertising, games,

and entertainment.

KEYWORDS

plant disease simulation, symptom classification, time-varying model, deep learning,
similarity test

Introduction

Dynamic visualization of plant diseases (Dickinson, 2020) can not only promote
the development of agricultural informatics, but also has important implications for
the study of plant phenomics (Pieruschka and Schurr, 2019). At a time of recurring
epidemics, it can provide an innovative approach to the traditional study of plant
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diseases and can add interest to teaching in agriculture and
forestry. It also exists in increasing demand in the film and
television advertising and game entertainment industries, and
can be applied to virtual space construction, virtual reality (VR)
interaction, and game specific scene modeling. Combining the
interrelationship between disease and environment in plant
disease ecology and the description of plant disease pathogenesis
patterns in epidemiology, one of the hot issues today is the
realization of reasonable and realistic plant disease simulations.

Plant disease visualization simulation includes the
simulation of characteristics such as disease spot distribution,
color, geometry and textural properties. Kider et al. (2011)
developed a fungal-bacterial reaction-diffusion model to
parameterize the physical properties involved in fruit decay as
a way to simulate the aging and decay process of fruits. Based
on this, Fan et al. (2013) used an improved reaction-diffusion
model to model the appearance of fruit ring-spot decay. Miao
et al. (2014) modeled the spatial movement of cucumber
powdery mildew spots using the cellular texture proposed
by Worley (1996) to model the mildew layer formed by
powdery mildew using Shell rendering, taking the distribution,
movement mode, and final morphology of the spots as three
spatial information of the spots. Xu et al. (2017) proposed a
time-varying appearance model by extracting information on
the apparent characteristics of the disease from real disease
images and reasonably extrapolating the disease spot infestation
process, which was applied to the apparent modeling of plant
diseases. Liu and Fan (2015) proposed a modified plasto-spring
model combined with cell mechanics to implement simulation
modeling of fruit sunburn disease. Wu et al. (2018) proposed a
3D visualization model for controlling the fruit decay process
using global decay parameters and decay resistance parameters,
which can flexibly and quickly perform each point on the
fruit model manipulated to complete the simulation of fruit
shape deformation and decay appearance. Leaf discoloration
or wilting is also a manifestation symptom of common plant
diseases. Tang et al. (2013) implemented leaf deformation
based on a modified mass-spring model, which regarded the
color change as a sequence of continuous discrete states, and
combined these two parts based on a Markov chain model to
realize the leaf change process under different environmental
parameter settings. Jeong et al. (2013) represented the leaf
as a triangular-Voronoi bilayer structure and simulated the
complex curl and fold of the leaf by uneven contraction. As can
be seen from the above, there are abundant studies related to
plant disease simulation, but most of the proposed simulation
algorithms are aimed at a particular plant disease symptom to
analyze its apparent morphological characteristics to realize
the simulation, lacking the exploration of common problems
existing in different plant diseases, with complicated methods
and large constraints.

Plant morphology can reflect the gene expression,
reproductive growth and resource acquisition of plants.

The implementation of morphological modeling of plants using
computer languages, as opposed to the graphical information of
plants kept in the form of pictures, is also an important reference
for this paper. Geometric topology-based modeling is the closest
modeling approach to plant morphological structure. Chen
et al. (2018) extracted modeling constraint rules and improved
the parametric L system to generate complex 3D models of trees
based on tree observation data and forestry theory knowledge.
Wen et al. (2021) defined the mathematical representation
of 3D plant nodes, specified the conversion method between
its skeleton model and network model, and completed the
plant population of different maize varieties by assembling
3D plant nodes 3D modeling. Such methods generate models
with a strong sense of realism, but require professionals to
provide specific plant growth rules and parameters that can
describe plant morphology, which is more difficult for non-
agroforestry professional users. Sketch-based modeling is a
relatively flexible and interactive approach. Liu et al. (2019)
built a system for interactive modeling of trees in VR based
on 3D gestures with the help of a head-mounted display and a
6-DOF motion controller for interaction. Zhang et al. (2021)
defined 3D sketches drawn by users in VR as an envelope of tree
leaves and trunks that can automatically generate a complete
3D-tree model, and it can be edited twice. Such methods
support direct user control over the generation of plant forms,
but there are trade-offs to be made in terms of interactivity,
usability, and fine-grained control over plant forms. Modeling
based on measurement data mainly includes image-based and
point cloud-based modeling. Chen et al. (2017) proposed a
hierarchical denoising method based on multi-viewpoint image
sequences to build 3D models of crops in order to improve the
accuracy of 3D point cloud reconstruction. Liu et al. (2021)
used conditional generative adversarial networks to predict the
3D skeleton of trees from individual images and 2D contours
drawn by users, respectively. A tree model was generated
using procedural modeling techniques. Such methods often
face problems such as expensive collection equipment and
cumbersome data processing. Curvilinear surface-based plant
morphology modeling can better establish the connection
between morphological structure and physiological function.
Alsweis et al. (2017) extracted image contours using a
curvature-scale spatial angle detection algorithm and proposed
a procedural biologically motivated method to model leaf
vein morphology at different levels. Isokane et al. (2018) used
Bayesian expansion to infer plant branching probabilities and
proposed a method to observe and infer the 3D plant branching
structure hidden beneath the leaves from multiple perspectives.
Such methods need to ensure smooth and continuous boundary,
complicated operation and low efficiency of the algorithm. In
general, the above approaches to modeling plant morphology
have mainly focused on the organ structure and growth
changes of the plant itself in a healthy state, while modeling the
morphology of plants affected by disease infestation is lacking.
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The phenomena of discoloration, aging, and corrosion
occurring on the surface of an object are to some extent
common to the different disease symptoms on the plant
epidermis due to disease infestation, so the research on texture
simulation can provide effective reference for the simulation
of plant diseases. Zhang et al. (2014) extracted the texture
features of real rust spot pictures, which can be selected and
set texture weights when drawing the model parameters to
achieve texture blending and obtain different states of rust
simulation. Kamata et al. (2014) considered the factors of surface
geometric features (convexity, occlusion, orientation, and
location) of metals and their anticorrosive coating peeling areas
for corrosion calculations to simulate corrosion phenomena
in peeling areas. Bellini et al. (2016) calculated the estimated
age map of weathering phenomena in a texture of a given
input image based on the prevalence of plaque-like patches
in that image, generated a complete weathering texture and
simulate the de-weathering and weathering processes. Zhang
et al. (2018) proposed a first-order quasi-static cracking node
method (CNM) to simulate cracking in a 3D surface model and
established a new stress and energy combined cracking criterion
to deal with crack generation and extension. Munoz-Pandiella
et al. (2018) proposed a technique based on a fast physics-
inspired method that Ishitobi et al. (2020) used a triangular
grid to simulate the weathering of a rust-proof coated metal
surface after mechanical deterioration in three steps based
on fundamental mechanics: “separation-splitting-exfoliation.”
In texture representation and synthesis, Guingo et al. (2017)
propose a two-layer representation of textures, with a noise
layer capturing fine Gaussian patterns and a structure layer
capturing non-Gaussian patterns and structures, synchronizing
the two layers by a set of masks to make them consistent.
Cavalier et al. (2019) propose a method based on local control of
speckle noise by controlling the pulse distribution and a spatially
defined kernel to create the desired texture appearance in a user-
interactive manner. Due to the essential difference between the
object of application and the principle of texture generation, a
generation algorithm suitable for plant disease apparent texture
needs to be explored on the basis of the reference.

In summary, it is of high research and application value
to realize a plant disease visualization simulation with high
realism, high universality and stable operation. In this paper,
we deconstruct and analyze five common and distinctive disease
symptom patterns in plant diseases, and propose a time-varying
generic model of plant disease without violating the theory of
plant pathology to show the dynamic process of plant disease
infestation under different environmental conditions. Using
disease symptoms as the basis for plant disease classification, we
propose simulation algorithms corresponding to five common
disease symptoms respectively, and realize visual simulation of
different types of multiple plant diseases. Deep learning is used
to check the similarity of simulation results in terms of the
accuracy of symptom type recognition.

Algorithms for plant disease
simulation

Time-varying generalized model for
plant diseases

The infected host plant, the pathogenic agent and the
environmental conditions conducive to disease development
are known as “the disease triangle” (Scholthof, 2007). The
occurrence of disease is the result of the fulfillment of these
three necessary conditions. Therefore, the external environment
in which the plant is located directly influences the growth of
the plant and the spread of the disease. Meteorological factors
are most closely related to the occurrence and prevalence of
plant diseases, mainly including temperature, humidity, rainfall,
light, wind, etc. In agroforestry research, data recording and
analysis of environmental and plant diseases enable monitoring
and prediction of plant disease development (Moyer et al.,
2016; Shang et al., 2018; Chappell et al., 2020). The time-
varying generic model is established with the principles of plant
disease prediction as the main theoretical basis, and they are
the three principles of continuity, analogy, and relevance. Due
to professional and equipment limitations and lack of accurate
meteorological measurement data, this paper combines the
description of the process of different plant disease epidemics,
ignores the influence of other factors, and assumes that the
acceleration of the actual spread of disease spots is mainly
influenced by two conditions: atmospheric temperature and
humidity. Within the scope of the existence of unidirectional
effects of temperature and humidity on phytophthora, a time-
varying generic model is developed to represent the common
relationship between different plant diseases under the influence
of environmental conditions.

For any plant disease, define the current spot morphology as
State, expressed as Equation (1):

State =

[
M
C

]
(1)

where M refers to M1, M2, M3, M4, and M5 in sequence for
the disease symptom types described in the text in the actual
code operations, denoted as variable parameters controlling the
extent (size or number) of disease spot spread in the simulation
algorithm. It will be described in detail in specific sections. C
denotes the color component matrix of the disease spots.

In this paper, V denotes the rate of disease diffusion, a
denotes the acceleration of disease spot diffusion, and t denotes
the diffusion time. To simplify the model and ignore the
influence of other factors, the actual acceleration of disease
spot diffusion is assumed to be influenced by two conditions:
atmospheric temperature and humidity, and a quantitative
relationship of uniform form is established in the range where
temperature and humidity play a unidirectional role on plant
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diseases. Tan (1991) had proposed the Richards function as
a general model to simulate the temporal dynamics of plant
disease epidemics, and through detailed derivation, proved that
it can reflect the epidemiological pattern of many plant diseases.
Based on this theoretical formula, the following definition is
made in this paper, as shown in Equations (2–4):

M = Mmax

t∑
i=1

(1− e−Vi1t)
1

1−m 0 ≤ m < 1 (2)

Vi = Vi−1 + (α1T + β1Q+ ε) a1t (3)


1T = Ti − Ti−1

1Q = Qi − Qi−1

1t = ti − ti−1

0 <i < 100 (4)

where m is the shape parameter of the growth curve, reflecting
the type of disease growth function. α and β are the influence
coefficients of temperature and humidity on the disease,
respectively, and the corresponding values of α and β are
different for different plant diseases. T denotes temperature (◦C)
and Q denotes relative atmospheric humidity (%). ε is the value
of random error caused by other factors on acceleration, which
is neglected in the actual operation. Mmax is the maximum
value of M.

For the color of the disease spot C, in order to make the
color change process tend to be smooth, this paper uses the key
frame linear interpolation method for simulation, and the color
is updated once for each rendering of the screen. The color value
in the most severe state is Cmax, and the initial spot color value is
Cmin, then the color value C at time t is shown in Equation (5):

C = Cmin +
M

Mmax
·

Cmax − Cmin

tmax
t (5)

where tmax denotes the maximum value of the diffusion time.

Types of symptoms with continuous
area changes

Discoloration symptom simulation
Discoloration refers to a change in color of the diseased

plant. In this section, Ginkgo yellows disease is selected for the
study to simulate the discoloration symptoms.

The leaf yellowing shows a gradual process from green
to yellow. As shown in Figure 1B, the grayscale remapping
transformation is represented by a right-angle coordinate
system, with the x-axis being the grayscale value before mapping
and the y-axis being the grayscale value after mapping. In
order to represent the color change process more richly,
after normalization, the initial ginkgo grayscale gradient map
(Figure 1A) is grayscale remapped. Three key points[Key1(x1,
y1), Key2(x2, y2), Key3(x3, y3)] divide the whole process into

three processing segments, and the default starting coordinates
of the first segment are (0, 0), as shown in Equation (6):

fg(x) =



y1

x1
x, 0 ≤ x ≤ x1

y2 − y1

x2 − x1
(x− x1)+ y1, x1 ≤ x ≤ x2

y3 − y2

x3 − x2
(x− x2)+ y2, x2 ≤ x ≤ x3

(6)

where x1, y1, x2, y2, x3, y3 are the exact values in practical
application to determine the mapping function of each segment.
Figure 1C shows the grayscale gradient after the three-stage
mapping, where the coordinates of Key1, Key2, and Key3 are
taken as (0.43, 0.14), (0.76, 0.60) and (0.94, 1.0), respectively, and
the rendering results are shown in Figure 1D.

Keeping the vertical coordinates unchanged, the horizontal
coordinates of Key1 and Key2 are dynamically assigned from
large to small, and the amount of change is M1. The calculation
of the grayscale mask image for generating uniformly discolored
ginkgo yellowing disease is shown by Equation (7):

I1 = fg(I0(x, y))+ Slope ·M1 (7)

where (x, y) denotes the position of the pixel point. All
image calculation formulas are performed simultaneously for
each pixel point in the image, which essentially indicates the
calculation of the value of each pixel point and is not repeated
below. I1(x, y) denotes the image after segmented gray linear
transformation, I0(x, y) denotes the initial gray gradient image,
and Slope is the slope of the line between the key points, which
takes the value of 1.4.

Powdery mildew symptom simulation
Powdery mildew symptom is characterized by the

appearance of powdery or moldy material visible to the
naked eye on the surface of the disease. In this paper, we take
cucumber powdery mildew as the research object, use Worley
noise to control the location of the occurrence of the disease spot
and the geometry of the spot itself, and use Perlin noise (Perlin,
1985) to simulate the powdery mildew layer formed by the
disease spot block to simulate the powdery mildew symptom.

The texture edges of the Worley noise-like Voronoi map
are clearly straight lines, so further transformations are needed.
First, the Unity Shader is used to fill the noise after grayscale
processing, so that the grayscale of each cell is randomized, and
then blurred, and finally the threshold is set to binarize the
image, so that the grayscale map can describe the shape of the
lesion. After trial and error, a threshold value of 0.71 worked
best. The process is shown in Figure 2A.

In order to reflect the granularity characteristics of the spots,
the Perlin noise with different parameters is superimposed to
generate fractal noise to simulate the effect of powdery mildew.
It can be adjusted by changing the frequency and amplitude
of the two parameters. Users can choose the number of
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FIGURE 1

Schematic diagram of ginkgo yellows simulation. (A) Initial grayscale gradient map, (B) segmented grayscale conversion, (C) grayscale map after
grayscale conversion, (D) rendering result.

FIGURE 2

Schematic diagram of cucumber powdery mildew simulation. (A) Transformation of Worley noise, (B) Perlin noise superimposition, (C)
generation of powdery mildew spot texture.

superimpositions according to the actual simulation needs, and
the generated Perlin noise function is shown in Equation (8):

P_Noise
(
x, y

)
=

n∑
i=0

Noise
(
2ix, 2iy

)
Scale (i)

(8)

where Scale() is the two-dimensional noise range, n is the
number of noise functions superimposed, Noise() is the Perlin

noise function. In this paper, we take n as 3, and the simulated
noise effect after superposition is shown in Figure 2B.

Combining the above steps, Ahpha blending of the two in
the Unity Shader generates a grayscale map of the spot texture
of cucumber powdery mildew, which is I2(x, y), expressed by
Equations (9, 10):

I2(x, y) = Alpha · Iworley(x, y)+ (1− Alpha) · Iperlin(x, y) (9)
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FIGURE 3

Pre-processing of shapes. (A) Generation of Shape1, (B) generation of Shape4, (C) generation of Shape2, (D) generation of Shape3.

 Iworley = Image(W_Noise)

Iperlin = Image(P_Noise)
(10)

where Iworley(x, y) is the grayscale image generated by Worley
noise and Iperlin(x, y) is the grayscale image generated by Perlin
noise. After color mapping, the simulation result is rendered on
the model, as shown in Figure 2C. The equal scale deflation of
the crystals in Worley noise can control the size of the lesions.
For some cells that are already small, the cells are scaled to a
certain level and the small cells will disappear. Therefore, the

cell is dynamically deflated from large to small to simulate the
dynamic process of the spot from nothing to something, from
small to large. The grayscale mapping representing the disease
spots is updated in real time. The amount of deflation change is
M2, as shown in Equation (11):

W_Noise = Noisew(M2 · Cell) (11)

where Noisew() denotes the function that can deflate the cell size
in noise and Cell denotes the cell in Worley noise.
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FIGURE 4

Generation of initial water stain-like spot.

FIGURE 5

Schematic diagram of cucumber powdery mildew simulation. (A) Concentric circle map after random disturbance, (B) map after superposition
of initial lesion, (C) rendering result.

Types of symptoms of quantitative
changes

Ring pattern symptom simulation
Ring pattern symptom is characterized by ring spot pattern.

Initially, the plant surface produces brown, round, water-stained
spots, which gradually form concentric whorls of varying shades
of color as the spots spread. In this paper, we take apple ring rot
as the specific object of study and describe the simulation of ring
pattern symptom.

In this paper, the entire spot is split into two parts, the initial
water-stained spot and the concentric whorl, and the generated
gray-scale image of the spot morphology, which is I3(x, y), is
expressed as Equation (12):

I3(x, y) = IS(x, y)+ IY(x, y) (12)

where IS(x, y) is represented as a grayscale image of water-
stained spots and IY(x, y) is represented as a grayscale image of
concentric whorls.

It is reasonably assumed that the small water-stained spots
initially produced by the onset of disease determine the overall
size, color basis, and outermost morphology of the spots as
they spread and amplify. This part is disassembled step by
step, and the regular circle is randomly perturbed by using
Gaussian noise. Finally, the simulation results of this part
are obtained by combining image operations, and the specific
process steps are as follows.

(1) Four regular circular grayscale maps are generated in turn,
with size satisfying Circle1 > Circle2 > Circle3 > Circle4.
Shape1 and Shape4 are obtained by preprocessing Circle1

and Circle4. The result is shown in Figures 3A,B. Circle2

and Circle3 are perturbed by Gaussian twice, and the result
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after the first perturbation is subtracted from the result
after the second perturbation to obtain Shape2 and Shape3.
The result is shown in Figures 3C,D.

(2) The shape obtained in the above step is subtracted three
times in turn, and the transparency of the result is adjusted
to facilitate the subsequent superimposition of the whorl
part to obtain the shape of the initial water-stained spots,
as shown in Figure 4.

From a microscopic point of view, whorls are seen as formed
by colonies in the process of continuous growth movement
and cessation of aggregation. In this paper, each circle of the
whorl from deep to shallow is regarded as a layer-by-layer radial
gradient mapping that can be increased with time. The amount
of change in the overall deflation of the spot shape is M3, and the
current number of circles is determined by rounding the value of
M3. Then the gray-scale image generation of the water-stained
spot part is calculated as shown in Equations (13, 14):

IS(x, y) = Image(ShapeS) (13)

ShapeS = M3 · Shape (14)

where Shape denotes the initial water-stained spot, ShapeS

denotes the water-stained spot portion after deflation, and
Image() denotes a function that converts the input into an image
format of the same size as the plant texture mapping.

The grayscale image generation for the concentric whorl
section is calculated as shown in Equations (15, 16):

IY(x, y) = Image(ShapeY ) (15)

ShapeY = Rand() ·

Nturns∑
i

GradientMap(π(r0 + i)2

− π(r0 + i− 1)2) (16)

where Rand() is the random function for perturbation,
GradientMap() is the gradient mapping function from 0 to
255, r0 is the radius of the initial circle, and NTurns is the
value of M3 rounded to represent the number of whorl circles.
A random function is added to perturb the regular concentric
whorl pattern (Figure 5A), which is closer to the real one.
The new texture mapping map generated at each moment
is continuously stored and updated. The mapping map of
the initial water-stained spots after superimposed diffusion
(Figure 5B) is rendered to obtain the results of apple whorl
disease, as shown in Figure 5C.

Rust spot symptom simulation
Rust spot symptom is characterized by the appearance

of different shaped spots on the plant surface formed by
aggregations of small particles of varying sizes and distinctive

projections. The rust spot symptom is simulated using wheat
stripe rust as a specific study object.

Based on the characteristics of wheat stripe rust in parallel
strips, this paper uses mask mapping to mark the areas affected
by wheat stripe rust. The white color is used to mark the areas
where stripe rust develops, and the areas where it does not
develop are marked in black. The corresponding mask map is
shown in Figure 6A.

The generated spore mounds are viewed as consisting of
a dense distribution of raised granules. In this paper, this
granularity is represented by drawing a near-elliptical shape
in two dimensions that can be used for gradient mapping,
and the results after different color mapping are shown in
Figure 6B. A number of granular points (the maximum number
is 1,000∗1,000) with 2 × 2 shape pixels are set, and the position
distribution of the granules is randomly perturbed using a
Gaussian random function.

In this paper, we use a normal map to simulate the bump
of rust particles. When the type of normal texture is set to
Normal map in Unity, the built-in function UnpackNormal can
be used to properly sample the normal texture and extract the
normal information by adjusting the bump level. The result is
obtained by applying it to the Surface Shader for output. The
detail is shown in Figure 6C. The rendering result is shown in
Figure 6D.

In this paper, based on the description of the rust disease
process, Unity Shader is used to update the mask mapping in
real time based on dynamic color scale adjustment. This is able
to simulate the dynamic process of disease spot from nothing to
something and from sparse to dense in the actual rendering.

For grayscale images, the algorithm for input color scale
adjustment is to first calculate the difference Diff between the
white field threshold threHigh and the black field threshold
threShadow. Then, the algorithm traverses each pixel in the mask
mapping and calculates the difference GrayDiff between the
input gray value Gray and threShadow for each pixel. If the value
of GrayDiff is less than or equal to 0, the adjusted pixel gray
value Gray’ is 0. Otherwise, the adjusted gray value is obtained
by calculating the power of the inverse of the Midtone with the
ratio of GrayDiff to Diff as the base and multiplying by 255, as
shown in Equations (17–20).

Diff = threHigh− threShadow (17)

GrayDiff = Gray− threShadow (18)

Midtone = Midtone0 −M4 (19)

Gray′ =


0, GrayDiff ≤ 0

255×
(

GrayDiff
Diff

) 1
Midtone

, GrayDiff > 0
(20)
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FIGURE 6

Schematic diagram of wheat stripe rust simulation. (A) Mask map, (B) particulate matter, (C) detail picture after bump treatment, (D) rendering
result.

FIGURE 7

Schematic diagram of rose black spot simulation.

where Midtone0 is denoted as the initial midtone value and M4 is
the amount of change. After the above adjustment, the grayscale
image of the input color scale adjusted by the input color scale
Iin(x, y) is obtained. Then, the ratio coefficients of the deviation
of the white field threshold outHigh and the black field threshold
outShadow and 255 in the output color scale are calculated.
After a series of calculations, the color-adjusted grayscale image
is obtained as the updated mask mapping, which is I4(x, y), as
shown in Equation (21).

I4(x, y) =
outHigh− outShadow

255
· Iin(x, y)+ outShadow

(21)
In this paper, the value of threShadow is 86 and threHigh is 255;
the value of outShadow is 0 and outHigh is 255. The dynamic
adjustment of the color scale is done by dynamically and linearly
adjusting the middle tone value M4 for real-time rendering to
simulate the change process of wheat stripe rust.

Scatter symptom simulation
Scatter symptom is characterized by the natural distribution

of the spots on the plant surface, mostly scattered, rarely in
patches, with a relatively smooth surface. In this paper, we take

rose black spot as the specific object of study to realize the
simulation of scatter symptom.

In this paper, we use the Perlin noise function to perturb
the regular circular spots in two-dimensional space in terms
of distribution and shape, respectively, so that we can generate
the disease spots that meet the characteristics of scattered
morphological symptoms, as shown in Figure 7. The algorithm
process steps are as follows.

(1) The Perlin noise function is used as a random function
to generate a number of regular circles for random
distribution in the 2D plane, and the dynamic scaling of the
radius of the circles can control the size of the spots. After
adjustment, the scaling value of Perlin noise used here for
position perturbation is set to 32. The larger the scaling
value, the more intensive the Perlin noise calculation.

(2) A random function is used to affect the size of the
generated regular circles, setting the random range of
shape scaling multipliers between 0.5 and 1.0. The Perlin
noise function is again used, here scaled to a value of 8,
to perturb the regular circular shape to deform it, thus
generating an irregular speckle pattern.
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FIGURE 8

Adjusted ResNet network structure. (A) B1, (B) B2, (C) overall structure.

(3) The white patches generated above to represent the
diseased spots are adjusted in gray scale. After performing
color mapping, the color of the disease spots is adjusted
by adjusting the value of HSI (Zhi et al., 2020). An image
subtraction operation is performed with the original leaf
texture mapping to generate the scattered spots of the
disease in 2D view. After applying it to the 3D model, the
final rendering result is obtained.

The number of scattered spots is predetermined for the
background program. According to step (1) above, the scattered
spot locations of rose black spot are determined by Perlin
noise as a random generator. Each random point generated
by the random function corresponds to some random value
in the interval.

The random value corresponding to the i random point
is valuei, and the threshold that can be changed in real time
for judgment is M5. Display(i) is the function that determines
whether each random point will be shown to be rendered as a
disease spot, as shown in Equation (22).

Display(i) =

True, valuei ≤ M5

False, valuei > M5

(22)

Each random point initially generated is traversed, and when
the corresponding random value is less than or equal to the set
threshold value indicates that the point is displayed, otherwise,
the point is not displayed, thereby updating the current spot
texture mapping I5(x, y).

Simulated similarity test

Convolutional neural network is the leading architecture for
image classification, recognition, and detection tasks in deep
learning (Rawat and Wang, 2017; Li et al., 2020). In this paper,
real images are used as the training set and the model is trained
using ResNet (He et al., 2016). The simulation results are used
as a test set to get their recognition accuracy of disease symptom
types as a way to complete the simulation similarity test.

Structural design of ResNet model
The advanced nature of the ResNet model allows its

structure to be changed and adapted flexibly according to the
requirements. The network structure built in this paper is shown
in Figure 8. It consists of 56 layers of network. Among them,
Conv is the convolutional layer and stride is the step size. BN
is Batch Normalization, which aims to regularize the image
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(Zhu et al., 2017). The activation function is Relu. Pool is the
pooling layer. FC is the Fully Connected Layers. Because there
are two sequences of steps with repeated operations in the
ResNet model for feature extraction of image information, the
steps with repeated operations are directly summarized into two
different modules B1 and B2 to simplify the structure diagram
in order to represent the network structure more clearly. The
practical role of both modules is to continuously extract the
feature information of the image. The algorithm flow steps of
the model are as follows.

(1) Initial feature extraction is performed on the training set
images using a convolution kernel of size 3 × 3 with
a step size of 1. The BN layer is used to normalize the
disease features. ReLU activation function (Lin and Shen,
2018) is used to non-linearize the disease features. Each
subsequent convolutional calculation is followed by batch
normalization and activation function, which will not
be reviewed later.

(2) The image features are further extracted and fused with
the input feature information using 2 sets of convolution
kernels of size 3 × 3 with a step size of 1. This process
is seen as the overall module B1 (Figure 8A), and the B1
calculation operation is repeated twice.

(3) Deep features are extracted using one set of convolutional
kernels of size 3 × 3 with a step size of 2 and one set
of convolutional kernels of size 3 × 3 with a step size of
1. The result of this step is added to the result obtained
by computing the original input image using a set of
convolutional kernels of size 1 × 1 with step size 2, and
the result after the summation is converted to a function
using the activation function. This process may be seen as
overall module B2 (Figure 8B).

(4) The calculation process of B1 and B2 is repeated
three times in order to further extract the deep
features of the image.

(5) When the network finishes processing the image with
feature extraction, the feature map is compressed using
the average pooling operation to reduce the amount of
network computation. Finally, Softmax classifier (Zeng
et al., 2014) is used to output the probabilities of the
corresponding categories through a fully connected layer
of size 5. The label with the highest probability is output as
the predicted classification result.

Data acquisition and pre-processing
The experimental images collected for training in this paper

consist of PlantVilage (Hughes and Salathe, 2015), a publicly
available online dataset for plant disease image classification,
and a self-built dataset. A total of 1,000 RGB color images of
different disease symptom types are collected. The experimental
images collected for testing are all obtained simulated result

maps, with a total of 200 RGB color images. The self-built
dataset was obtained from the image data crawled in the
Agroforestry Science website using crawler software, and the
useless data were removed by manual screening. Under the
guidance and advice of agroforestry-related professionals, we
finished organizing the image data and tagging the category
labels. In this paper, the pixel size of all images was adjusted
to 256 × 256 × 3, and the original images with less
than 256 × 256 × 3 pixels were zero-filled. In order to
obtain experimental images that better meet the training
requirements, some of the images in this paper are adjusted
in terms of sharpness, contrast, sharpening, and interference
information processing.

Result of similarity test
The parameters of the model training were set as follows:

the learning rate was set to 0.005, the number of iterations
was 600 rounds, and the loss function was the cross-entropy
loss function, and the training accuracy could reach 98.1%. The
performance of the model is evaluated by randomly taking 20%
of the real image dataset as the validation set, and the accuracy
obtained is 92%, which is a high recognition accuracy, indicating
that the model can be used to simulate the similarity test.

The simulated result maps of each type of plant diseases were
identified as a test set, so as to achieve the purpose of similarity
test proposed in this paper, and the overall accuracy of the test
obtained is 87%. Because there are certain differences between
simulated results and real images, some interference factors are
difficult to avoid, including the difference between 3D models
and real plants, the difference between the apparent texture of
simulated diseases and real diseases, and the color space ratio,
etc., the recognition accuracy will be significantly lower than
that of the validation set when the test set is simulated results.
The formula for calculating the recognition accuracy of different
symptom types is shown in Equation (23):

Obk =
Correctk

Correctk + Errork
× 100% (23)

where Obk refers to the recognition accuracy of the k symptom,
Correctk refers to the number of image samples with correct
recognition results for the k symptom type, and Error refers to
the number of image samples with incorrect recognition results
for the k symptom.

The obtained recognition for each type is shown in the
Table 1. It can be seen that the overall results of the simulated
similarity test using deep learning are good. Ring pattern has
the most distinctive features and is significantly different from
other symptom types, with the highest recognition accuracy.
In contrast, the plant diseases of rust spot are more easily
misidentified as powdery mildew or scatter types. The formation
of rust spot at a certain period of time is similar in distribution
and shape to these two symptom types, and the identification
accuracy is relatively lowest.
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TABLE 1 Recognition accuracy of different disease symptom types.

Symptom Number of test images Number of misclassifications Recognition accuracy

Discoloration 40 5 87.5%

Powdery mildew 40 3 92.5%

Ring pattern 40 2 95.0%

Rust spot 40 11 72.5%

Scatter 40 5 87.5%

TABLE 2 Average frame rates of different plant diseases.

Symptom Plant disease Simulation results Average frame rate

Discoloration Ginkgo yellows Figure 9A 361

Powdery mildew Cucumber powdery mildew Figure 9B 330

Ring pattern Apple ring rot Figure 9C 324

Rust spot Wheat stripe rust Figure 9D 293

Scatter Rose black spot Figure 9E 338

Results

Display interface operation

In this paper, we analyze the functional requirements of the
plant disease simulation user interface and design a simulation
display interface based on a message-driven model instead of
a command-line program using Unity. Users can: (1) select
the simulation object and open the model file (.obj file),
set the growth conditions of temperature and humidity, and
enter the simulation algorithm process of the corresponding
object; (2) slide the time module to observe the change
process, and the system writes the current rendering time
and real-time frame rate to the real-time information area
in real time; (3) use the right mouse button to rotate the
model. The W, S, A, and D keys of the keyboard control the
zoom in, zoom out, left, and right movement of the model,
respectively. The W, S, A, and D keys of the keyboard can
control the zoom in, zoom out, left and right movement of the
model, respectively.

Experimental results

In order to show the simulation effect clearly and intuitively,
the complex plant model is pre-processed in this paper, and only
the parts of plant organs with diseases are reserved for display.
The average frame rates of different plant disease simulations
are shown in Table 2, indicating that the simulation can be
performed efficiently in real time. Figure 9 shows the simulation
results of the above plant diseases under different environmental
conditions and different disease occurrence times. It can be seen
that the severity of plant disease damage to the plant epidermis
increases with time, gradually spreading to infest the entire

surface of the organ when the temperature and humidity are in
the right range for the growth of the disease.

Discussion

Plant diseases are diverse and complex. The number of
phenological patterns under the influence of different exogenous
and endogenous conditions is even more uncountable. When
visualizing them, it is difficult to classify and simulate plant
diseases from a plant pathology perspective. In this regard, this
paper defines a common relationship between the diffusion
process of plant diseases under the influence of environment
and designs a generic time-varying model of plant disease. In
this paper, by observing and analyzing the apparent symptoms
of diseases, we classify plant diseases by symptom characteristics
and propose an apparent simulation algorithm to realize
visual simulation of different plant diseases. To verify the
generalizability of the algorithm, this paper implements the
apparent simulation of five other plant diseases using the
proposed five symptom simulation algorithms, respectively, as
shown in Figure 10.

In addition to the proposed deep learning-based similarity
check method, to be able to evaluate the simulation results
more comprehensively, this paper designs the “Questionnaire
on the Effectiveness of Plant Disease Simulation Based on
Feature Classification.” We invite users to visually compare the
simulation results with real pictures. Using a Likert scale, users
rated the simulation results quantitatively and made suggestions
for optimization, and the questionnaire data were analyzed
using SPSS software (Pallant, 2013). In order to be able to
cover different types of users to participate in the evaluation,
users of different age groups, different educational stages and
different industries were invited to this paper, and a total of
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FIGURE 9

Simulation results of different plant diseases under different parameters control. (A) Ginkgo yellows, (B) cucumber powdery mildew, (C) apple
ring rot, (D) wheat stripe rust, (E) rose black spot.

242 valid questionnaires were collected. The age groups covered
from below 16 to above 45 years old, with the age group of
16–35 years old dominating; the education levels covered from
junior high school to above master’s degree, with bachelor and

master’s degree dominating; the professions included agriculture
and forestry related, computer related and other professions,
with reasonable composition. Descriptive analysis of the overall
effect evaluation was conducted, and the results obtained are
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FIGURE 10

Simulation results of other plant diseases under different parameters control. (A) Tobacco mosaic, (B) lettuce downy mildew, (C) pear ring rot,
(D) corn rust, (E) pear scab.

shown in Table 3. It can be obtained that the median evaluation
score of each symptom type is 4, which indicates that it is similar,
indicating that the overall simulation effect meets expectations
and is recognized by users.

Combined with the shortcomings and suggestions made
by users on the simulation results collected from the non-
scale questions in the questionnaire, they are summarized as
follows: in terms of details, users suggested that the gradient
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TABLE 3 Descriptive statistics.

Symptom Minimum value Maximum value Median Average value Standard deviation Variance

Discoloration 1 5 4 3.909 0.815 0.664

Powdery mildew 1 5 4 3.843 0.835 0.697

Ring pattern 1 5 4 4.033 0.799 0.638

Rust spot 1 5 4 3.760 0.860 0.739

Scatter 1 5 4 4.041 0.814 0.662

texture of the simulated area of discoloration is not obvious,
the stacking effect of powdery mildew needs to be refined, the
boundary treatment of ring pattern is not detailed enough,
the color of rust spot needs to be further processed, and the
apparent differentiation between different periods of scatter is
not enough. These also provide valuable reference directions for
the subsequent optimization work.

Conclusion

The time-varying generic model proposed in this paper
simplifies the unqualified and complex processes into
quantitative common relationships in a uniform computational
manner. It can also set different influence coefficients to express
the variability of plant diseases by the action of influencing
factors, effectively integrating algorithmic resources. The
simulation algorithm proposed in this paper for different
disease symptoms generates the texture of disease spots in
two-dimensional space, and then renders them on the three-
dimensional model to get the final effect. For discoloration,
this paper mainly uses the three-stage gray-scale remapping to
realize the discoloration simulation with a sense of hierarchy;
for powdery mildew, this paper combines Worley noise and
Perlin noise application to realize the simulation; for ring
pattern, this paper combines image processing and noise
disturbance deformation to simulate the pattern of spots into
two parts: initial water-stained spots and concentric circles;
for rust spot, this paper uses mask mapping to mark specific
onset areas, simulates the raised particles of rust spots through
bump mapping, and uses color scale adjustment to complete
the changes of spot texture; for scatter, this paper makes double
application of Perlin noise to represent the distribution of spots
and disturbance rule shape, and sets dynamic thresholds to
complete the simulation of scatter from less to more. In the
simulation similarity test, the recognition accuracy reached
87%, indicating that the disease phenology simulation algorithm
in this paper can effectively and realistically realize the process
simulation of different plant diseases. The overall complexity
of the algorithm is moderate, and it operates efficiently, which
provides a new solution for disease simulation research and
can be extended to more types of disease simulation. In the
future, we will work on three aspects: enriching the types of

disease symptoms, optimizing the general model of disease time
variation, and improving the overall functions to increase the
freedom of simulation.
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