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The genetic information and functional properties of plants have been further

identified with the completion of the whole-genome sequencing of numerous

crop species and the rapid development of high-throughput phenotyping

technologies, laying a suitable foundation for advanced precision agriculture

and enhanced genetic gains. Collecting phenotypic data from dicotyledonous

crops in the field has been identified as a key factor in the collection of

large-scale phenotypic data of crops. On the one hand, dicotyledonous

plants account for 4/5 of all angiosperm species and play a critical role in

agriculture. However, their morphology is complex, and an abundance of

dicot phenotypic information is available, which is critical for the analysis of

high-throughput phenotypic data in the field. As a result, the focus of this

paper is on the major advancements in ground-based, air-based, and space-

based field phenotyping platforms over the last few decades and the research

progress in the high-throughput phenotyping of dicotyledonous field crop

plants in terms of morphological indicators, physiological and biochemical

indicators, biotic/abiotic stress indicators, and yield indicators. Finally, the

future development of dicots in the field is explored from the perspectives

of identifying new unified phenotypic criteria, developing a high-performance

infrastructure platform, creating a phenotypic big data knowledge map, and

merging the data with those of multiomic techniques.
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Introduction

With the increasing popularity of sequencing technology and the scale of materials

to be tested, a new issue has arisen: a lack of suitable high-throughput phenotype

acquisition technology to obtain corresponding phenotypic information. In addition,

based on a large amount of crop genome information, determining how to analyze

the interaction mechanisms of gene function, plant phenotype, and environmental

response efficiently and with a high resolution has become a new challenge (Furbank

and Tester, 2011). In this context, genomics, corresponding to the phenomics concept,

has arisen at a historic moment (Zhao et al., 2019). The essence of the phenotype is a

plant genome sequence three-dimensional expression, and its regional differentiation
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characteristics and evolution are intergenerational (Tardieu

et al., 2017; Zhao, 2019), so the plant phenotypic group contains

information with a complexity far beyond the estimates.

Therefore, the genotype–phenotype–environment relationship

can be systematically and deeply explored from an omic

perspective to reveal the response mechanism of structural and

functional characteristics of plants to genetic information and

environmental changes at multiple scales (Pan, 2015; Tardieu

et al., 2017; Zhou et al., 2018).

Currently, crop phenotype research is primarily conducted

in the United States, Germany, France, Australia, the

United Kingdom, Italy, Japan, Canada, Mexico, India, and

China (Xiao et al., 2021). Research objects have included maize

(Souza and Yang, 2021; Xie et al., 2021; Shao et al., 2022),

rice (Mishra et al., 2021; Muharam et al., 2021; Xiao et al.,

2021), wheat (Prey and Schmidhalter, 2020; Furbank et al.,

2021; Zelazny et al., 2021), and other monocotyledons. This

focus on monocotyledons probably occurred because their

morphological structure is relatively simple, and the difficulty

of image acquisition and data analysis is relatively low. Leaf

counting has been realized in maize, sorghum, and other

monocotyledons over the entire growth period (Miao et al.,

2021). However, studies on the leaves of dicotyledonous species

such as soybean and cotton have focused only on comprehensive

indicators such as canopy coverage and compactness due to

the severe occlusion between leaves and complex plant types

(Moreira et al., 2019; Li et al., 2020), which has led to the loss of

many details. Leaves are closely related to plant photosynthesis,

thus affecting biomass accumulation, which in turn is related

to yield formation, so the loss of information is not conducive

to the in-depth study of the phenotypes of dicotyledons. A

significant positive correlation exists between the panicle

number and the yield at maturity, and this number can be

identified and counted directly at a certain regional scale

in most monocotyledons. There was a significant positive

correlation between panicle number and yield at the maturity

stage, and it could be recognized and counted directly on a

certain regional scale in most monocotyledons (Jun et al., 2021;

Wanli et al., 2021). However, in many dicotyledons, researchers

Abbreviations: 3D, Three Dimensions; CNN, Convolutional Neural

Network; CSIRO, Commonwealth Scientific and Industrial Research

Organisation; CT, Computed Tomography; DCNN, Deep Convolutional

Neural Network; EB, Integrated Baggies; ETH, Ethiopia; εc, Biomass;

εe, Photochemical Energy; GWAS, Genome-Wide Association Studies;

IPPN, International Plant Phenotype Network; MRI, Magnetic Resonance

Imaging; NASA, National Aeronautics and Space Administration; OSP,

Optical Sensing-based Phenotyping; PGP, Pretty Good Privacy; PHIS,

Phenotypic mixed Information System; QTL, Quantitative Trait Loci; RGB,

An abbreviation for three primary colors; SAM, Shoot Apical Meristem;

SMAP, Soil Moisture Active Passive; SFM, Multiview Structure From

Motion; SNP, Scottish National Party; UAVs, Unmanned Aerial Vehicles;

UK, Britain.

can predict yields using only a large number of other indicators

or measure the yield by picking and laying out fruits at maturity

(Casagrande et al., 2022) or by picking and spreading out fruits

at maturity (Li et al., 2021; Xiaobin et al., 2022), which greatly

increases labor costs and is not beneficial to the development of

high-throughput phenotypes.

Branching is an important common feature of dicotyledons.

The quantity of branches and their position influence yields and

are connected to the lodging resistance. Studies have shown that

by reducing the position of branches and increasing the number

of effective branches in oilseed rape, the lodging resistance

can be improved, and the yield per plant can be increased

(Fan et al., 2021; Amoo et al., 2022). The branching ability

guarantees the yield formation in soybean (Xiaobo et al., 2012;

Yu-Shan et al., 2015). The major goal of breeders is to increase

upland cotton yields by controlling the branch type and using

appropriate mechanical picking methods. Therefore, Wu et al.

(Wu et al., 2021; Zhan et al., 2021; Sun et al., 2022) carried

out a series of studies on branching development. These studies

have contributed to improved breeding by providing great

genes for improving plant accessions. However, few studies

involving the use of high-throughput phenotyping platforms

have been conducted, which has severely slowed the breeding of

dicotyledonous plants.

Dicotyledons account for 4/5 of the total number of

angiosperms and play an important role in agricultural

production (Chuanji, 1982). Soybean, broad bean, rape, cotton,

and other dicotyledonous species are commonly cultivated and

are all directly tied to human existence. According to imprecise

statistics, the global demand for soybeans is ≈388 million

tons per year. With an annual consumption of almost 600

million tons (searched in the U.S. Department of Agriculture

data), rapeseed is the world’s second-largest oil crop species.

Therefore, high-throughput phenotypic studies on dicotyledons

are highly important.

The current high-throughput phenotyping research

environment mainly includes indoor potted plants (Bodner

et al., 2021; Zea et al., 2022) because indoor imagining, which

can swiftly and accurately obtain a large number of phenotype

inages for later analysis and verification, faces fewer restrictive

factors. Thousands of phenotypic experiments carried out

in environmentally controlled growth facilities or fields each

year can provide a vast amount of phenotypic data. Due to

the impact of environmental variations, the replication of

results by the same researcher and the repeatability of results in

separate tests by other laboratories are frequently unsatisfactory

(Poorter et al., 2012). Environmental aspects are critical and

should be given at least as much attention as the characteristics

being assessed, which leads to the next question: how does one

quantify all environmental impacts? The phenotyping platform

is systematically presented in this paper, and the determination

of the phenotype of dicotyledons against the backdrop of

the rapid development of the field phenotyping platform is
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discussed. This paper guides investigating high-throughput

phenotypic application technology for dicotyledons in the field,

enhancing precision agriculture and increasing genetic gains.

Overview of high-throughput
phenotyping of dicotyledonous
crops in the field

We collected statistics on field phenotyping facilities and the

number of publications since 2010 to better understand how

the high-throughput phenotyping of field dicot crops should be

developed. In 2016,according to statistics from the International

Plant Phenotype Network (IPPN), the phenotyping platform

is used in the United States, Australia, China, Germany,

and other countries. Nearly 200 large-scale phenotyping

facilities are in operation around the world (the most notable

being the Australian National Plant Phenotyping Facility

“Plant Accelerator,” the British National Plant Phenotyping

Center, the German Julich Phenotyping Research Center,

the Netherlands Plant Eco-phenotyping Centre, and the

German IPK Greenhouse Automation). There are ≈82 indoor

mechanized phenotyping platforms and 81 European field

mechanized phenotyping platforms (including 26 intensive and

55 barren types). Asian field mechanized phenotyping platforms

are yet to be counted. However, over the last 5 years, many

countries, led by the United States and China, have increased

their investments in field mechanization platforms.

The development of phenotyping platforms has provided

a solid foundation for crop phenotyping research. Only 25%

of all global high-throughput phenotyping platforms are used

for field research, and only 49% of the platforms are actually

used to obtain high-throughput phenotyping information in

the field (Figure 1A). The number of papers published on crop

phenotypes has increased annually; in 2019, the number of

papers published each year had surpassed 300. Additionally,

among many countries and regions that are involved in high-

throughput phenotyping studies of plants, the United States

is ahead in terms of research results. We list only the top 10

countries or regions in Figure 1B. Dicotyledonous crops account

for only 23% of the research results, which is substantially lower

than monocotyledons. Arabidopsis is the most studied dicot

crop, most likely because it is a commonly used model crop

and using it to analyze new phenotypes can greatly decrease the

difficulty of research. Furthermore, soybeans, cotton, tobacco,

peanuts, rape, and other crops have gradually entered the

academic research field. Finally, we compiled statistics on

dicotyledonous crop research topics. According to the statistical

findings, dicotyledonous plant research topics mainly focus on

six aspects: yields, physiology and biochemistry, genes, biotic

stress, abiotic stress, and growth dynamics. Genes were the

most studied topic, followed by yield (Figure 1C). These research

topics are covered in the following chapter.

Research progress of field
high-throughput phenotypic
information platforms

Platforms are generally classified into three types based

on the different spatial areas in which they operate: ground-

based platforms, air-based platforms, and space-based platforms

(Huichun et al., 2020). Ground-based platforms encompass all

plant phenotyping platforms that are in contact with the ground

while being built or used. Based on their loading modes, sensors

are classified into conveyor belt types, gantry types, suspension

cable types, vehicle types, and self-propelled plant phenotyping

platforms (Figure 2A). Air-based platforms include all platforms

that collect phenotypic data in the air, which are classified as

unmanned aerial vehicles (UAVs) or manned aircraft depending

on whether or not a human pilot is present (Figure 2B). Space-

based platforms collect phenotypic data using satellite remote

sensing (Figure 2C).

Ground-based platforms

Research has been conducted on ground-based platforms,

with Crop Design in Belgium being the first company in the

world to develop a commercialized large-scale phenotyping

measurement platform (Reuzeau et al., 2006). Foundation

platforms have advantages and disadvantages in their use

(Table 1). The conveyor belt-type foundation platform can

detect plant phenotypic indicators in real time, and the

detection objects can be flexibly replaced based on individual

needs. However, this device is better suited for indoor use.

The gantry-type platform has a walking device, an automatic

control module for mechanical motion, and a high-precision

sensor array. It is not affected by the environment, has a

low impact, and can take measurements repeatedly every day.

However, the cost is high, and only a fixed area can be

observed. Suspension-type platforms have the advantages of

not requiring guards, continuous operation (such as at night),

good repeatability, and high measurement accuracy, but they

are typically expensive and can detect only a limited number

of areas. Vehicle-mounted platforms are typically agricultural

machinery platforms, such as tractors, that are outfitted with

various sensors to form phenotype platforms. They can meet

the application requirements of most researchers and small

businesses to the greatest extent possible due to their low cost,

constant perspective, easy installation, and simple operation.

However, due to the wide wheel, low body height, and high

vibration, agricultural machinery is primarily suitable for short

plants and is limited by row spacing and plant space. Currently,

the vehicle-borne phenotypic platform is being used to collect

biomass (Busemeyer et al., 2013), plant height (Comar et al.,

2012), leaf area, stem diameter, canopy temperature, and other
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FIGURE 1

Overview of high-throughput phenotyping research. (A) The proportion of di�erent phenotypic platforms and the composition of phenotypic

platforms in the field (searched in IPPN, https://www.plant-phenotyping.org/ippn-survey_2016). (B) Ranking and annual number of phenotypic

papers published by countries in the world (2010–2021) (searched in Web of Science). (C) Proportion of high-throughput phenotypes studied in

monocotyledons and dicotyledons and the main subjects studied in dicotyledons (searched in Web of Science).

phenotypic data for wheat (Andrade-Sanchez et al., 2013),

cotton (Sun et al., 2018), and other crops. Researchers should

examine the impact of the weight of agricultural machinery on

the soil structure and the root system of plants. An increasing

number of researchers are experimenting with compact self-

propelled groundmobile platforms to carry phenotyping sensors

to minimize costs, increase the measurement accuracy, and

reduce environmental side effects (Bai et al., 2016; Young

et al., 2018). Nonetheless, business solutions are lacking, making

promotion extremely difficult. Furthermore, by using the chassis

of commercial self-propelled ground rovers, several researchers

have created phenotypic platforms for various applications

(Shafiekhani et al., 2017), offering a novel approach to the

creation of self-propelled phenotyping platforms.

Li et al. (2020) identified new I-trait indicators (plant

density, relative frequencies, and entropy, among others)

that accurately reflect the response of cotton to drought

stress at the seedling stage. By merging high-throughput

phenome, genome, and transcriptome data, researchers found

that two unannotated genes, GhA040377 and GhA040378, were

considerably upregulated in response to drought. Finally, this

study advocated the use of phenomics to improve the genetics

of cotton and was the first phenomics research publication on

drought resilience in cotton.

Air-based platforms

Air-based platform research is still in its early stages,

but it is progressing quickly. This type of platform has

the advantage of scanning a large area of land in a short

period of time, but there are also some drawbacks such as

a low information accuracy, an insufficient payload, limited

endurance, and weather vulnerability. Currently, air-based

phenotyping platforms primarily include UAVs and manned

helicopters. When compared to manned helicopters, UAVs have

lower costs, lower flying altitudes, and superior information

acquisition precision. As a result, numerous studies have been

conducted on the acquisition of field phenotypic information

via UAVs. The number of sensors that a UAV can carry is

limited due to its low payload capacity compared to ground-

based platforms. Remote sensing analysis of crop phenotypes

(Liu et al., 2016) and maturity evaluation (Malambo et al.,

2018) is performed using RGB cameras, infrared imaging,
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FIGURE 2

Field high-throughput phenotypic information platform. (A) Ground-based platforms include conveyor belt types, gantry types, suspension

cable types, vehicle types, and self-propelled types. (B) Air-based platforms include UAVs or manned aircraft. (C) Space-based platforms include

satellite remote sensing.

multispectral/hyperspectral cameras, and other sensors. Disease

diagnosis (Sugiura et al., 2016), yield estimation (Chang et al.,

2021), growth state monitoring and evaluation (Jin et al., 2017;

Hu et al., 2018), and analysis of critical phenotypic features have

been performed using this type of platform (Ding et al., 2019).

Trevisan et al. (2020) used a 3D point cloud derived from UAV

images to develop a method for detecting sorghum spikes. The

correlation coefficients between the average panicle length and

width assessed by UAVs and those measured on the ground

were 0.61 and 0.83, respectively. Karthikeyan et al. (2020)

used a space-based platform to collect images twice a week

and then employed two complimentary convolutional neural

networks (CNNs) to forecast soybeanmaturity. This method can

detect the sources of mistakes in maturity forecasting, and its

architecture overcomes earlier research limitations and can be

used in large-scale commercial breeding initiatives.

When UAVs are employed, it is also important to consider

its stability, safety, and controllability.

Space-based platforms

Satellite platforms for monitoring the status of large areas

of crops are referred to as a “space-based platforms.” Because

they have the highest data flux and lowest accuracy, space-based

phenotyping platforms are suited only for a wide spectrum of

detection. On the one hand, satellites have a massive payload,

and onboard sensors can cover optical, thermal, microwave,

and fluorescence frequencies, allowing for the collection of

large amounts of data in a short period of time. On the

other hand, satellites can provide recurrent information on

agricultural conditions at different scales throughout the season

(including yield forecasting, field preparation, crop health

monitoring, irrigation, and site-specific management) (Zhang

et al., 2020). Furthermore, improvements in the spatial (Weiss

et al., 2020), spectral, and temporal resolutions of satellite

measurements have increased their use in plant breeding (Prey

et al., 2020; Weiss et al., 2020). Space-based platforms have

become increasingly popular in recent years, and despite their

high cost, they are being used in a limited number of agricultural

applications. For example, NASA has created the Space Test

Station for Thermal Radiation of Ecological Systems, which

can be used to monitor the soil moisture content (Entekhabi

et al., 2010), drought warnings, and water usage efficiency

(Reynolds et al., 2019b). Soil Moisture Active Passive (SMAP)

observations of soil moisture and freeze/thaw timing can

reduce a major uncertainty in quantifying the global carbon

balance by helping to resolve an apparent missing carbon sink

on land over the boreal latitudes (Entekhabi et al., 2010).

Pleiades-1a and World View-3 have been utilized to detect

disease and agricultural water stress (Navrozidis et al., 2018;

Salgadoe et al., 2018), promoting the advancement of precision

agriculture. On the practical side, Jain and Balwinder-Singh

(2019) demonstrated how microsatellite data management can
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TABLE 1 Performance comparison of plant phenotypic information collection platforms.

Phenotypic

platform

Platform

name

Research and

development unit

Platform

type

Advantages Limitations Scanning

scale

Practical application

Ground-based

Platform

Crop Observer PhenoVation,

Netherlands company

Conveyor belt Real-time measurement of photosynthetic

efficiency, estimation of soil coverage by

plant leaves

More suitable for indoor work 1–10 m2 Experiments in a test field at

Wageningen University in the

Netherlands

Field Scan PhenoVation, Pheno

Spex company

Gantry type Not affected by the environment, the

efficiency can reach 5,000 plants/h, and the

measurement can be repeated every day

High cost, only a fixed area can be

observed

10–50 m2 Applied to the field phenotyping

platform built by Nanjing

Agricultural University in 2018

Field

Scanalyzer

Germany, Lemna Tec

company

Gantry type With walking device, automatic control

module of mechanical movement,

high-precision sensor array, supporting data

acquisition and analysis software

High cost, only a fixed area can be

observed

Procurement by scientific research

institutions such as French

Academy of Agricultural Sciences,

Chinese Academy of Sciences and

DuPont Pioneer (Virlet et al., 2016)

Breed Vision University of Applied

Technology, Osnabruck,

Germany

Gantry type Mobile darkroom (moving speed 0.5 m/s),

equipped with 3D depth camera, color

camera, laser ranging sensor, light screen

imaging Settings and other optical equipment

High cost, only a fixed area can be

observed

1–10 m2 University of Applied Technology,

Osnabruck (Busemeyer et al., 2013)

Spidercam University of

Nebraska-Lincoln

Suspended

cable

Covering a field of 4,000 m2 , a variety of

sensors can be mounted on the suspension

cable platform

High cost, only a fixed area can be

observed

50–100 m2 Test field use at the University of

Nebraska-Lincoln in 2017 (Ge

et al., 2019)

ETH Swiss ETH Field

Phenotyping Platform

Suspended

cable

Suspended various sensors High cost, only a fixed area can be

observed

100–1,000

m2

ETH plant research station

Lindau-Eschikon (Kirchgessner

et al., 2016)

Field

Scanalyzer

UK, Rothamsted

Research Centre

Suspended

cable

Equipped with a variety of sensors, the

applicability is strong, the system runs

smoothly, and is less affected by external

interference

High investment cost, high

operation and maintenance costs,

not suitable for large breeding areas

50–100 m2 /

Phenotyping

Robot

USA, Iowa State

University

Self-propelled Multiple stereo cameras trigger

synchronously, and multiple sets of stereo

lenses are superimposed to ensure

phenotypic analysis of tall crops

No commercial solution, need to

design independently

1–10 m2 Used in the experimental field of

Iowa State University in 2014

GPheno

Vision

University of Georgia Vehicle Low cost, can be equipped with a variety of

sensors

Fuel power, larger vibration, wider

tires, and requirements for row

spacing

In 2017, it was used in the

experimental field of the University

of Georgia, USA (Jiang et al., 2018)
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have a substantial impact on agricultural sustainability in

underdeveloped nations.

In summary, many crop phenotyping platforms in the field

have distinct properties. Ground-based platforms can analyze

the largest number of species and are well-established. Their

price is reasonable; however, the vision height is limited, and

the data throughput is modest. Two types of space-based

platforms are available: manned and unmanned. Unmanned

platforms can quickly acquire macrolevel information in a

specific area, with broad vision and enormous data throughput,

but their cost is significant. Space-based platforms, which offer

the widest observation area, mostly rely on satellite remote

sensing. However, they cannot perform small-scale or refined

crop detection and are infrequently employed in agriculture

due to their high cost. The use of space-based platforms in

agriculture is projected to become more common as science

and technology advance. The properties of many types of field

phenotyping platforms are shown in Table 1. When employing

phenotyping platforms, platforms that are reasonable for the

circumstances must be chosen and developed, taking into

account actual requirements such as mobility, ease of operation,

data flux and accuracy, and costs (Lee et al., 2015).

Research status of high-throughput
phenotypic information of dicots in
the field

Morphological indicators

Plant morphology has essential biological implications

in agricultural production, and it is a key component of

plant science research. Traditional plant identification and

classification approaches rely on professional experience, which

is subjective and inaccurate, to examine plant morphological

traits such as appearance, shape, texture, and color (Liu et al.,

2016). Using machine vision, picture segmentation, and big data

processing technologies to reliably gather and analyze crucial

plant traits is an important technical means for the development

of contemporary agriculture, with significant guiding value for

crop management and genetic breeding (Granier and Vile, 2014;

Li et al., 2021). Scholars have conducted field studies on the

morphological indicators of dicotyledonous crops, including

stem height (Paproki et al., 2012), plant height (Sun et al., 2017),

leaf width (Paproki et al., 2012), leaf length (Paproki et al.,

2012), number of leaves (Dobrescu et al., 2020), canopy coverage

(Kirchgessner et al., 2016; Borra-Serrano et al., 2020; Wan et al.,

2021; Xu et al., 2021), canopy height (Kirchgessner et al., 2016;

Borra-Serrano et al., 2020), canopy roughness (Herrero-Huerta

et al., 2020), and flowers (Xu et al., 2017; Jiang et al., 2020).

Stems and leaves are the most frequently utilized factors for

crop morphological indication, and RGB values are commonly

used by researchers to extract these parameters. For example,
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TABLE 2 Statistics of field phenotype research on dicotyledonous crops.

Classification of

indicators

Crop

category

Type of

data

Phenotypic

analysis method

Phenotypic parameters Accuracy

%

R
2 Shooting

scale

Year Author

Morphological

indicators

Cotton RGB 3D reconstruction Stem height, leaf width, leaf length 91.66, 94.25,

91.22

– Single 2012 Paproki et al., 2012

Soybean Thermal,

Multispectral

Machine learning Canopy coverage, canopy height – 0.86, 0.99 Single 2016 Kirchgessner et al., 2016

Cotton RGB CNN Number of flowers Error=−4∼3 – Single 2017 Xu et al., 2017

Rapeseed Multispectral,

RGB

Machine learning Canopy coverage – 0.79 Group 2021 Wan et al., 2021

Soybean RGB Machine learning Canopy coverage, canopy height 90.4, 99.4 – Group 2020 Borra-Serrano et al., 2020

Cotton RGB CNN Flowering patterns – 0.88 Single Jiang et al., 2020

Soybean RGB SFM Canopy roughness – >0.5 Group Herrero-Huerta et al., 2020

Cotton RGB Metashape, Python Canopy coverage 93.4 – Group 2021 Xu et al., 2021

Arabidopsis RGB CNN Number of leaves – 0.92 2020 Dobrescu et al., 2020

Cotton Lidar 3D point cloud Plant height – 1 Single 2017 Sun et al., 2017

Physiological and

biochemical indicators

Soybean RGB Machine learning Leaf iron deficiency chlorosis >81, 96 – Regional 2018 Bai et al., 2018

2017 Naik et al., 2017

Cotton Near Infrared

Spectroscopy

/ Leaf macro and micronutrients 87.3, 86.6 – Organ 2021 Prananto et al., 2021

Soybean Hyperspectral DNN Fresh biomass of above ground – 0.91 Group 2021 Yoosefzadeh-Najafabadi et al., 2021

Cotton Hyperspectral / Coverage, water use efficiency – – Group 2018 Thorp et al., 2018

Soybean Spectral

Scanner

Modeling εe, εc – 0.68 Organ 2021 Keller et al., 2021

Biotic/Abiotic Stress Rapeseed RGB CNN Oilseed rape pests 77.14 Regional 2019 He et al., 2019

Rapeseed RGB Machine learning Fruiting bodies of Leptosphaeria

maculans

– 0.87 Regional 2019 Bousset et al., 2019

Soybean RGB DCNN Nonbiological – – Regional 2018 Ghosal et al., 2018

Soybean RGB Machine learning Leaf iron deficiency chlorosis 96% – Single 2018 Naik et al., 2017

Soybean Multispectral,

Infrared

Machine learning Flood – 0.9 Organ 2021 Zhou et al., 2021

Yield Soybean RGB / Canopy coverage – 0.4–0.7 Regional 2016 Bai et al., 2016

Soybean RGB Machine learning Yield and maturity – 0.51, 0.82 Group 2020 Borra-Serrano et al., 2020

Soybean RGB / Yield/canopy cover – 0.75 Group 2019 Moreira et al., 2019

Soybean Hyperspectral DNN (EB) Yield – 0.76, 0.77 Group 2021 Yoosefzadeh-Najafabadi et al., 2021

RGB, an abbreviation for the three primary colors; CNN, convolutional neural network; DCNN, deep convolutional neural network; SFM, multiview structure from motion; EB, integrated baggies εe, photochemical energy; εc, biomass.

The slash (/) indicates the ratio.

The short line (–) indicates that it is not mentioned in the article.
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Paproki et al. (2012) created a cotton plant model by capturing

RGB images of cotton plants and extracting indicators such

as the cotton stem height, leaf width, and leaf length. When

compared to manual measurements, the average absolute error

was 9.34, 5.75, and 8.78%, respectively, while the correlation

coefficients were 0.88, 0.96, and 0.95, respectively. Dobrescu

et al. (2020) used deep learning to analyze the number of

Arabidopsis leaves in RGB photos, and the R2 = 0.92 when

compared to manual measurements. The approach of collecting

crop morphological data from RGB images is quite accurate.

The extraction of crop canopy information is useful in the

study of crop data. Previous research has demonstrated that

thermal imaging, multispectral imaging, and RGB imaging can

be utilized to monitor soybean canopy coverage and canopy

height with an accuracy of>90% (Sun et al., 2017; Borra-Serrano

et al., 2020), and an R2 > 0.5 was found after linear fitting using

the values measured in the field (Herrero-Huerta et al., 2020).

Moreover, similar research has been conducted on cotton, rape,

and other crops. Xu et al. (2021) created a UAV systemwith three

cameras (RGB, multispectral, and thermal) and a lidar sensor

to identify cotton canopy coverage and canopy height, with an

average relative error of only 6.6%. The approach of collecting

crop morphological data from RGB images is quite accurate.

Using a UAV platform fitted with an RGB and multispectral

camera, Wan et al. (2021) obtained rape canopy images. The

PROSAIL-GP model was used to invert rapeseed vegetation

coverage and the R2 = 0.79. The resilience of the proposed

method was confirmed in cotton (Gossypium hirsutum L.), and

a better retrieval accuracy was obtained.

Many experiments have been conducted to analyze cotton

flowering utilizing high-throughput phenotyping approaches.

Color RGB images obtained by a UAV system and a CNN were

used to detect the number of cotton blossoms in the original

image, with an error of just −4∼3 (Xu et al., 2017). Scanning

cotton with a tractor-mounted lidar had an R2 = 0.98 compared

with that of manual measurements (Sun et al., 2017). Moreover,

cotton flowering status can be recognized using multiview color

imaging and deep learning, with an R2 = 0.88 and an RMSE =

0.79 (Jiang et al., 2020).

Previous research has indicated that the use of a high-

throughput phenotyping platform to obtain crop morphological

indicators is nearing maturity. Researchers are more likely to

use a ground-based platform equipped with an RGB camera

as the primary research tool in the study of crop leaves

and stalks. Canopy information can be extracted using UAVs

equipped with RGB, hyperspectral, and radar sensors, but

the accuracy is slightly lower than that obtained in leaf and

stem studies. In terms of flower counting, UAVs and vehicle-

mounted platforms outfitted with RGB cameras and lidar

are commonly used, and the accuracy is acceptable. Thus,

it is not surprising that the choice of a high-throughput

phenotyping platform is closely related to the specific indicators

being studied.

Physiological and biochemical indicators

Crop physiological and biochemical indices include

chlorophyll, photosynthetic rate, water stress, biomass, salt

tolerance, and leaf water content. These indices can accurately

reflect crop growth, health, and resistance. Crop physiology and

biochemistry studies involving the use of a high-throughput

phenotyping platform have primarily focused on the leaf color

(Bai et al., 2018), element content (Naik et al., 2017; Prananto

et al., 2021), biomass (Yoosefzadeh-Najafabadi et al., 2021), and

water use efficiency (Thorp et al., 2018).

To score iron deficiency chlorosis, RGB images of soybean

plants in the field were collected, which revealed an overall

accuracy of >81% (Naik et al., 2017; Bai et al., 2018). Prananto

et al. (2021) used a ground-based platform equipped with a

near-infrared spectrometer (wavelength range 1,350–2,500 nm)

to estimate different macro- and micro-elements in cotton leaf

tissues, with accuracies of 87.3 and 86.6%, respectively. The

fitting degree of aboveground fresh biomass can be as high

as 0.91 (Yoosefzadeh-Najafabadi et al., 2021) when combining

hyperspectral photography with deep neural network (DNN)

analysis for biomass acquisition and water use efficiency.

Multispectral images can be used to determine the crop canopy

coverage, which is then used to estimate the coefficient of basic

crops to improve the crop water use efficiency (Thorp et al.,

2018). Previous studies have shown that by acquiring high-

throughput phenotypes, crop nutrients can be estimated in the

field, farmers can proactively manage nutrition to avoid yield

losses or environmental impacts, and evidence is provided for

crop selection.

In short, physiological and biochemical indices have

received less attention than morphological indices have. The

platforms are mainly based on the ground and in space, and the

sensor types are more complicated and varied. This research will

help with nutrient decisions and the breeding of new varieties.

Biotic/abiotic stress indicators

Pests and diseases are the primary causes of crop yield

reductions in terms of biological stress. Abiotic stress refers to all

the factors that negatively affect crop growth and development

as a result of an unsuitable external environment, which mainly

includes light, temperature, water, and fertilizer. Crops are

increasingly subjected to biotic/abiotic stress during growth as

the global climate changes. The goal of smart agricultural plant

protection is to locate the type of stress and determine the degree

of stress through accurate identification before crops are stressed

and irreparable damage is caused to protect plant operations.

The traditional method for evaluating the tolerance of crops

to external stress in terms of the field conditions is to judge

the damage level visually, but this method is labor intensive

and susceptible to subjective error. This problem can be
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FIGURE 3

High-throughput phenotype workflow flowchart.

effectively resolved by utilizing high-throughput phenotyping.

He et al. (2019) used RGB images of rapeseed to judge

rapeseed insect pests with an accuracy of 77.14% using CNN

processing and analysis. Naik et al. (2017) and Ghosal et al.

(2018) used high-throughput phenotypes to evaluate soybean

under abiotic stress and obtained promising results. Soybean

field images were captured using a UAV equipped with a

multispectral and infrared thermal imager, and five image

features were extracted, including the canopy temperature,

normalized difference vegetation index, canopy area, canopy

width, and canopy length. The damage level was evaluated by

a deep learning model, with an accuracy of 0.9 based on these

features. The method proposed in this paper appears to be very

promising for soybean breeding, and it is expected to replace

an abundance of manual operations and more efficiently assess

the level of waterlogging disasters (Zhou et al., 2021). High-

throughput phenotypes have enormous potential for measuring

crop traits and detecting crop responses to biological or

nonbiological stresses.

Yield indicators

Crop yield estimation in the field is regarded as the

foundation of food security. In recent years, remote sensing

information and crop growth models have been coupled to

resolve a variety of agricultural problems, such as crop growth

detection and yield prediction.

Bai et al. (2016) collected soybean field traits via a

self-propelled platform outfitted with five sensor modules

(ultrasonic distance sensor, thermal infrared radiometer,

normalized difference vegetation index (NDVI) sensor, portable

spectrometer, and RGB network camera). The results of the

analysis and processing revealed that the traits obtained by the

sensors were highly correlated with the final grain yield in both

the early and late seasons (r = 0.41–0.55, and r = 0.55–0.70).

For example, Moreira et al. (2019) attached an RGB camera

to a UAV to collect soybean production and canopy coverage

data and continued the analysis to yield | ACC with an actual

output correlation of 0.75. Yoosefzadeh-Najafabadi et al. (2021)

used the hyperspectral vegetation index (HVI) collected by a

UAV equipped with hyperspectral sensors to predict soybean

yields in conjunction with two artificial intelligence algorithms

integrated baggies (EB) and DNN and obtained determination

coefficients (R2) of 0.76 and 0.77, respectively.

We suggest that to acquire a yield index, we must first

acquire multi-index information. Because different researchers

utilize different predictors, different high-throughput

phenotypic platforms and sensors can be used. In general,

the use of UAVs equipped with RGB cameras is the most

common method. Yield prediction is beneficial for shortening

the breeding time of varieties, reducing the cost of yield

measurements, and enhancing the yield measurement efficiency,

all of which are vital in crop research and development. Table 2

provides statistics on the field phenotypic information

of dicotyledons.
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High-throughput phenotyping and
genetic breeding of dicotyledonous
crops in the field

Crop breeding has gone through three generations, with

the first being artificial screening as the primary method,

the second being hybridization as the primary method,

and the third being molecular markers and genome-wide

association analysis as the primary and auxiliary methods.

The fourth generation of intelligent-assisted breeding with big

data, supported by multidisciplinary and multiomics data, is

currently underway (Wallace et al., 2018). The incorporation

of phenotypic and genomic data, as well as proteome,

transcriptome, metabolome, and other omics data, is required

for the fourth generation. Utilizing genome-wide association

studies (GWASs), quantitative trait loci (QTL) analysis,

and other technical methods, a large number of candidate

genes and candidate molecular markers have been identified.

Models, such as breeding information simulation, parental

selection recommendation, breeding path recommendation, and

breeding variety prediction, have been established to form the

ultimate intelligent breeding decision system (Wang and Xu,

2019).

The high-throughput phenotyping platform, which enables

the accurate assessment of a large number of field plots with

a variety of measures in a short period of time, simplifies

the routine quantification of crop development, physiology,

and phenological characteristics (White et al., 2012; Araus

and Cairns, 2014). These data provide a useful framework for

addressing phenotypic bottlenecks in plant breeding (Furbank

and Tester, 2011; Araus and Cairns, 2014; Kumar et al., 2015).

Crop dwarfing has contributed to the growth of yields in the

Green Revolution (Hammer et al., 2009; Swaminathan, 2014),

and the fourth generation of intelligent-assisted breeding with

big data could be the next breakthrough in accelerating the

genetic harvest of crops in the field. Heritability and genetic

gain potential will improve with high-throughput and precise

phenotypes (Araus et al., 2018). Numerous successful results

have been obtained in many crops by incorporating genomic

and phenotypic data. The function of a large number of

unknown genes, for example, has been quickly decoded, thereby

improving the understanding of G-P maps (Raman, 2017).

The water conditions of soybeans with different genotypes

have been isolated (Braga et al., 2020), mutant and wild types

have been effectively classified (Dobrescu et al., 2020), and

flowering patterns in plants with complex canopy structures

(such as cotton) have been identified (Jiang et al., 2020).

Phenotypic indicators with strongly inherited traits are being

investigated. Furthermore, phenotypic and genetic variation can

be interpreted using optical sensing-based phenotyping (OSP)

data analysis (Xavier et al., 2017; Sun et al., 2021).

High-throughput phenotyping and
precise management of dicotyledonous
crops in the field

Because agriculture is currently facing resource

shortages and serious farmland environmental pollution,

the implementation of precision agriculture demonstrations

and research is critical. High-throughput phenotyping

platforms can be used to obtain crop image traits and conduct

modeling to estimate the yield and quality of a crop (Xu et al.,

2021) and to analyze the relationship between crop growth

and environmental factors, thereby enabling more precise

management (Maimaitijiang et al., 2019).

In particular, high-throughput phenotypic data can be used

to analyze the factors influencing yield differences among plots,

treat different plots differently, and implement “prescription

farming” based on positions, regulations, and needs. Making

full use of information acquisition means analyzing the crop

nutrition status and the spatial and temporal changes in pests

and diseases to make tillage and field management decisions,

as well as investing in agricultural resources such as water and

fertilizer based on local conditions. This approach can ensure

that the crop production potential is fully realized and avoid

the serious consequences of the overuse of chemical fertilizers

and pesticides, such as increased production costs, the pollution

of farmland soil and water environments, and a decline in

the quality of agricultural products. To achieve the best effect

and the lowest cost, agricultural outputs can be increased, the

quality can be enhanced, costs can be decreased, resources can

be conserved, pollution can be reduced, and the environment

can be protected. As a result, precision agriculture can produce

significant economic and ecological benefits, which are vital

for maximizing the production potential of cultivated land,

efficiently using agricultural production factors, and preserving

the farmland environment.

Development direction of
high-throughput phenotypic
information research on
dicotyledonous field crops

The development of a high-throughput phenotype must

follow a certain workflow. As shown in Figure 3, from the

determination of phenotypic concepts to the establishment of

phenotypic platforms, the acquisition of original information,

the extraction of phenotypic parameters, the analysis, processing

and mining of big data, and joint analysis with multiple

omics, practical problems can finally be solved. In fact,

industry experts must decide on new phenotypic criteria
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because the step of “determination of unified new phenotypic

criteria” is a premise for high-throughput phenotypic work;

the demands of researchers for high-quality data, particularly

in terms of resolution and accuracy, vary depending on the

distinct objective features they are pursuing. Therefore, the

key to collecting original information is to “develop a high-

performance infrastructure platform,” but doing so is difficult.

For better trait selection in breeding programs, more effective

field management in agricultural operations, and the eventual

augmentation of the germplasm of grain, the “construction of a

knowledge map of phenotypic big data” stage is crucial but also

difficult. The process of “combining with multiomics” is critical

for finding functional genes and speeding up breeding.

Determination of new unified phenotypic
criteria

Healthy, sustainable development must be based on

consistent standards. Mendel, the father of genetics, began to

define and evaluate phenotypes as early as 1866. He described

seven pairs of relative characteristics of peas in his famous

paper “Plant Hybridization Experiments,” including round

and wrinkled seeds, tall stems vs. short stems, green pods

vs. yellow pods, and so on. In 1911, Wilhelm Johannsen,

a Danish geneticist, established the concept of a biological

phenotype, claiming that an organism’s phenotype was the

consequence of a complex interaction between the genotype and

environmental circumstances (Johannsen, 1911). In the 1990s,

Nicholas Schoork, an epidemiology and biostatistics expert at

Case Western Reserve University, was the first to propose the

concept of physics as a counterpart to genomics (Zhao et al.,

2019). Since then, studies on single phenotypes or series of

phenotypes of humans, animals, and plants have piqued public

interest (Siebner et al., 2009), and such studies have gradually

evolved into an important branch of biology (Bilder et al.,

2009; Houle et al., 2010; Tester and Langridge, 2010). Plant

phenotyping research began at the end of the 20th century with

the goals of obtaining high-quality and repeatable shape data

and quantitatively analyzing the interactions between genotypes

and environmental types and the effects on yields, quality,

stress tolerance, and other related main traits (Ribaut et al.,

2010). Fiorani and Schurr (2013) proposed a new definition of

the plant phenotype in 2013, describing it as a collection of

methods and protocols for accurately measuring the growth,

structure, and composition of plants at various scales. In Zhao

(2019) updated the definition of a phenotype, stating that

it is a physical, physiological, and biochemical mechanism

that can reflect the structural and functional characteristics of

plant cells, tissues, organs, plants, and populations. In essence,

a phenotype is the three-dimensional sequential expression

of plant gene maps, regional differentiation characteristics,

and intergenerational evolution. The phenotype concept is

constantly being redefined. As a result, in the context of the rapid

development of phenotyping platforms, the definition of new

phenotypic concepts must be determined as soon as possible,

and a consistent standard is necessary for correct phenotypic

research by scientists.

Development of a high-performance
infrastructure platform

With the widespread adoption of sequencing technology,

an increasing number of plant genome sequences have been

released, but few functional genes have been identified due

to a lack of phenotypic data. Because of leaf occlusion, a

substantial amount of information (such as the leaf number,

main stem morphology, branch number, branch morphology,

fruit number, and fruit morphology) has not been collected

during the late growth stage of dicotyledons. The first step in

achieving the comprehensive acquisition of high-throughput

phenotypic information is to address the loss of original

information, which is also the core challenge faced by the

high-throughput phenotyping platform. How do you address

the issue of lost data? Due to the nature of high-throughput

phenotypic information gathering, all of the information that

can be extracted is displayed in the original image. Some

medical techniques, including computed tomography (CT),

magnetic resonance imaging (MRI), and ultrasound, can be

used to recover information that has been lost due to leaf

occlusion. Unfortunately, because these technologies are both

environmentally and financially demanding, they are rarely

applied in agriculture.

After more than 10 years of development, crop phenotyping

systems have the following characteristics: a high information

acquisition efficiency, the use of non-invasive sensors, high-

latitude information acquisition, and a resolution that decreases

as the information acquisition area expands. As science

and technology advance, future high-throughput phenotyping

platforms will be able to combine the flux, resolution,

dimension, load, robustness, and working height to obtain a

large amount of original information efficiently and quickly.

Resolution includes both temporal (from seconds to days to

months) and spatial (very small, such as for cells, to large, such

as for fields and natural environments) dimensions, denoting

the variety of phenotypic features acquired by phenotyping

systems under various time, space, and scale conditions. The

load refers to the maximum weight that a phenotyping platform

can carry; notably, in air-based platforms, the load capacity

severely restricts the number and variety of sensors that can

be used. Therefore, appropriately enhancing the load capacity

of a phenotyping platform can promote the diversification of

phenotypic data acquisition. The adaptability of phenotyping
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platforms to work in the field is referred to as robustness.

Harsh field conditions pose significant challenges to the

normal operation of phenotyping platforms, and enhancing the

robustness of a platform can ensure that the platform operates

properly. The working height is vital in obtaining phenotypic

regions; the obtained regions increase as the working height

increases, while the resolution decreases. The key issue for

researchers to overcome is how to organically combine the

aforementioned factors.

Furthermore, cost control is a critical link, and scientists

have been working to determine how to achieve high

performance at a low cost. Existing field phenotyping

platforms are frequently unable to combine low cost and high

performance, failing to meet the needs of most plant phenotype

research institutes. As a result, obtaining fast and precise field

phenotypic information at a low cost is a bottleneck in the

development of a high-throughput phenotyping platform.

This necessitates the gathering of talent from various fields,

such as machinery, network communication, and sensors,

to cross disciplines and contribute to the development of a

high-throughput phenotyping platform in the field.

Construction of a knowledge map of
phenotypic big data

Plants are dynamic, complex systems. Plant phenotypes,

such as shape, size, color, posture, and texture, will change

as they grow. Plants of different varieties have a wide range

of appearances at the same time, resulting in the typical 3V

characteristics of traditional big data in plant genome big data,

that is, data volume, variety, and velocity. A large amount of data

is mainly due to the rapid increase in phenotypic data obtained

by advanced technology phenotyping equipment based on

intelligent equipment and artificial intelligence technology. The

diversity and heterogeneity of plant individuals and data types

determine data polymorphism. The data are timely because of

the dynamic and swift generation of large phenotypic data in the

form of data flow.

At the same time, big plant phenomics data exhibit 3H

characteristics: high dimension, high complexity, and high

uncertainty primarily because plant genomic big data include

text data and a large number of images, spectra, and cloud point

data, resulting in a wide range of data. The high complexity

of phenotypic information is determined by the diversity of

genetic information and environmental differences. Phenotypic

data have low repeatability and uncertainty because they are

affected by many factors, and data acquisition criteria are not

uniform. Dicotyledons have more complex plant types and

higher 3V and 3H characteristics as a result of genetic diversity

and geographical environmental resources, making dicotyledon

phenotypic data analysis more difficult. How does one screen for

key features under this premise? Big data analysis and in-depth

mining must be improved.

After overcoming numerous obstacles to obtain phenotypic

data, we are unable to extract such data in depth, resulting

in a massive waste of data resources. Phenomic studies

are more akin to point-like studies. On the one hand,

phenotypic studies are carried out by organizations all over

the world, but there is little cooperation between nations and

institutions. Currently, only two national-level collaborations

(with the US as the sole center and Germany, France, and the

United Kingdom as common centers) and four institutional-

level collaborations exist (with the United States Department

of Agriculture and Cornell University as the centers; China

Agricultural University, University of Queensland, Chinese

Academy of Sciences, and Chinese Academy of Agricultural

Sciences; University of Nottingham and University of Bonn;

Wageningen University, French Agricultural Research Institute,

and French Scientific Research Center). On the other hand,

plant phenotypic databases are limited, and the main data

contents vary greatly. For example, the Distributed Phenotypic

Data Acquisition and Information Management System (Crop

Sight), which primarily includes plant phenotypic data and

environmental data (Reynolds et al., 2019a), the phenotypic

mixed information system (PHIS), which primarily includes

multisource and multiscale information in plant phenomics

(Neveu et al., 2019), and the plant genome and phenotypic data

sharing platform, primarily consists of data information on plant

traits, phenotypes, gene functions, and gene expression of 95

plant taxa (Cooper et al., 2018); the Crop Phenotyping Center

of Huazhong Agricultural University, which primarily consists

of phenotype data and QTL data (Zhang et al., 2017); and the

plant phenotype and genomics data publishing platform. Plant

phenotypic data, genome data, mass spectrometry data, and data

visualization and analysis software data are mainly included in

the PGP Repository (Arend et al., 2016). This phenomenon

will result in complex and variable phenotypic data formats,

a lack of unified standards, and a significant reduction in the

role of data. As a result, we urge countries and institutions to

work together to strengthen collaborations, establish phenotype

databases, share information, and hold joint discussions.

Combining with multiomics

The rapid development of high-throughput sequencing,

mass spectrometry, and chromatography has facilitated

the study of genomics, transcriptomics, proteomics, and

metabolomics. Dicotyledons are characterized by complex plant

types and a wealth of phenotypic data. When combined with

multimers, dicotyledons can unlock more functional genes

and facilitate plant genomics research. In breeding practice,

high-throughput phenotyping combined with a variety of other

omic techniques can be applied to crops in different growth
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periods and at different scales (cells, tissues, organs, groups)

in research on the comprehensive analysis of the calculated

crop regulation network of life activity, revealing the biological

characteristics of crops. Certain studies on monocotyledons

have been conducted in conjunction with multiple omics, such

as the study by Leiboff et al. (2015), who used high-throughput

image processing technology to determine the size of the shoot

apical meristem (SAM) in a natural population of maize and

discovered some new candidate genes controlling the SAM

size through GWAS analysis. The link between the SAM

morphology and trait-related SNP variants was verified after

researchers looked into possible genes involved in hormone

transport, cell division, and cell size. Xin et al. (2021) employed

wild populations of 384 significant wheat varieties (lines) as

the basis for a genome-wide association analysis that included

phenotypes from three settings and 55K SNP chip typing data.

The findings revealed that 142 SNPs were strongly related to the

number of spikelets, with phenotypic variance ranging from 3.27

to 6.09%. Using the same strategy, Guo et al. (2018) discovered

a novel drought tolerance gene in rice. For dicotyledons, few

relevant studies have been conducted: Bac-Molenaar et al.

(2015) used the PHENOPSIS phenotype platform to analyze

high-throughput images of 324 Arabidopsis cultivars from the

top view and, combined with genome-wide association analysis,

identified some QTLs related to specific periods and growth

rates, revealing a new perspective on the genetic structure of

Arabidopsis dynamic development.

The ability to integrate metabolomics approaches into the

current HTP phenotypic platform has significant potential

to add value (Hall et al., 2022). Metabolites can be divided

into volatile and nonvolatile categories, but they all play

multiple roles in the plant life cycle. For example, they can

be continuously present, having a protective function through

antiinsect or antimicrobial activity (Lubes and Goodarzi, 2017;

Maurya, 2020). The nonvolatile metabolome represents rich

information reflecting past (e.g., slow turnover metabolites

accumulated in response to past stress), present (e.g., high

turnover metabolic intermediates), and future (e.g., precursors

of biomass under construction) events. Accordingly, a growing

number of top-down studies have shown that this metabolome

can be correlated with performance in panels of genetic diversity

(Meyer et al., 2007; Riedelsheimer et al., 2012). Until recently,

cost issues have limited metabolomics applications in large-scale

phenotyping. However, using high-resolution MS [TOF-MS,

Orbitrap, and Fourier transform ion cyclotron resonance mass

spectrometry (FT-ICR-MS)] to distinguish different structures

with the same nominal mass alongside ultrafast chromatography

now makes it possible to combine HTP with a high resolution

(Fekete et al., 2014). Systems biology approaches and the

use of large numbers of samples have become possible,

and increased observations will enable the development

of new prebreeding strategies based on predictive models

(Fernandez et al., 2021).

We have reason to believe that plant genomics will advance

faster with the establishment of relevant research institutions,

the improvement of research facilities, the development of

software, the convening of international academic conferences,

and the formation of relevant academic teams.

The workflow of the high-throughput phenotyping platform

is divided into seven steps. The first step is to determine

the new phenotypic criteria. The second step is to build

a phenotyping platform, including ground-based platforms,

air-based platforms, and space-based platforms. The third

step is to obtain raw information using visible and invisible

sensors. The fourth and fifth steps are the extraction, analysis,

and mining of phenotypic information. The next step is to

combine phenotypic information with multi-omics. Finally, we

aim to solve real problems (including genetic breeding and

precision management).
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